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Complex systems are increasingly being viewed as distributed information processing systems,
particularly in the domains of computational neuroscience, bioinformatics and Artificial Life. This
trend has resulted in a strong uptake in the use of (Shannon) information-theoretic measures to
analyse the dynamics of complex systems in these fields. We introduce the Java Information Dy-
namics Toolkit (JIDT): a Google code project which provides a standalone, (GNU GPL v3 licensed)
open-source code implementation for empirical estimation of information-theoretic measures from
time-series data. While the toolkit provides classic information-theoretic measures (e.g. entropy,
mutual information, conditional mutual information), it ultimately focusses on implementing higher-
level measures for information dynamics. That is, JIDT focusses on quantifying information storage,
transfer and modification, and the dynamics of these operations in space and time. For this purpose,
it includes implementations of the transfer entropy and active information storage, their multivariate
extensions and local or pointwise variants. JIDT provides implementations for both discrete and
continuous-valued data for each measure, including various types of estimator for continuous data
(e.g. Gaussian, box-kernel and Kraskov-Stögbauer-Grassberger) which can be swapped at run-time
due to Java’s object-oriented polymorphism. Furthermore, while written in Java, the toolkit can be
used directly in MATLAB, GNU Octave, Python and other environments. We present the principles
behind the code design, and provide several examples to guide users.
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I. INTRODUCTION

Information theory was originally introduced by Shannon [1] to quantify fundamental limits on signal processing
operations and reliable communication of data [2, 3]. More recently, it is increasingly being utilised for the design
and analysis of complex self-organized systems [4]. Complex systems science [5] is the study of large collections of
entities (of some type), where the global system behaviour is a non-trivial result of the local interactions of the
individuals; e.g. emergent consciousness from neurons, emergent cell behaviour from gene regulatory networks and
flocks determining their collective heading. The application of information theory to complex systems can be traced
to the increasingly-popular perspective that commonalities between complex systems may be found “in the way
they handle information” [6]. Certainly, there have been many interesting insights gained from the application of
traditional information-theoretic measures such as entropy and mutual information to study complex systems, for
example: proposals of candidate complexity measures [7, 8], characterising order-chaos phase transitions [9–12], and
measures of network structure [13, 14].

More specifically though, researchers are increasingly viewing the global behaviour of complex systems as emerging
from the distributed information processing, or distributed computation, between the individual elements of the system
[15–19], e.g. collective information processing by neurons [20]. Computation in complex systems is examined in terms
of: how information is transferred in the interaction between elements, how it is stored by elements, and how these
information sources are non-trivially combined. We refer to the study of these operations of information storage,
transfer and modification, and in particular how they unfold in space and time, as information dynamics [15, 21].

Information theory is the natural domain to quantify these operations of information processing, and we have seen
a number of measures recently introduced for this purpose, including the well-known transfer entropy [22], as well as
active information storage [23] and predictive information [24, 25]. Natural affinity aside, information theory offers
several distinct advantages as a measure of information processing in dynamics,1 including: its model-free nature
(requiring only access to probability distributions of the dynamics), ability to handle stochastic dynamics and capture
non-linear relationships, its abstract nature, generality, and mathematical soundness.

In particular, this type of information-theoretic analysis has gained a strong following in computational neuroscience,
where the transfer entropy has been widely applied [27–39], (for example for effective network inference), and measures
of information storage are gaining traction [40–42]. Similarly, such information-theoretic analysis is popular in studies
of canonical complex systems [19, 23, 43–46], dynamics of complex networks [47–52], social media [53–55], and in
Artificial Life and Modular Robotics both for analysis [56–65] and design [66–71] of embodied cognitive systems (in
particular see the “Guided Self-Organization” series of workshops, e.g. [72]).

This paper introduces JIDT – the Java Information Dynamics Toolkit – which provides a standalone imple-
mentation of information-theoretic measures of dynamics of complex systems. JIDT is open-source, licensed under
GNU General Public License v3, and available for download via Google code at http://code.google.com/p/information-
dynamics-toolkit/. JIDT is designed to facilitate general purpose empirical estimation of information-theoretic mea-
sures from time-series data, by providing easy to use, portable implementations of measures of information transfer,
storage, shared information and entropy.

We begin by describing the various information-theoretic measures which are implemented in JIDT in Section
II A and Appendix A, including the basic entropy and (conditional) mutual information [2, 3], as well as the active
information storage [23], the transfer entropy [22] and its conditional/multivariate forms [45, 46]. We also describe
how one can compute local or pointwise values of these information-theoretic measures at specific observations of time-
series processes, so as to construct their dynamics in time. We continue to then describe the various estimator types
which are implemented for each of these measures in Section II B and Appendix B (i.e. for discrete or binned data,
and Gaussian, box-kernel and Kraskov-Stögbauer-Grassberger estimators). Readers familiar with these measures and
their estimation may wish to skip these sections. We also summarise the capabilities of similar information-theoretic
toolkits in Section II C (focussing on those implementing the transfer entropy).

We then turn our attention to providing a detailed introduction of JIDT in Section III, focussing on the current
version 1.0 distribution. We begin by highlighting the unique features of JIDT in comparison to related toolkits, in
particular in: providing local information-theoretic measurements of dynamics; implementing conditional and other
multivariate transfer entropy measures; and including implementations of other related measures including the active
information storage. We describe the (almost zero) installation process for JIDT in Section III A: JIDT is standalone
software, requiring no prior installation of other software (except a Java Virtual Machine), and no explicit compiling
or building. We describe the contents of the JIDT distribution in Section III B, and then in Section III C outline which
estimators are implemented for each information-theoretic measure. We then describe the principles behind the design

1 Further commentary on links between information-theoretic analysis and traditional dynamical systems approaches are discussed by
Beer and Williams [26].

http://code.google.com/p/information-dynamics-toolkit/
http://code.google.com/p/information-dynamics-toolkit/
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of the toolkit in Section III D, including our object-oriented approach in defining interfaces for each measure, then
providing multiple implementations (one for each estimator type). Section III E-Section III G then describe how the
code has been tested, how the user can (re-)build it, and what extra documentation is available (principally the project
wiki and Javadocs).

Finally and most importantly, Section IV outlines several demonstrative examples supplied with the toolkit, which
are intended to guide the user through how to use JIDT in their code. We begin with simple Java examples in Section
IV A, which includes a description of the general pattern of usage in instantiating a measure and making calculations,
and walks the user through differences in calculators for discrete and continuous data, and multivariate calculations.
We also describe how to take advantage of the polymorphism in JIDT’s object-oriented design to facilitate run-time
swapping of the estimator type for a given measure. Other demonstration sets from the distribution are presented
also, including: basic examples using the toolkit in MATLAB, GNU Octave and Python (Section IV B and Section
IV C); reproduction of the original transfer entropy examples from Schreiber [22] (Section IV D); and local information
profiles for cellular automata (Section IV E).

II. INFORMATION-THEORETIC MEASURES AND ESTIMATORS

We begin by providing brief overviews of information-theoretic measures (Section II A) and estimator types (Section
II B) implemented in JIDT. These sections serve as summaries of Appendix A and Appendix B. We also discuss related
toolkits implementing some of these measures in Section II C.

A. Information-theoretic measures

This section provides a brief overview of the information-theoretic measures [2, 3] which are implemented in JIDT.
All features discussed are available in JIDT unless otherwise noted. A more complete description for each measure is
provided in Appendix A.

We consider measurements x of a random variable X, with a probability distribution function (PDF) p(x) defined
over the alphabet αx of possible outcomes for x (where αx = {0, . . . ,MX − 1} without loss of generality for some MX

discrete symbols).
The fundamental quantity of information theory for example is the Shannon entropy, which represents the

expected or average uncertainty associated with any measurement x of X:

H(X) = −
∑
x∈αx

p(x) log2 p(x). (1)

Unless otherwise stated, logarithms are taken by convention in base 2, giving units in bits. H(X) for a measurement
x of X can also be interpreted as the minimal expected or average number of bits required to encode or describe its
value without losing information [2, 3]. X may be a joint or vector variable, e.g. X = {Y, Z}, generalising Eq. (1) to
the joint entropy H(X) or H(Y,Z) for an arbitrary number of joint variables (see Table I and Eq. (A2) in Appendix
A 1). While the above definition of Shannon entropy applies to discrete variables, it may be extended to variables in
the continuous domain as the differential entropy – see Appendix A 4 for details.

All of the subsequent Shannon information-theoretic quantities we consider may be written as sums and differences
of the aforementioned marginal and joint entropies, and all may be extended to multivariate (X, Y etc) and/or
continuous variables. The basic information-theoretic quantities: entropy, joint entropy, conditional entropy,
mutual information (MI), conditional mutual information [2, 3], and multi-information [7]; are discussed in
detail in Appendix A 1, and summarised here in Table I. All of these measures are non-negative.

Also, we may write down pointwise or local information-theoretic measures, which characterise the infor-
mation attributed with specific measurements x, y and z of variables X, Y and Z [73], rather than the traditional
expected or average information measures associated with these variables introduced above. Full details are provided
in Appendix A 3, and the local form for all of our basic measures is shown here in Table I. For example, the Shannon
information content or local entropy of an outcome x of measurement of the variable X is [3, 74]:

h(x) = − log2 p(x). (2)

By convention we use lower-case symbols to denote local information-theoretic measures. The Shannon information
content of a given symbol x is the code-length for that symbol in an optimal encoding scheme for the measurements
X, i.e. one that produces the minimal expected code length. We can form all local information-theoretic measures
as sums and differences of local entropies (see Table I and Appendix A 3), and each ordinary measure is the average
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TABLE I. Basic information-theoretic quantities (first six rows) and measures of information dynamics (last five rows) imple-
mented in JIDT. Equations are supplied for both their average or expected form, and their local form. References are given to
the presentation of these equations in Appendix A 1 and Appendix A 2.

Measure Average/Expected form Local form

Entropy H(X) = −
∑
x∈αx

p(x) log2 p(x) Eq. (A1) h(x) = − log2 p(x) Eq. (A32)

Joint entropy H(X,Y ) = −
∑

x∈αx,y∈αy

p(x, y) log2 p(x, y) Eq. (A2) h(x, y) = − log2 p(x, y) Eq. (A38)

Conditional entropy H(Y | X) = H(X,Y )−H(X) Eq. (A3) h(x | y) = h(x, y)− h(x) Eq. (A37)
Mutual information I(X;Y ) = H(X) + H(Y )−H(X,Y ) Eq. (A6) i(x; y) = h(x) + h(y)− h(x, y) Eq. (A41)

Multi-information
I(X1;X2; . . . ;XG) =

(∑G
g=1 H(Xg)

)
Eq. (A7)

i(x1;x2; . . . ;xG) =
(∑G

g=1 h(xg)
)

Eq. (A47)
−H(X1, X2, . . . , XG) −h(x1, x2, . . . , xG)

Conditional MI I(X;Y | Z) = H(X | Z) + H(Y | Z) Eq. (A11) i(x; y | z) = h(x | z) + h(y | z) Eq. (A44)
−H(X,Y | Z) −h(x, y | z)

Entropy rate HµX(k) = H(Xn+1 | X(k)
n ) Eq. (A18) hµX(n + 1, k) = h(xn+1 | x(k)

n ) Eq. (A48)
Active information

AX(k) = I(X
(k)
n ;Xn+1) Eq. (A23) aX(n + 1, k) = i(x

(k)
n ;xn+1) Eq. (A52)

storage

Predictive information EX(k) = I(X
(k)
n ; X

(k+)
n+1 ) Eq. (A21) eX(n + 1, k) = i(x

(k)
n ; x

(k+)
n+1 ) Eq. (A50)

Transfer entropy TY→X(k, l, u) = I(Y
(l)
n+1−u;Xn+1 | X(k)

n ) Eq. (A27) tY→X(n + 1, k, l, u) = i(y
(l)
n+1−u;xn+1 | x(k)

n ) Eq. (A54)

Conditional TE TY→X|Z(k, l) = I(Y
(l)
n ;Xn+1 | X(k)

n , Zn) Eq. (A29) tY→X|Z(n + 1, k, l) = i(y
(l)
n ;xn+1 | x(k)

n , zn) Eq. (A56)

or expectation value of their corresponding local measure, e.g. H(X) = 〈h(x)〉. Crucially, the local MI and local
conditional MI [75, ch. 2] may be negative, unlike their averaged forms. This occurs for MI where the measurement
of one variable is misinformative about the other variable (see further discussion in Appendix A 3).

Applied to time-series data, these local variants return a time-series for the given information-theoretic measure,
which with mutual information for example characterises how the shared information between the variables fluctuates
as a function of time. As such, they directly reveal the dynamics of information, and are gaining popularity in
complex systems analysis [23, 40, 45, 46, 73, 76–79].

Continuing with time-series, we then turn our attention to measures specifically used to quantify the dynamics of
information processing in multivariate time-series, under a framework for information dynamics which was recently
introduced by Lizier et al. [21, 23, 45, 46, 79] and Lizier [15, 73]. The measures of information dynamics implemented
in JIDT – which are the real focus of the toolkit – are discussed in detail in Appendix A 2, and summarised here in
Table I.

These measures consider time-series processes X of the random variables {. . . Xn−1, Xn, Xn+1 . . .} with process re-

alisations {. . . xn−1, xn, xn+1 . . .} for countable time indices n. We use X
(k)
n = {Xn−k+1, . . . , Xn−1, Xn} to denote the

k consecutive variables of X up to and including time step n, which has realizations x
(k)
n = {xn−k+1, . . . , xn−1, xn}.2

The x
(k)
n are Takens’ embedding vectors [80] with embedding dimension k, which capture the underlying state of the

process X for Markov processes of order k.3

Specifically, our framework examines how the information in variable Xn+1 is related to previous variables or states

(e.g. Xn or X
(k)
n ) of the process or other related processes, addressing the fundamental question: “where does the

information in a random variable Xn+1 in a time series come from?”. As indicated in Fig. 1 and shown for the
respective measures in Table I, this question is addressed in terms of:

1. information from the past of process X – i.e. the information storage, measured by the active information
storage [23] and predictive information or excess entropy [24, 25, 81];

2. information contributed from other source processes Y – i.e. the information transfer, measured by the transfer
entropy (TE) [22] and conditional transfer entropy [45, 46];

3. and how these sources combine – i.e. information modification (see separable information [46] in Appendix
A 2).

2 We use the corresponding notation X
(k+)
n+1 for the next k values from n + 1 onwards, {Xn+1, Xn+2, . . . , Xn+k}, with realizations

x
(k+)
n+1 = {xn+1, xn+2, . . . , xn+k}

3 We can use an embedding delay τ to give x
(k)
n =

{
xn−(k−1)τ , . . . , xn−τ , xn

}
, where this helps to better empirically capture the state

from a finite sample size. Non-uniform embeddings (i.e. with irregular delays) may also be useful [32] (not implemented in JIDT at this
stage).
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FIG. 1. Measures of information dynamics with respect to a destination variable X. We address the information content in a
measurement xn+1 of X at time n + 1 with respect to the active information storage aX(n + 1, k), and local transfer entropies
tY1→X(n + 1, k) and tY2→X(n + 1, k) from variables Y1 and Y2.

The goal of the framework is to decompose the information in the next observation Xn+1 of process X in terms of
these information sources.

The transfer entropy, arguably the most important measure in the toolkit, has become a very popular tool in
complex systems in general, e.g. [45, 51, 57, 62, 71, 82, 83], and in computational neuroscience in particular, e.g.
[31, 33, 34, 37, 84]. For multivariate Gaussians, the TE is equivalent (up to a factor of 2) to the Granger causality
[85]. Extension of the TE to arbitrary source-destination lags is described by Wibral et al. [86] and incorporated in
Table I (this is not shown for conditional TE here for simplicity, but is handled in JIDT). Further, one can consider
multivariate sources Y, in which case we refer to the measure TY→X(k, l) as a collective transfer entropy [46].
See further description of this measure at Appendix A 2, including regarding how to set the history length k.

Table I also shows the local variants of each of the above measures of information dynamics (presented in full in
Appendix A 3). The use of these local variants is particularly important here because they provide a direct, model-
free mechanism to analyse the dynamics of how information processing unfolds in time in complex systems. Fig. 1
indicates for example a local active information storage measurement for time-series process X, and a local transfer
entropy measurement from process Y to X.

Finally, in Appendix A 5 we describe how one can evaluate whether an MI, conditional MI or TE is statistically
different from zero, and therefore represents sufficient evidence for a (directed) relationship between the variables. This
is done (following [29, 33, 34, 83, 84, 87, 88]) via permutation testing to construct appropriate surrogate populations
of time-series and measurements under the null hypothesis of no directed relationship between the given variables.

B. Estimation techniques

While the mathematical formulation of the quantities in Section II A are relatively straightforward, empirically
estimating them in practice from a finite number N of samples of time-series data can be a complex process, and is
dependent on the type of data you have and its properties. Estimators are typically subject to bias and variance due
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to finite sample size. Here we briefly introduce the various types of estimators which are included in JIDT, referring
the reader to Appendix B (and also Vicente and Wibral [89] for the transfer entropy in particular) for more detailed
discussion.

For discrete variables X, Y , Z etc., the definitions in Section II A may be used directly by counting the matching
configurations in the available data to obtain the relevant plug-in probability estimates (e.g. p̂(x | y) and p̂(x) for
MI). These estimators are simple and fast, being implemented in O (N) time. Several bias correction techniques are
available, e.g. [90, 91], though not yet implemented in JIDT.

For continuous variables X, Y , Z, one could simply discretise or bin the data and apply the discrete estimators
above. While this is simple and fast (O (N) as above), it is likely to sacrifice accuracy. Alternatively, we can use an
estimator that harnesses the continuous nature of the variables, dealing with the differential entropy and probability
density functions. The latter is more complicated but yields a more accurate result. We discuss several such estimators
in Appendix B 2, and summarise them in the following:4

• A multivariate Gaussian model may be used (Appendix B 2 a) for the relevant variables, assuming linear
interactions between them. This approach uses the known form of entropy for Gaussian multivariates (Eq. (B1),
in nats) [2] and sums and differences of these entropies to compute other measures (e.g. transfer entropy as per
[92]). These estimators are fast (O

(
Nd2

)
, for dimensionality d of the given joint variable) and parameter-free,

but subject to the linear-model assumption.

• Kernel estimation of the relevant PDFs via a kernel function are discussed in Appendix B 2 b (and see
e.g. Schreiber [22], Kaiser and Schreiber [92] and Kantz and Schreiber [93]). Such kernel functions measure
similarity between pairs of samples using a specific resolution or kernel width r; e.g. the box-kernel (implemented
in JIDT) results in counting the proportion of the N sample values which fall within r of the given sample.
They are then used as plug-in estimates for the entropy, and again sums and differences of these for the other
measures. Kernel estimation can measure non-linear relationships and is model-free (unlike Gaussian estimators),
though is sensitive to the parameter choice for r [22, 92] and is biased. It is less time-efficient than the simple
methods, although box-assisted methods can achieve O (N) time-complexity [93]. See Appendix B 2 b for further
comments, e.g. regarding selection of r.

• The Kraskov, Stögbauer, and Grassberger [94] (KSG) technique (see details in Appendix B 2 c) improved
on (box-) kernel estimation for MI (and multi-information) via the use of Kozachenko-Leonenko estimators [95]
of log-probabilities via nearest-neighbour counting; bias correction; and a fixed number K of nearest neighbours
in the full X-Y joint space. The latter effectively means using a dynamically altered (box-) kernel width r
to adjust to the density of samples in the vicinity of any given observation; this smooths out errors in the
PDF estimation, especially when handling a small number of observations. These authors proposed two slightly
different algorithms for their estimator – both are implemented in JIDT. The KSG technique has been directly
extended to conditional MI by Frenzel and Pompe [96] and transfer entropy (originally by Gomez-Herrero et al.
[97] and later for algorithm 2 by Wibral et al. [29]). KSG estimation builds on the non-linear and model-free
capabilities of kernel estimation with bias correction, better data efficiency and accuracy, and being effectively
parameter-free (being relatively stable to choice of K). As such, it is widely-used as best of breed solution for
MI, conditional MI and TE for continuous data; see e.g. Wibral et al. [29] and Vicente and Wibral [89]. It
can be computationally expensive with naive algorithms requiring O

(
KN2

)
time though fast nearest neighbour

search techniques can reduce this to O (KN logN). For release v1.0 JIDT only implements a naive algorithm,
though fast nearest neighbour search is implemented and available via the project SVN repository (see Section
III A) and as such will be included in future releases.

• Permutation entropy approaches [98] estimate the relevant PDFs based on the relative ordinal structure of
the joint vectors (see Appendix B 2 d). Permutation entropy has for example been adapted to estimate TE
as the symbolic transfer entropy [99]. Permutation approaches are computationally fast, but are model-based
however (assuming all relevant information is in the ordinal relationships). This is not necessarily the case, and
can lead to misleading results, as demonstrated by Wibral et al. [86].

C. Related open-source information-theoretic toolkits

We next consider other existing open-source information-theoretic toolkits for computing the aforementioned mea-
sures empirically from time-series data. In particular we consider those which provide implementations of the transfer

4 Except where otherwise noted, JIDT implements the most efficient described algorithm for each estimator.
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entropy. For each toolkit, we describe its purpose, the type of data it handles, and which measures and estimators
are implemented.

TRENTOOL (http://www.trentool.de, GPL v3 license) by Lindner et al. [84] is a MATLAB toolbox which is
arguably the most mature open-source toolkit for computing TE. It is not intended for general-purpose use, but
designed from the ground up for transfer entropy analysis of (continuous) neural data, using the data format of the
FieldTrip toolbox [100] for EEG, MEG and LFP recordings. In particular, it is designed for performing effective
connectivity analysis between the input variables (see Vicente et al. [34] and Wibral et al. [101]), including statistical
significance testing of TE results (as outlined in Appendix A 5) and processing steps to deal with volume conduc-
tion and identify cascade or common-driver effects in the inferred network. Conditional/multivariate TE is not yet
available, but planned. TRENTOOL automates selection of parameters for embedding input time-series data and for
source-target delays, and implements KSG estimation (see Appendix B 2 c), harnessing fast nearest neighbour search,
parallel computation and GPU-based algorithms [102].

The MuTE toolbox by Montalto et al. [103, 104] (available via figshare, CC-BY license [105]) provides MATLAB
code for TE estimation. In particular, MuTE is capable of computing conditional TE, includes a number of estima-
tor types (discrete or binned, Gaussian, and KSG including fast nearest neighbour search), and adds non-uniform
embedding (see Faes et al. [32]). It also adds code to assist with embedding parameter selection, and incorporates
statistical significance testing.

The Transfer entropy toolbox (TET, http://code.google.com/p/transfer-entropy-toolbox/, BSD license) by Ito et al.
[37] provides C-code callable from MATLAB for TE analysis of spiking data. TET is limited to binary (discrete) data
only. Users can specify embedding dimension and source-target delay parameters.

MILCA (Mutual Information Least-dependent Component Analysis http://www.ucl.ac.uk/ion/departments/-
sobell/Research/RLemon/MILCA/MILCA, GPL v3 license) provides C-code (callable from MATLAB) for mutual
information calculations on continuous data [94, 106, 107]. MILCA’s purpose is to use the MI calculations as part of
Independent Component Analysis (ICA), but they can be accessed in a general-purpose fashion. MILCA implements
KSG estimators with fast nearest neighbour search; indeed, MILCA was co-written by the authors of this technique.
It also handles multidimensional variables.

TIM (http://www.cs.tut.fi/%7etimhome/tim/tim.htm, GNU Lesser GPL license) by Rutanen [108] provides C++
code (callable from MATLAB) for general-purpose calculation of a wide range of information-theoretic measures on
continuous-valued time-series, including for multidimensional variables. The measures implemented include entropy
(Shannon, Renyi and Tsallis variants), Kullback-Leibler divergence, MI, conditional MI, TE and conditional TE. TIM
includes various estimators for these, including Kozachenko-Leonenko (see Appendix B 2 c), Nilsson-Kleijn [109] and
Stowell-Plumbley [110] estimators for (differential) entropy, and KSG estimation for MI and conditional MI (using
fast nearest neighbour search).

The MVGC (multivariate Granger causality toolbox, http://www.sussex.ac.uk/sackler/mvgc/, GPL v3 license) by
Barnett and Seth [111] provides a MATLAB implementation for general-purpose calculation of the Granger causality
(i.e. TE with a linear-Gaussian model, see Appendix A 2) on continuous data. MVGC also requires the MATLAB
Statistics, Signal Processing and Control System Toolboxes.

There is a clear gap for a general-purpose information-theoretic toolkit, which can run in multiple code environments,
implementing all of the measures in Appendix A 1 and Appendix A 2, with various types of estimators, and with
implementation of local values, measures of statistical significance etc. In the next section we introduce JIDT, and
outline how it addresses this gap. Users should make a judicious choice of which toolkit suits their requirements,
taking into account data types, estimators and application domain. For example, TRENTOOL is built from the
ground up for effective network inference in neural imaging data, and is certainly the best tool for that application in
comparison to a general-purpose toolkit.

III. JIDT INSTALLATION, CONTENTS AND DESIGN

JIDT (Java Information Dynamics Toolkit, http://code.google.com/p/information-dynamics-toolkit/, GPL v3 li-
cense) is unique as a general-purpose information-theoretic toolkit which provides all of the following features in one
package:

• Implementation of a large array of measures, including all conditional/multivariate forms of the transfer entropy,
complementary measures such as active information storage, and allows full specification of relevant embedding
parameters;

• Implementation a wide variety of estimator types and applicability to both discrete and continuous data;

• Implementation of local measurement for all estimators;

http://www.trentool.de
http://figshare.com/articles/MuTE_toolbox_to_evaluate_Multivariate_Transfer_Entropy/1005245/1
http://code.google.com/p/transfer-entropy-toolbox/
http://www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/MILCA/MILCA
http://www.ucl.ac.uk/ion/departments/sobell/Research/RLemon/MILCA/MILCA
http://www.cs.tut.fi/%7etimhome/tim/tim.htm
http://www.sussex.ac.uk/sackler/mvgc/
http://code.google.com/p/information-dynamics-toolkit/
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TABLE II. Relevant web/wiki pages on JIDT website.

Name URL
Project home http://code.google.com/p/information-dynamics-toolkit/
Installation http://code.google.com/p/information-dynamics-toolkit/wiki/Installation
Downloads http://code.google.com/p/information-dynamics-toolkit/wiki/Downloads

MATLAB/Octave use http://code.google.com/p/information-dynamics-toolkit/wiki/UseInOctaveMatlab
Octave-Java array conversion http://code.google.com/p/information-dynamics-toolkit/wiki/OctaveJavaArrayConversion

Python use http://code.google.com/p/information-dynamics-toolkit/wiki/UseInPython
JUnit test cases http://code.google.com/p/information-dynamics-toolkit/wiki/JUnitTestCases
Documentation http://code.google.com/p/information-dynamics-toolkit/wiki/Documentation

Demos http://code.google.com/p/information-dynamics-toolkit/wiki/Demos
Simple Java Examples http://code.google.com/p/information-dynamics-toolkit/wiki/SimpleJavaExamples

Octave/MATLAB Examples http://code.google.com/p/information-dynamics-toolkit/wiki/OctaveMatlabExamples
Python Examples http://code.google.com/p/information-dynamics-toolkit/wiki/PythonExamples

Cellular Automata demos http://code.google.com/p/information-dynamics-toolkit/wiki/CellularAutomataDemos
Schreiber TE Demos http://code.google.com/p/information-dynamics-toolkit/wiki/SchreiberTeDemos

jidt-discuss group http://groups.google.com/group/jidt-discuss
SVN URL http://information-dynamics-toolkit.googlecode.com/svn/trunk/

• Inclusion of statistical significance calculations for MI, TE, etc. and their conditional variants;

• No dependencies on other installations (except Java).

Furthermore, JIDT is written in Java5, taking advantage of the following features:

• The code becomes platform agnostic, requiring only an installation of the Java Virtual Machine (JVM) to run;

• The code is object-oriented, with common code shared and an intuitive hierarchical design using interfaces;
this provides flexibility and allows different estimators of same measure can be swapped dynamically using
polymorphism;

• The code can be called directly from MATLAB, GNU Octave, Python, etc., but runs faster than native code in
those languages (still slower but comparable to C/C++, see “Computer Language Benchmarks Game” [112]);
and

• Automatic generation of Javadoc documents for each class.

In the following, we describe the (minimal) installation process in Section III A, and contents of the version 1.0
JIDT distribution in Section III B. We then describe which estimators are implemented for each measure in Section
III C, and architecture of the source code in Section III D. We also outline how the code has been tested in Section
III E, how to build it (if required) in Section III F and point to other sources of documentation in Section III G.

A. Installation and dependencies

There is little to no installation of JIDT required beyond downloading the software. The software can be run
on any platform which supports a standard edition Java Runtime Environment (i.e. Windows, Mac, Linux, Solaris).

Material pertaining to installation is described in full at the “Installation” wiki page for the project (see Table II
for all relevant project URLs); summarised as follows:

1. Download a code release package from the “Downloads” wiki page. Full distribution is recommended (described
in Section III B) so as to obtain e.g. access to the examples described in Section IV, though a “Jar only”
distribution provides just the JIDT library infodynamics.jar in Java archive file format.

2. Unzip the full .zip distribution to the location of your choice, and/or move the infodynamics.jar file to a
relevant location. Ensure that infodynamics.jar is on the Java classpath when your code attempts to access
it (see Section IV).

5 The JIDT v1.0 distribution is compiled by Java Standard Edition 6; it is also verified as compatible with Edition 7.

http://code.google.com/p/information-dynamics-toolkit/
http://code.google.com/p/information-dynamics-toolkit/wiki/Installation
http://code.google.com/p/information-dynamics-toolkit/wiki/Downloads
http://code.google.com/p/information-dynamics-toolkit/wiki/UseInOctaveMatlab
http://code.google.com/p/information-dynamics-toolkit/wiki/OctaveJavaArrayConversion
http://code.google.com/p/information-dynamics-toolkit/wiki/UseInPython
http://code.google.com/p/information-dynamics-toolkit/wiki/JUnitTestCases
http://code.google.com/p/information-dynamics-toolkit/wiki/Documentation
http://code.google.com/p/information-dynamics-toolkit/wiki/Demos
http://code.google.com/p/information-dynamics-toolkit/wiki/SimpleJavaExamples
http://code.google.com/p/information-dynamics-toolkit/wiki/OctaveMatlabExamples
http://code.google.com/p/information-dynamics-toolkit/wiki/PythonExamples
http://code.google.com/p/information-dynamics-toolkit/wiki/CellularAutomataDemos
http://code.google.com/p/information-dynamics-toolkit/wiki/SchreiberTeDemos
http://groups.google.com/group/jidt-discuss
http://information-dynamics-toolkit.googlecode.com/svn/trunk/


9

3. To update to a new version, simply copy the new distribution over the top of the previous one.

As an alternative, advanced users can take an SVN checkout of the source tree from the SVN URL (see Table II)
and build the infodynamics.jar file using ant scripts (see Section III F).

In general, there are no dependencies that a user would need to download in order to run the code. Some
exceptions are as follows:

1. Java must be installed on your system in order to run JIDT; most systems will have Java already installed. To
simply run JIDT, you will only need a Java Runtime Environment (JRE, also known as Java Virtual Machine
or JVM), whereas to modify and/or build to software, or write your own Java code to access it, you will need
the full Java Development Kit (JDK), standard edition (SE). Download it from http://java.com/. For using
JIDT via MATLAB, a JVM is included in MATLAB already.

2. If you wish to build the project using the build.xml script – this requires ant (see Section III F).

3. If you wish to run the unit test cases (see Section III E) - this requires the JUnit framework: http://www.junit.org/
- for how to run JUnit with our ant script see “JUnit test cases” wiki page.

4. Additional preparation may be required to use JIDT in GNU Octave or Python. Octave users must install the
octave-java package from the Octave-forge project – see description of these steps at “MATLAB/Octave
use” wiki page. Python users must install a relevant Python-Java extension – see description at “Python use”
wiki page. Both cases will depend on a JVM on the system (as per point 1 above), though the aforementioned
extensions may install this for you.

Note that JIDT does adapt code from a number of sources in accordance with their open-source license terms,
including: Apache Commons Math v3.3 (http://commons.apache.org/proper/commons-math/), the JAMA project
(http://math.nist.gov/javanumerics/jama/), and the octave-java package from the Octave-Forge project (http://octave.-
sourceforge.net/java/). Relevant notices are supplied in the notices folder of the distribution. Such code is included
in JIDT however and does not need to be installed separately.

B. Contents of distribution

The contents of the current (version 1.0) JIDT (full) distribution are as follows:

• The top level folder contains the infodynamics.jar library file, a GNU GPL v3 license, a readme.txt file and
an ant build.xml script for (re-)building the code (see Section III F);

• The java folder contains source code for the library in the source subfolder (described in Section III C), and
unit tests in the unittests subfolder (see Section III E).

• The javadocs folder contains automatically generated Javadocs from the source code, as discussed in Section
III G.

• The demos folder contains several example applications of the software, described in Section IV, sorted into
folders to indicate which environment they are intended to run in, i.e. java, octave (which is compatible with
MATLAB) and python. There is also a data folder here containing sample data sets for these demos and unit
tests.

• The notices folder contains notices and licenses pertaining to derivations of other open source code used in
this project.

C. Source code and estimators implemented

The Java source code for the JIDT library contained in the java/source folder is organised into the following Java
packages (which map directly to subdirectories):

• infodynamics.measures contains all of the classes implementing the information-theoretic measures, split into:

– infodynamics.measures.discrete containing all of the measures for discrete data;

http://java.com/
http://www.junit.org/
http://commons.apache.org/proper/commons-math/
http://math.nist.gov/javanumerics/jama/
http://octave.sourceforge.net/java/
http://octave.sourceforge.net/java/
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TABLE III. An outline of which estimation techniques are implemented for each relevant information-theoretic measure. The
Xsymbol indicates that the measure is implemented for the given estimator and is applicable to both univariate and multivariate
time-series (e.g. collective transfer entropy, where the source is multivariate), while the addition of superscript ‘u’ (i.e. Xu)
indicates the measure is implemented for univariate time-series only. The section numbers and equation numbers refer to the
definitions in the Appendix for the expected and local values (where provided) for each measure. Also, while the KSG estimator
is not applicable for entropy, the ? symbol there indicates the implementation of the estimator by Kozachenko and Leonenko
[95] for entropy (which the KSG technique is based on for MI; see Appendix B 2 c). Finally, † indicates that the (continuous)
predictive information calculators are not available in the v1.0 release but are available via the project SVN and future releases.

Measure Discrete Continuous estimators
estimator Gaussian Box-Kernel Kraskov et al.(KSG) Permutation

Name Notation Defined at §B 1 §B 2 a §B 2 b §B 2 c §B 2 d

Entropy H(X) Eq. (A1,A32) X X X ?
Entropy rate HµX Eq. (A18,A48) X Use two multivariate entropy calculators

Mutual information (MI) I(X;Y ) Eq. (A6,A41) X X X X
Conditional MI I(X;Y | Z) Eq. (A11,A44) X X X

Multi-information I(X) Eq. (A7,A47) X Xu Xu

Transfer entropy (TE) TY→X Eq. (A25,A54) X X X X Xu

Conditional TE TY→X|Z Eq. (A29,A56) X Xu Xu

Active information storage AX Eq. (A23,A52) X Xu Xu Xu

Predictive information EX Eq. (A21,A50) X †u †u †u
Separable information SX Eq. (A31) X

– infodynamics.measures.continuous which at the top level contains Java interfaces for each of the mea-
sures as applied to continuous data, then a set of sub-packages (gaussian, kernel, kozachenko, kraskov
and symbolic) which map to each estimator type in Section II B and contain implementations of such
estimators for the interfaces defined for each measure (Section III D describes the object-oriented design
used here). Table III identifies which estimators are measured for each estimator type;

– infodynamics.measures.mixed includes experimental discrete-to-continuous MI calculators, though these
are not discussed in detail here.

• infodynamics.utils contains classes providing a large number of utility functions for the measures (e.g. matrix
manipulation, file reading/writing including in Octave text format);

• infodynamics.networkinference contains implementations of higher-level algorithms which use the information-
theoretic calculators to infer an effective network structure from time-series data (see Section IV F).

As outlined above, Table III describes which estimators are implemented for each measure. This effectively maps the
definitions of the measures in Section II A to the estimators in Section II B (note that the efficiency of these estimators
is also discussed in Section II A). All estimators provide the corresponding local information-theoretic measures (as
introduced in Appendix A 3). Also, for the most part, the estimators include a generalisation to multivariate X, Y,
etc, as identified in the table.

D. JIDT architecture

The measures for continuous data have been organised in a strongly object-oriented fashion.6 Fig. III D provides a
sample (partial) Unified Modeling Language (UML) class diagram of the implementations of the conditional mutual
information (Eq. (A11)) and transfer entropy (Eq. (A25)) measures using KSG estimators (Appendix B 2 c). This
diagram shows the typical object-oriented hierarchical structure of the implementations of various estimators for each
measure. The class hierarchy is organised as follows.

Interfaces at the top layer define the available methods for each measure. At the top of this figure we see
the ConditionalMutualInfoCalculatorMultiVariate and TransferEntropyCalculator interfaces which define the
methods each estimator class for a given measure must implement. Such interfaces are defined for each information-
theoretic measure in the infodynamics.measures.continuous package.

6 This is also the case for the measures for discrete data, though to a lesser degree and without multiple estimator types, so this is not
focussed on here.
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Abstract classes7 at the intermediate layer provide basic functionality for each measure. Here, we have abstract
classes ConditionalMutualInfoMultiVariateCommon and TransferEntropyCalculatorViaCondMutualInfo which
implement the above interfaces, providing common code bases for the given measures that various child classes can
build on to specialise themselves to a particular estimator type. For instance, the TransferEntropyCalculatorViaCond-
MutualInfo class provides code which abstractly uses a ConditionalMutualInfoCalculatorMultiVariate interface
in order to make transfer entropy calculations, but does not concretely specify which type of conditional MI estimator
to use, nor fully set its parameters.

Child classes at the lower layers add specialised functionality for each estimator type for each measure. These
child classes inherit from the above parent classes, building on the common code base to add specialisation code
for the given estimator type. Here that is the KSG estimator type. The child classes at the bottom of the
hierarchy have no remaining abstract functionality, and can thus be used to make the appropriate information-
theoretic calculation. We see that ConditionalMutualInfoCalculatorMultiVariateKraskov begins to specialise
ConditionalMutualInfoMultiVariateCommon for KSG estimation, with further specialisation by its child class
ConditionalMutualInfoCalculatorMultiVariateKraskov1 which implements the KSG algorithm 1 (Eq. (B4)). Not
shown here is ConditionalMutualInfoCalculatorMultiVariateKraskov2 which implements the KSG algorithm 2
(Eq. (B5)) and has similar class relationships. We also see that TransferEntropyCalculatorKraskov specialises
TransferEntropyCalculatorViaCondMutualInfo for KSG estimation, by using ConditionalMutualInfoCalculator-
MultiVariateKraskov1 (or ConditionalMutualInfoCalculatorMultiVariateKraskov2, not shown) as the specific
implementation of ConditionalMutualInfoCalculatorMultiVariate. The implementations of these interfaces for
other estimator types (e.g. TransferEntropyCalculatorGaussian) sit at the same level here inheriting from the
common abstract classes above.

This type of object-oriented hierarchical structure delivers two important benefits: i. the decoupling of common
code away from specific estimator types and into common parent classes allows code re-use and simpler maintenance,
and ii. the use of interfaces delivers subtype polymorphism allowing dynamic dispatch, meaning that one can write
code to compute a given measure using the methods on its interface and only specify the estimator type at runtime
(see a demonstration in Section IV A 8).

E. Validation

The calculators in JIDT are validated using a set of unit tests (distributed in the java/unittests folder). Unit
testing is a method of testing software by the use of a set of small test cases which call parts of the code and check the
output against expected values, flagging errors if they arise. The unit tests in JIDT are implemented via the JUnit
framework version 3 (http://www.junit.org/). They can be run via the ant script (see Section III F).

At a high level, the unit tests include validation of the results of information-theoretic calculations applied to the
sample data in demos/data against measurements from various other existing toolkits, e.g.:

• The KSG estimator (Appendix B 2 c) for MI is validated against values produced from the MILCA toolkit
[94, 106, 107];

• The KSG estimator for conditional MI and TE is validated against values produced from scripts within TREN-
TOOL [84];

• The discrete and box-kernel estimators for TE are validated against the plots in the original paper on TE by
Schreiber [22] (see Section IV D);

• The Gaussian estimator for TE (Appendix B 2 a) is verified against values produced from (a modified version
of) the computeGranger.m script of the ChaLearn Connectomics Challenge Sample Code [113].

Further code coverage by the unit tests is planned in future work.

F. (Re-)building the code

Users may wish to build the code, perhaps if they are directly accessing the source files via SVN or modifying
the files. The source code may be compiled manually of course, or in your favourite IDE (Integrated Development

7 Abstract classes provide implementations of some but not all methods required for a class, so they cannot be directly instantiated
themselves but child classes which provide implementations for the missing methods and may be instantiated.

http://www.junit.org/
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<<Java Interface>>

ConditionalMutualInfoCalculatorMultiVariate
infodynamics.measures.continuous

<<Java Class>>

ConditionalMutualInfoMultiVariateCommon
infodynamics.measures.continuous

<<Java Interface>>

TransferEntropyCalculator
infodynamics.measures.continuous

<<Java Class>>

TransferEntropyCalculatorViaCondMutualInfo
infodynamics.measures.continuous

<<Java Class>>

ConditionalMutualInfoCalculatorMultiVariateKraskov
infodynamics.measures.continuous.kraskov

<<Java Class>>

ConditionalMutualInfoCalculatorMultiVariateKraskov1
infodynamics.measures.continuous.kraskov

<<Java Class>>

TransferEntropyCalculatorKraskov
infodynamics.measures.continuous.kraskov

#condMiCalc 0..1

FIG. 2. Partial UML class diagram of the implementations of the conditional mutual information (Eq. (A11)) and transfer
entropy (Eq. (A25)) measures using KSG estimators. As explained in the main text, this diagram shows the typical object-
oriented structure of the implementations of various estimators for each measure. The relationships indicated on the class
diagram are as follows: dotted lines with hollow triangular arrow heads indicate the realisation or implementation of an
interface by a class; solid lines with hollow triangular arrow heads indicate the generalisation or inheritance of a child or
subtype from a parent or superclass; lines with plain arrow heads indicate that one class uses another (with the solid line
indicating direct usage and dotted line indicating indirect usage via the superclass).

Environment). JIDT also provides an ant build script, build.xml, to guide and streamline this process. Apache ant
– see http://ant.apache.org/ – is a command-line tool to build various interdependent targets in software projects,
much like the older style Makefile for C/C++.

To build any of the following targets using build.xml, either integrate build.xml into your IDE and run the selected
<targetName>, or run ant <targetName> from the command line in the top-level directory of the distribution, where
<targetName> may be any of the following:

• build or jar (this is the default if no <targetName> is supplied) – creates a jar file for the JIDT library;

• compile – compiles the JIDT library and unit tests;

• junit – runs the unit tests;

• javadocs – generates automated Javadocs from the formatted comments in the source code;

• jardist – packages the JIDT jar file in a distributable form, as per the jar-only distributions of the project;

• dist – runs unit tests, and packages the JIDT jar file, Javadocs, demos, etc. in a distributable form, as per the
full distributions of the project;

• clean – delete all compiled code etc. built by the above commands.

G. Documentation and support

Documentation to guide users of JIDT is composed of:

1. This manuscript!

http://ant.apache.org/
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2. The Javadocs contained in the javadocs folder of the distribution (main page is index.html), and available
online via the Documentation page of the project wiki (see Table II). Javadocs are html formatted documentation
for each package, class and interface in the library, which are automatically created from formatted comments
in the source code. The Javadocs are very useful tools for users, since they provide specific details about each
class and their methods, in more depth than we are able to do here; for example which properties may be set
for each class. The Javadocs can be (re-)generated using ant as described in Section III F.

3. The demos; as described further in Section IV, on the Demos wiki page (see Table II), and the individual wiki
page for each demo;

4. The project wiki pages (accessed from the project home page, see Table II) provide additional information on
various features, e.g. how to use JIDT in MATLAB or Octave and Python;

5. The unit tests (as described in Section III E) provide additional examples on how to run the code.

You can also join our email discussion group jidt-discuss on Google Groups (see URL in Table II) or browse
past messages, for announcements, asking questions, etc.

IV. JIDT CODE DEMONSTRATIONS

In this section, we describe some simple demonstrations on how to use the JIDT library. Several sets of demon-
strations are included in the JIDT distribution, some of which are described here. More detail is provided for each
demo on its wiki page, accessible from the main Demos wiki page (see Table II). We begin with the main set of Simple
Java Demos, focussing in particular on a detailed walk-through of using a KSG estimator to compute transfer entropy
since the calling pattern here is typical of all estimators for continuous data. Subsequently, we provide more brief
overviews of other examples available in the distribution, including how to run the code in MATLAB, GNU Octave
and Python, implementing the transfer entropy examples from Schreiber [22], and computing spatiotemporal profiles
of information dynamics in Cellular Automata.

A. Simple Java Demos

The primary set of demos is the “Simple Java Demos” set at demos/java in the distribution. This set contains
eight standalone Java programs to demonstrate simple use of various aspects of the toolkit. This set is described
further at the SimpleJavaExamples wiki page (see Table II).

The Java source code for each program is located at demos/java/infodynamics/demos in the JIDT distribution,
and shell scripts (with mirroring batch files for Windows8) to run each program are found at demos/java/. The
shell scripts demonstrate how to compile and run the programs from command line, e.g. example1TeBinaryData.sh
contains the following commands:

1 # Make sure the latest source file is compiled.

2 javac -classpath "../../ infodynamics.jar" "infodynamics/demos/Example1TeBinaryData.java"

3 # Run the example:

4 java -classpath ".:../../ infodynamics.jar" infodynamics.demos.Example1TeBinaryData

Listing 1. Shell script example1TeBinaryData.sh.

The examples focus on various transfer entropy estimators (though similar calling paradigms can be applied to all
estimators), including:

1. computing transfer entropy on binary (discrete) data;

2. computing transfer entropy for specific channels within multidimensional binary data;

3. computing transfer entropy on continuous data using kernel estimation;

4. computing transfer entropy on continuous data using KSG estimation;

8 The batch files are not included in release v1.0, but are currently available via the SVN repository and will be distributed in future
releases.
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5. computing multivariate transfer entropy on multidimensional binary data;

6. computing mutual information on continuous data, using dynamic dispatch or late-binding to a particular
estimator;

7. computing transfer entropy from an ensemble of time-series samples;

8. computing transfer entropy on continuous data using binning then discrete calculation.

In the following, we explore selected salient examples in this set. We begin with Example1TeBinaryData.java and
Example4TeContinuousDataKraskov.java as typical calling patterns to use estimators for discrete and continuous
data respectively, then add extensions for how to compute local measures and statistical significance, use ensembles
of samples, handle multivariate data and measures, and dynamic dispatch.

1. Typical calling pattern for an information-theoretic measure on discrete data

Example1TeBinaryData.java (see Listing 2) provides a typical calling pattern for calculators for discrete data,
using the infodynamics.measures.discrete.TransferEntropyCalculatorDiscrete class. While the specifics of
some methods may be slightly different, the general calling paradigm is the same for all discrete calculators.

1 int arrayLengths = 100;

2 RandomGenerator rg = new RandomGenerator ();

3 // Generate some random binary data:

4 int[] sourceArray = rg.generateRandomInts(arrayLengths , 2);

5 int[] destArray = new int[arrayLengths ];

6 destArray [0] = 0;

7 System.arraycopy(sourceArray , 0, destArray , 1, arrayLengths - 1);

8 // Create a TE calculator and run it:

9 TransferEntropyCalculatorDiscrete teCalc = new TransferEntropyCalculatorDiscrete (2, 1);

10 teCalc.initialise ();

11 teCalc.addObservations(sourceArray , destArray );

12 double result = teCalc.computeAverageLocalOfObservations ();

Listing 2. Estimation of TE from discrete data; source code adapted from Example1TeBinaryData.java.

The data type used for all discrete data are int[] time-series arrays (indexed by time). Here we are computing TE
for univariate time series data, so sourceArray and destArray at line 4 and line 5 are single dimensional int[]
arrays. Multidimensional time series are discussed in Section IV A 6.

The first step in using any of the estimators is to construct an instance of them, as per line 9 above. Parameter-
s/properties for calculators for discrete data are only supplied in the constructor at line 9 (this is not the case for
continuous estimators, see Section IV A 2). See the Javadocs for each calculator for descriptions of which parameters
can be supplied in their constructor. The arguments for the TE constructor here include: the number of discrete val-
ues (M = 2), which means the data can take values {0, 1} (the allowable values are always enumerated 0, . . . ,M − 1);
and the embedded history length k = 1. Note that for measures such as TE and AIS which require embeddings of
time-series variables, the user must provide the embedding parameters here.

All calculators must be initialised before use or re-use on new data, as per the call to initialise() at line 10. This
call clears any PDFs held inside the class, The initialise() method provides a mechanism by which the same object
instance may be used to make separate calculations on multiple data sets, by calling it in between each application
(i.e. looping from line 12 back to line 10 for a different data set – see the full code for Example1TeBinaryData.java
for an example).

The user then supplies the data to construct the PDFs with which the information-theoretic calculation is to be
made. Here, this occurs at line 11 by calling the addObservations() method to supply the source and destination
time series values. This method can be called multiple times to add multiple sample time-series before the calculation
is made (see further commentary for handling ensembles of samples in Section IV A 5).

Finally, with all observations supplied to the estimator, the resulting transfer entropy may be computed via
computeAverageLocalOfObservations() at line 12. The information-theoretic measurement is returned in bits for
all discrete calculators. In this example, since the destination copies the previous value of the (randomised) source,
then result should approach 1 bit.
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2. Typical calling pattern for an information-theoretic measure on continuous data

Before outlining how to use the continuous estimators, we note that the discrete estimators above may be
applied to continuous double[] data sets by first binning them to convert them to int[] arrays, using either
MatrixUtils.discretise(double data[], int numBins) for even bin sizes or MatrixUtils.discretiseMaxEntropy(
double data[], int numBins) for maximum entropy binning (see Example8TeContinuousDataByBinning). This
is very efficient, however as per Section II B it is more accurate to use an estimator which utilises the continuous
nature of the data.

As such, we now review the use of a KSG estimator (Appendix B 2 c) to compute transfer entropy (Eq. (A25)), as
a standard calling pattern for all estimators applied to continuous data. The sample code in Listing 3 is adapted from
Example4TeContinuousDataKraskov.java. (That this is a standard calling pattern can easily be seen by comparing
to Example3TeContinuousDataKernel.java, which uses a box-kernel estimator but has very similar method calls,
except for which parameters are passed in).

1 double [] sourceArray , destArray;

2 // ...

3 // Import values into sourceArray and destArray

4 // ...

5 TransferEntropyCalculatorKraskov teCalc = new TransferEntropyCalculatorKraskov ();

6 teCalc.setProperty("k", "4");

7 teCalc.initialise (1);

8 teCalc.setObservations(sourceArray , destArray );

9 double result = teCalc.computeAverageLocalOfObservations ();

Listing 3. Use of KSG estimator to compute transfer entropy; adapted from Example4TeContinuousDataKraskov.java

Notice that the calling pattern here is almost the same as that for discrete calculators, as seen in Listing 2, with
some minor differences outlined below.

Of course, for continuous data we now use double[] arrays (indexed by time) for the univariate time-series data
here at line 1. Multidimensional time series are discussed in Section IV A 7.

As per discrete calculators, we begin by constructing an instance of the calculator, as per line 5 above. Here
however, parameters for the operation of the estimator are not only supplied via the constructor (see below). As
such, all classes offer a constructor with no arguments, while only some implement constructors which accept certain
parameters for the operation of the estimator.

Next, almost all relevant properties or parameters of the estimators can be supplied by passing key-value pairs of
String objects to the setProperty(String, String) method at line 6. The key values for properties which may be
set for any given calculator are described in the Javadocs for the setProperty method for each calculator. Properties
for the estimator may be set by calling setProperty at any time; in most cases the new property value will take
effect immediately, though it is only guaranteed to hold after the next initialisation (see below). At line 6, we see that
property "k" (shorthand for ConditionalMutualInfoCalculatorMultiVariateKraskov.PROP K) is set to the value
"4". As described in the Javadocs for TransferEntropyCalculatorKraskov.setProperty, this sets the number of
nearest neighbours K to use in the KSG estimation in the full joint space. Properties can also easily be extracted
and set from a file, see Example6LateBindingMutualInfo.java.

As per the discrete calculators, all continuous calculators must be initialised before use or re-use on new data (see
line 7). This clears any PDFs held inside the class, but additionally finalises any property settings here. Also, the
initialise() method for continuous estimators may accept some parameters for the calculator – here it accepts a
setting for the k embedded history length parameter for the transfer entropy (see Eq. (A25)). Indeed, there may be
several overloaded forms of initialise() for a given class, each accepting different sets of parameters. For example,
the TransferEntropyCalculatorKraskov used above offers an initialise(k, tau k, l, tau l, u) method taking
arguments for both source and target embedding lengths k and l, embedding delays τk and τl (see Appendix A 2),
and source-target delay u (see Eq. (A27)). Note that currently such embedding parameters must be supplied by the
user, although we intend to implement automated embedding parameter selection in the future. Where a parameter
is not supplied, the value given for it in a previous call to initialise() or setProperty() (or otherwise its default
value) is used.

The supply of samples is also subtly different for continuous estimators. Primarily, all estimators offer the
setObservations() method (line 8) for supplying a single time-series of samples (which can only be done once).
See Section IV A 5 for how to use multiple time-series realisations to construct the PDFs via an addObservations()
method.

Finally, the information-theoretic measurement (line 9) is returned in either bits or nats as per the standard
definition for this type of estimator in Section II B (i.e. bits for discrete, kernel and permutation estimators; nats for
Gaussian and KSG estimators).
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At this point (before or after line 9) once all observations have been supplied, there are other quantities that the
user may compute. These are described in the next two subsections.

3. Local information-theoretic measures

Listing 4 computes the local transfer entropy (Eq. (A54)) for the observations supplied earlier in Listing 3:

10 double [] localTE = teCalc.computeLocalOfPreviousObservations ();

Listing 4. Computing local measures after Listing 3; adapted from Example4TeContinuousDataKraskov.java.

Each calculator (discrete or continuous) provides a computeLocalOfPreviousObservations() method to compute
the relevant local quantities for the given measure (see Appendix A 3). This method returns a double[] array of
the local values (local TE here) at every time step n for the supplied time-series observations. For TE estimators,
note that the first k values (history embedding length) will have value zero, since local TE is not defined without the
requisite history being available.9

4. Null distribution and statistical significance

For the observations supplied earlier in Listing 3, Listing 5 computes a distribution of surrogate TE values obtained
via resampling under the null hypothesis that sourceArray and destArray have no temporal relationship (as described
in Appendix A 5).

11 EmpiricalMeasurementDistribution dist = teCalc.computeSignificance (1000);

Listing 5. Computing null distribution after Listing 3; adapted from Example3TeContinuousDataKernel.java.

The method computeSignificance() is implemented for all MI and conditional MI based measures (including TE), for
both discrete and continuous estimators. It returns an EmpiricalMeasurementDistribution object, which contains
a double[] array distribution of an empirical distribution of values obtained under the null hypothesis (the sample
size for this distribution is specified by the argument to computeSignificance()). The user can access the mean
and standard deviation of the distribution, a p-value of whether these surrogate measurements were greater than
the actual TE value for the supplied source, and a corresponding t-score (which assumes a Gaussian distribution of
surrogate scores) via method calls on this object (see Javadocs for details).

Some calculators (discrete and Gaussian) overload the method computeSignificance() (without an input argu-
ment) to return an object encapsulating an analytically determined p-value of surrogate distribution where this is
possible for the given estimation type (see Appendix A 5). The availability of this method is indicated when the
calculator implements the AnalyticNullDistributionComputer interface.

5. Ensemble approach: using multiple trials or realisations to construct PDFs

Now, the use of setObservations() for continuous estimators implies that the PDFs are computed from a single
stationary time-series realisation. One may supply multiple time-series realisations (e.g. as multiple stationary trials
from a brain-imaging experiment) via the following alternative calling pattern to line 8 in Listing 3:

8.a teCalc.startAddObservations ();

8.b teCalc.addObservations(sourceArray1 , destArray1 );

8.c teCalc.addObservations(sourceArray2 , destArray2 );

8.d teCalc.addObservations(sourceArray3 , destArray3 );

8.e // ...

8.f teCalc.finaliseAddObservations ();

Listing 6. Supply of multiple time-series realisations as observations for the PDFs; an alternative to line 8 in Listing 3. Code
is adapted from Example7EnsembleMethodTeContinuousDataKraskov.java

9 The return format is more complicated if the user has supplied observations via several addObservations() calls rather than
setObservations(); see the Javadocs for computeLocalOfPreviousObservations() for details.
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Computations on the PDFs constructed from this data can then follow as before. Note that other variants of
addObservations() exist, e.g. which pull out sub-sequences from the time series arguments; see the Javadocs for
each calculator to see the options available. Also, for the discrete estimators, addObservations() may be called
multiple times directly without the use of a startAddObservations() or finaliseAddObservations() method.
This type of calling pattern may be used to realise an ensemble approach to constructing the PDFs (see Gomez-
Herrero et al. [97]; Wibral et al. [29]; Lindner et al. [84] and Wollstadt et al. [102]), in particular by supplying only
short corresponding (stationary) parts of each trial to generate the PDFs for that section of an experiment.

6. Joint-variable measures on multivariate discrete data

For calculations involving joint variables from multivariate discrete data time-series (e.g. collective transfer
entropy, see Appendix A 2), we use the same discrete calculators (unlike the case for continuous-valued data in Section
IV A 7). This is achieved with one simple pre-processing step, as demonstrated by Example5TeBinaryMultivarTransfer.-
java:

1 int [][] source , dest;

2 // ...

3 // Import binary values into the arrays ,

4 // with two columns each.

5 // ...

6 TransferEntropyCalculatorDiscrete teCalc = new TransferEntropyCalculatorDiscrete (4, 1);

7 teCalc.initialise ();

8 teCalc.addObservations(

9 MatrixUtils.computeCombinedValues(source , 2),

10 MatrixUtils.computeCombinedValues(dest , 2));

11 double result = teCalc.computeAverageLocalOfObservations ();

Listing 7. Java source code adapted from Example5TeBinaryMultivarTransfer.java.

We see that the multivariate discrete data is represented using two-dimensional int[][] arrays at line 1, where the
first array index (row) is time and the second (column) is variable number.

The important pre-processing at line 9 and line 10 involves combining the joint vector of discrete values for each
variable at each time step into a single discrete number; i.e. if our joint vector source[t] at time t has v variables, each
with M possible discrete values, then we can consider the joint vector as a v-digit base-M number, and directly con-
vert this into its decimal equivalent. The computeCombinedValues() utility in infodynamics.utils.MatrixUtils
performs this task for us at each time step, taking the int[][] array and the number of possible discrete values for
each variable M = 2 as arguments. Note also that when the calculator was constructed at line 6, we need to account
for the total number of possible combined discrete values, being Mv = 4 here.

7. Joint-variable measures on multivariate continuous data

For calculations involving joint variables from multivariate continuous data time-series, JIDT provides sepa-
rate calculators to be used. Example6LateBindingMutualInfo.java demonstrates this for calculators implementing
the MutualInfoCalculatorMultiVariate interface:10

1 double [][] variable1 , variable2;

2 MutualInfoCalculatorMultiVariate miCalc;

3 // ...

4 // Import continuous values into the arrays

5 // and instantiate miCalc

6 // ...

7 miCalc.initialise (2, 2);

8 miCalc.setObservations(variable1 , variable2 );

9 double miValue = miCalc.computeAverageLocalOfObservations ();

Listing 8. Java source code adapted from Example6LateBindingMutualInfo.java.

10 In fact, for MI, JIDT does not actually define a separate calculator for univariates – the multivariate calculator
MutualInfoCalculatorMultiVariate provides interfaces to supply univariate double[] data where each variable is univariate.
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First, we see that the multivariate continuous data is represented using two-dimensional double[][] arrays at line
1, where (as per Section IV A 6) the first array index (row) is time and the second (column) is variable number. The
instantiating of a class implementing the MutualInfoCalculatorMultiVariate interface to make the calculations is
not shown here (but is discussed separately in Section IV A 8).

Now, a crucial step in using the multivariate calculators is specifying in the arguments to initialise() the number
of dimensions (i.e. the number of variables or columns) for each variable involved in the calculation. At line 7 we see
that each variable in the MI calculation has two dimensions (i.e. there will be two columns in each of variable1 and
variable2).

Other interactions with these multivariate calculators follow the same form as for the univariate calculators.

8. Coding to interfaces; or dynamic dispatch

Listing 8 (Example6LateBindingMutualInfo.java) also demonstrates the manner in which a user can write code
to use the interfaces defined in infodynamics.measures.continuous – rather than any particular class implementing
that measure – and dynamically alter the instantiated class implementing this interface at runtime. This is known
as dynamic dispatch, enabled by the polymorphism provided by the interface (described at Section III D). This is a
useful feature in object-oriented programming where, here, a user wishes to write code which requires a particular
measure, and dynamically switch-in different estimators for that measure at runtime. For example, in Listing 8 we
may normally use a KSG estimator, but switch-in a linear-Gaussian estimator if we happen to know our data is
Gaussian.

To use dynamic dispatch with JIDT:

1. Write code to use an interface for a calculator (e.g. MutualInfoCalculatorMultiVariate in Listing 8), rather
than to directly use a particular implementing class (e.g. MutualInfoCalculatorMultiVariateKraskov);

2. Instantiate the calculator object by dynamically specifying the implementing class (compare to the static in-
stantiation at line 5 of Listing 3), e.g. using a variable name for the class as shown in Listing 9:

5.a String implementingClass;

5.b // Load the name of the class to be used into the

5.c // variable implementingClass

5.d miCalc = (MutualInfoCalculatorMultiVariate) Class.forName(implementingClass ). newInstance ();

Listing 9. Dynamic instantiation of a mutual information calculator, belonging at line 5 in Listing 8. Adapted from
Example6LateBindingMutualInfo.java.

Of course, to be truly dynamic, the value of implementingClass should not be hard-coded but must be somehow set
by the user. For example, in the full Example6LateBindingMutualInfo.java it is set from a properties file.

B. MATLAB / Octave Demos

The “Octave/MATLAB code examples” set at demos/octave in the distribution provide a basic set of demon-
stration scripts for using the toolkit in GNU Octave or MATLAB. The set is described in some detail at the
OctaveMatlabExamples wiki page (Table II). See Section III A regarding installation requirements for running the
toolkit in Octave, with more details at the UseInOctaveMatlab wiki page (see Table II).

The scripts in this set mirror the Java code in the “Simple Java Demos” set (Section IV A), to demonstrate that
anything which JIDT can do in a Java environment can also be done in MATLAB/Octave. The user is referred to
the distribution or the OctaveMatlabExamples wiki page for more details on the examples. An illustrative example
is provided in Listing 10, which converts Listing 2 into MATLAB/Octave:

1 javaaddpath(’../../ infodynamics.jar’);

2 sourceArray =(rand (100 ,1) >0.5)*1;

3 destArray = [0; sourceArray (1:99)];

4 teCalc=javaObject(’infodynamics.measures.discrete.TransferEntropyCalculatorDiscrete ’, 2, 1);

5 teCalc.initialise ();

6 teCalc.addObservations(

7 octaveToJavaIntArray(sourceArray),

8 octaveToJavaIntArray(destArray ));

9 result = teCalc.computeAverageLocalOfObservations ()

Listing 10. Estimation of TE from discrete data in MATLAB/Octave; adapted from example1TeBinaryData.m
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This example illustrates several important steps for using JIDT from a MATLAB/Octave environment:

1. Specify the classpath (i.e. the location of the infodynamics.jar library) before using JIDT with the function
javaaddpath(samplePath) (at line 1);

2. Construct classes using the javaObject() function (see line 4);

3. Use of objects is otherwise almost the same as in Java itself, however:

(a) In Octave, conversion between native array data types and Java arrays is not straightforward; we recom-
mend using the supplied functions for such conversion in demos/octave, e.g. octaveToJavaIntArray.m.
These are described on the OctaveJavaArrayConversion wiki page (Table II), and see example use in line
7 here, and in example2TeMultidimBinaryData.m and example5TeBinaryMultivarTransfer.m.

(b) In Java arrays are indexed from 0, whereas in Octave or MATLAB these are indexed from 1. So when
you call a method on a Java object such as MatrixUtils.select(double data, int fromIndex, int
length) – even from within MATLAB/Octave – you must be aware that fromIndex will be indexed from
0 inside the toolkit, not 1!

C. Python Demos

Similarly, the “Python code examples” set at demos/python in the distribution provide a basic set of demonstration
scripts for using the toolkit in Python. The set is described in some detail at the PythonExamples wiki page (Table
II). See Section III A regarding installation requirements for running the toolkit in Python, with more details at the
UseInPython wiki page (Table II).

Again, the scripts in this set mirror the Java code in the “Simple Java Demos” set (Section IV A), to demonstrate
that anything which JIDT can do in a Java environment can also be done in Python.

Note that this set uses the JPype library (http://jpype.sourceforge.net/) to create the Python-Java interface, and
the examples would need to be altered if you wish to use a different interface. The user is referred to the distribution
or the PythonExamples wiki page for more details on the examples.

An illustrative example is provided in Listing 11, which converts Listing 2 into Python:

1 from jpype import *

2 import random

3 startJVM(getDefaultJVMPath (), "-ea", "-Djava.class.path =../../ infodynamics.jar")

4 sourceArray = [random.randint (0,1) for r in xrange (100)]

5 destArray = [0] + sourceArray [0:99];

6 teCalcClass = JPackage("infodynamics.measures.discrete"). TransferEntropyCalculatorDiscrete

7 teCalc = teCalcClass (2,1)

8 teCalc.initialise ()

9 teCalc.addObservations(sourceArray , destArray)

10 result = teCalc.computeAverageLocalOfObservations ()

11 shutdownJVM ()

Listing 11. Estimation of TE from discrete data in Python; adapted from example1TeBinaryData.py

This example illustrates several important steps for using JIDT from Python via JPype:

1. Import the relevant packages from JPype (line 1);

2. Start the JVM and specify the classpath (i.e. the location of the infodynamics.jar library) before using JIDT
with the function startJVM() (at line 3);

3. Construct classes using a reference to their package (see line 6 and line 7);

4. Use of objects is otherwise almost the same as in Java itself, however conversion between native array data
types and Java arrays can be tricky – see comments on the UseInPython wiki page (see Table II).

5. Shutdown the JVM when finished (line 11).

http://jpype.sourceforge.net/
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FIG. 3. Active information storage (AIS) computed by the KSG estimator (K = 4 nearest neighbours) as a function of
embedded history length k for the heart and breath rate time-series data.

D. Schreiber’s Transfer Entropy Demos

The “Schreiber Transfer Entropy Demos” set at demos/octave/SchreiberTransferEntropyExamples in the dis-
tribution recreates the original examples introducing transfer entropy by Schreiber [22]. The set is described in some
detail at the SchreiberTeDemos wiki page (see Table II). The demo can be run in MATLAB or Octave.

The set includes computing TE with a discrete estimator for data from a Tent Map simulation, with a box-kernel
estimator for data from a Ulam Map simulation, and again with a box-kernel estimator for heart and breath rate
data from a sleep apnea patient11 (see Schreiber [22] for further details on all of these examples and map types).
Importantly, the demo shows correct values for important parameter settings (e.g. use of bias correction) which were
not made clear in the original paper.

We also revisit the heart-breath rate analysis using a KSG estimator, demonstrating how to select embedding
dimensions k and l for this data set. As an example, we show in Fig. 3 a calculation of AIS (Eq. (A23)) for the heart
and breath rate data, using a KSG estimator with K = 4 nearest neighbours, as a function of embedding length
k. This plot is produced by calling the MATLAB function: activeInfoStorageHeartBreathRatesKraskov(1:15,
4). Ordinarily, as an MI the AIS will be non-decreasing with k, while an observed increase may be simply because
bias in the underlying estimator increases with k (as the statistical power of the estimator is exhausted). This is not
the case however when we use an underlying KSG estimator, since the bias is automatically subtracted away from
the result. As such, we can use the peak of this plot to suggest that an embedded history of k = 2 for both heart
and breath time-series is appropriate to capture all relevant information from the past without adding more spurious
than relevant information as k increases. (The result is stable with the number of nearest neighbours K.) We then
continue on to use those embedding lengths for further investigation with the TE in the demonstration code.

E. Cellular Automata Demos

The “Cellular Automata Demos” set at demos/octave/CellularAutomata in the distribution provide a standalone
demonstration of the utility of local information dynamics profiles. The scripts allow the user to reproduce the key
results from Lizier et al. [21, 23, 45, 46]; Lizier [15]; Lizier and Mahoney [115] etc., i.e. plotting local information
dynamics measures at every point in space-time in the cellular automata (CA). These results confirmed the long-
held conjectures that gliders are the dominant information transfer entities in CAs, while blinkers and background
domains are the dominant information storage components, and glider/particle collisions are the dominant information
modification events.

11 This data set was made available via the Santa Fe Institute time series contest held in 1991 [114] and redistributed with JIDT with kind
permission from Andreas Weigend.
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FIG. 4. Local information dynamics in ECA rule 54 for the raw values in (a) (black for “1”, white for “0”). 35 time steps are
displayed for 35 cells, and time increases down the page for all CA plots. All units are in bits, as per scales on the right-hand
sides. (b) Local active information storage; Local apparent transfer entropy: (c) one cell to the right, and (d) one cell to
the left per time step. NB: Reprinted with kind permission of Springer Science+Business Media from Lizier [73], in Directed
Information Measures in Neuroscience, Understanding Complex Systems, edited by M. Wibral, R. Vicente, and J. T. Lizier
(Springer, Berlin/Heidelberg, 2014) pp. 161–193.

The set is described in some detail at the CellularAutomataDemos wiki page (see Table II). The demo can be run
in MATLAB or Octave. The main file for the demo is plotLocalInfoMeasureForCA.m, which can be used to specify
a CA type to run and which measure to plot an information profile for. Several higher-level scripts are available
to demonstrate how to call this, including DirectedMeasuresChapterDemo2013.m which was used to generate the
figures by Lizier [73] (reproduced in Fig. 4).

F. Other Demos

The toolkit contains a number of other demonstrations, which we briefly mention here:

• The “Interregional Transfer demo” set at demos/java/interregionalTransfer/ is a higher-level example of
computing information transfer between two regions of variables (e.g. brain regions in fMRI data), using multi-
variate extensions to the transfer entropy, to infer effective connections between the regions. This demonstration
implements the method originally described by Lizier et al. [33]. Further documentation is provided via the
Demos wiki page (see Table II).

• The “Detecting interaction lags” demo set at demos/octave/DetectingInteractionLags shows how to use
the transfer entropy calculators to investigate a source-destination lag that is different to 1 (the default). In
particular, this demo was used to make the comparisons of using transfer entropy (TE) and momentary infor-
mation transfer (MIT) [116] to investigate source-destination lags by Wibral et al. [86] (see Test cases Ia and
Ib therein). In particular, the results show that TE is most suitable for investigating source-destination lags
as MIT can be deceived by source memory, and also that symbolic TE (Appendix B 2 d) can miss important
components of information in an interaction. Further documentation is provided via the Demos wiki page (see
Table II).

• The “Null distribution” demo set at demos/octave/NullDistributions explores the match between analytic
and resampled distributions of MI, conditional MI and TE under null hypotheses of no relationship between the
data sets (see Appendix A 5). Further documentation is provided via the Demos wiki page (see Table II).

Finally, we note that demonstrations on using JIDT within several additional languages (Julia, Clojure and R) are
currently available within the SVN repository only, and will be distributed in future releases.

V. CONCLUSION

We have described the Java Information Dynamics Toolkit (JIDT), an open-source toolkit available on Google code,
which implements information-theoretic measures of dynamics via several different estimators. We have described the
architecture behind the toolkit and how to use it, providing several detailed code demonstrations.
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In comparison to related toolkits, JIDT provides implementations for a wider array of information-theoretic mea-
sures, with a wider variety of estimators implemented, adds implementations of local measures and statistical signifi-
cance, and is standalone software. Furthermore, being implemented in Java, JIDT is platform agnostic and requires
little to no installation, is fast, exhibits an intuitive object-oriented design, and can be used in MATLAB, Octave,
Python and other environments.

JIDT has been used to produce results in publications by both this author and others [19, 21, 28, 40, 42, 70, 73,
86, 115, 117].

It may be complemented by the Java Partial Information Decomposition (JPID) toolkit [118, 119], which imple-
ments early attempts [120] to separately measure redundant and synergistic components of the conditional mutual
information (see Appendix A 1).

We are planning the extension or addition of several important components in the future. Of highest priority:
we are exploring the use of multi-threading and GPU computing, and automated parameter selection for time-series
embedding. We will add additional implementations to complete Table III, and aim for larger code coverage by our
unit tests. Most importantly however, we seek collaboration on the project from other developers in order to expand
the capabilities of JIDT, and we will welcome volunteers who wish to contribute to the project.
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[38] V. Mäki-Marttunen, I. Diez, J. M. Cortes, D. R. Chialvo, and M. Villarreal, Frontiers in Neuroinformatics 7, 24+ (2013),

arXiv:1310.3217.
[39] W. Liao, J. Ding, D. Marinazzo, Q. Xu, Z. Wang, C. Yuan, Z. Zhang, G. Lu, and H. Chen, NeuroImage 54, 2683 (2011).
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Appendix A: Information-theoretic measures

In this section, we give an overview of the information-theoretic measures which are implemented in JIDT. We begin
by describing basic information-theoretic measures such as entropy and mutual information in Section A 1, then go on
to describe in Section A 2 the more contemporary measures which are being used to quantify the information dynamics
of distributed computation. The latter are the real focus of the toolkit. We also describe in Section A 3 how one can
measure local or pointwise information-theoretic measures (to assign information values to specific observations or
outcomes of variables and their interactions), the extension of the measures to continuous variables in Section A 4,
and in Section A 5 how one can evaluate the statistical significance of the interaction between variables. All features
discussed are available in JIDT unless otherwise noted.
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1. Basic information-theoretic measures

We first outline basic information-theoretic measures [2, 3] implemented in JIDT.
The fundamental quantity of information theory is the Shannon entropy, which represents the expected or average

uncertainty associated with any measurement x of a random variable X:12

H(X) = −
∑
x∈αx

p(x) log2 p(x). (A1)

with a probabilities distribution function p defined over the alphabet αx of possible outcomes for x (where αx =
{0, . . . ,MX − 1} without loss of generality for some MX discrete symbols). Note that unless otherwise stated,
logarithms are taken by convention in base 2, giving units in bits.

The Shannon entropy was originally derived following an axiomatic approach, being derived as the unique formu-
lation (up to the base of the logarithm) satisfying a certain set of properties or axioms (see Shannon [1] for further
details). The uncertainty H(X) associated with a measurement of X is equal to the expected information required
to predict it (see self-information below). H(X) for a measurement x of X can also be interpreted as the minimal
expected or average number of bits required to encode or describe its value without losing information [2, 3].

The joint entropy of two random variables X and Y is a generalization to quantify the uncertainty of their joint
distribution:

H(X,Y ) = −
∑
x∈αx

∑
y∈αy

p(x, y) log2 p(x, y). (A2)

We can of course write the above equation for multivariate Z = {X,Y }, and then generalise to H(X) for X =
{X1, X2, . . . , XG}. Such expressions for entropies of multivariates allows us to expand all of the following quantities
for multivariate X, Y etc.

The conditional entropy of X given Y is the expected uncertainty that remains about x when y is known:

H(X | Y ) = −
∑
x∈αx

∑
y∈αy

p(x, y) log2 p(x | y). (A3)

The conditional entropy for a measurement x of X can be interpreted as the minimal expected number of bits required
to encode or describe its value without losing information, given that the receiver of the encoding already knows the
value y of Y . The previous quantities are related by the following chain rule:

H(X,Y ) = H(X) +H(Y | X). (A4)

The mutual information (MI) between X and Y measures the expected reduction in uncertainty about x that
results from learning the value of y, or vice versa:

I(X;Y ) =
∑
x∈αx

∑
y∈αy

p(x, y) log2

p(x | y)

p(x)
(A5)

= H(X)−H(X | Y ). (A6)

The MI is symmetric in the variables X and Y . The mutual information for measurements x and y of X and Y can be
interpreted as the expected number of bits saved in encoding or describing x given that the receiver of the encoding
already knows the value of y, in comparison to the encoding of x without the knowledge of y. These descriptions
of x with and without the value of y are both minimal without losing information. Note that one can compute the
self-information I(X;X) = H(X). Finally, one may define a generalization of the MI to a set of more than two
variables X = {X1, X2, . . . , XG}, known as the multi-information or integration [7]:

I(X) = I(X1;X2; . . . ;XG)

=

(
G∑
g=1

H(Xg)

)
−H(X1, X2, . . . , XG). (A7)

12 Notation for all quantities is summarised in Table I.
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Equivalently we can split the set into two parts, X = {Y,Z}, and express this quantity iteratively in terms of the
multi-information of its components individually and the mutual information between those components:

I(X) = I(Y) + I(Z) + I(Y; Z). (A8)

The conditional mutual information between X and Y given Z is the mutual information between X and Y
when Z is known:

I(X;Y | Z) =
∑
x∈αx

∑
y∈αy

∑
z∈αz

p(x, y, z) log2

p(x | y, z)
p(x | z)

(A9)

=
∑
x∈αx

∑
y∈αy

∑
z∈αz

p(x, y, z) log2

p(x, y, z)p(z)

p(x, z)p(y, z)
(A10)

= H(X | Z)−H(X | Y,Z). (A11)

Note that a conditional MI I(X;Y | Z) may be either larger or smaller than the related unconditioned MI I(X;Y )
[3]. Such conditioning removes redundant information in Y and Z about X, but adds synergistic information which
can only be decoded with knowledge of both Y and Z (see further description regarding “partial information decom-
position”, which refers to attempts to tease these components apart, by: [119–123]).

One can consider the MI from two variables Y1, Y2 jointly to another variable X, I(X;Y1, Y2), and using Eq. (A4),
Eq. (A6) and Eq. (A11) decompose this into the information carried by the first variable plus that carried by the
second conditioned on the first:

I(X;Y1, Y2) = I(X;Y1) + I(X;Y2 | Y1). (A12)

Of course, this chain rule generalises to multivariate Y of dimension greater than two.

2. Measures of information dynamics

Next, we build on the basic measures of information theory to present measures of the dynamics of infor-
mation processing. We focus on measures of information in time-series processes X of the random variables
{. . . Xn−1, Xn, Xn+1 . . .} with process realisations {. . . xn−1, xn, xn+1 . . .} for countable time indices n.

We briefly review the framework for information dynamics which was recently introduced by Lizier et al. [21, 23,
45, 46, 79] and Lizier [15, 73]. This framework considers how the information in variable Xn+1 is related to previous
variables, e.g. Xn, of the process or other processes, addressing the fundamental question: “where does the information
in a random variable Xn+1 in a time series come from?”. As indicated in Fig. 1, this question is addressed in terms
of information from the past of process X (i.e. the information storage), information contributed from other source
processes Y (i.e. the information transfer), and how these sources combine (information modification). The goal is
to decompose the information in the next observation of X, Xn+1, in terms of these information sources.

The entropy rate is defined as [2]:

H ′µX = lim
n→∞

1

n
H(X1, X2, . . . , Xn) (A13)

= lim
n→∞

1

n
H(X(n)

n ), (A14)

(where the limit exists) where we have used X
(k)
n = {Xn−k+1, . . . , Xn−1, Xn} to denote the k consecutive variables

of X up to and including time step n, which has realizations x
(k)
n = {xn−k+1, . . . , xn−1, xn}. This quantity describes

the limiting rate at which the entropy of n consecutive measurements of X grow with n. A related definition for a
(conditional) entropy rate is given by:13

HµX = lim
n→∞

H(Xn | X1, X2, . . . , Xn−1) (A15)

= lim
n→∞

H(Xn | X(n−1)
n−1 ). (A16)

13 Note that we have reversed the use of the primes in the notation from Cover and Thomas [2], in line with Crutchfield and Feldman [25].
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For stationary processes X, the limits for the two quantities H ′µX and HµX exist (i.e. the expected entropy rate

converges) and are equal [2].
For our purposes in considering information dynamics, we are interested in the conditional formulation HµX , since

it explicitly describes how one random variable Xn is related to the previous instances X
(n−1)
n−1 . For practical usage, we

are particularly interested in estimation of HµX with finite-lengths k, and in estimating it regarding the information at
different time indices n. That is to say, we use the notation HµXn+1

(k) to describe finite-k estimates of the conditional

entropy rate in Xn+1 given X
(k)
n :

HµXn+1(k) = H(Xn+1 | X(k)
n ). (A17)

Assuming stationarity we define:

HµX(k) = HµXn+1
(k). (A18)

for any n, and of course letting k = n and joining Eq. (A16) and Eq. (A17) we have limn→∞HµXn+1(k) = HµX .
Next, the effective measure complexity [81] or excess entropy [25] quantifies the total amount of structure or

memory in the process X, and is computed in terms of the slowness of the approach of the conditional entropy rate
estimates to their limiting value:

EX =

∞∑
k=0

(HµX(k)−HµX). (A19)

When the process X is stationary we may represent the excess entropy as the mutual information between the
semi-infinite past and semi-infinite future of the process:

EX = lim
k→∞

EX(k), (A20)

EX(k) = I(X(k)
n ; X

(k+)
n+1 ), (A21)

where X
(k+)
n+1 refers to the next k values {Xn+1, Xn+2, . . . , Xn+k} with realizations x

(k+)
n+1 = {xn+1, xn+2, . . . , xn+k},

and EX(k) are finite-k estimates of EX . This formulation is known as the predictive information [24], as it
highlights that the excess entropy captures the information in a system’s past which can also be found in its future. It
is the most appropriate formulation for our purposes, since it provides a clear interpretation as information storage.
That is, the excess entropy can be viewed in this formulation as measuring information from the past of the process
that is stored – potentially in a distributed fashion in external variables – and is used at some point in the future
of the process [23]. This contrasts with the statistical complexity [76, 124], an upper bound to the excess entropy,
which measures all information which is relevant to the prediction of the future of the process states; i.e. the stored
information which may be used in the future [23].

In contrast again, the active information storage (AIS) was introduced by Lizier et al. [23] to measure how much
of the information from the past of the process X is observed to be in use in computing its next observation. This
measure of information storage more directly addresses our key question of determining the sources of the information
in the next observation Xn+1. The active information storage is the expected mutual information between realizations

x
(k)
n of the past state X

(k)
n (as k →∞) and the corresponding realizations xn+1 of the next value Xn+1 of process X:

AX = lim
k→∞

AX(k), (A22)

AX(k) = I(X(k)
n ;Xn+1). (A23)

We note that x
(k)
n are Takens’ embedding vectors [80] with embedding dimension k, which capture the underlying state

of the process X for Markov processes of order k.14 As such, one needs to at least take k at the Markovian order of
X in order to capture all relevant information in the past of X, otherwise (for non-Markovian processes) the limit
k →∞ is theoretically required in general [23]. We also note that since:

AX = H(X)−HµX , (A24)

14 We can use an embedding delay τ to give x
(k)
n =

{
xn−(k−1)τ , . . . , xn−τ , xn

}
, where this helps to better empirically capture the state

from a finite sample size. Non-uniform embeddings (i.e. with irregular delays) may also be useful [32] (not implemented in JIDT at this
stage).
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then the limit in Eq. (A22) exists for stationary processes (i.e. A(X) converges with k →∞) [23].
Arguably the most important measure in this toolkit is the transfer entropy (TE) from Schreiber [22]. TE

captures the concept of information transfer, as the amount of information that a source process provides about a
destination (or target) process’ next state in the context of the destination’s past. Quantitatively, this is the expected

mutual information from realizations y
(l)
n of the state Y

(l)
n of a source process Y to the corresponding realizations

xn+1 of the next value Xn+1 of the destination process X, conditioned on realizations x
(k)
n of its previous state X

(k)
n :

TY→X(l) = lim
k→∞

TY→X(k, l), (A25)

TY→X(k, l) = I(Y(l)
n ;Xn+1 | X(k)

n ). (A26)

TE has become a very popular tool in complex systems in general, e.g. [45, 51, 57, 62, 71, 82, 83], and in computational
neuroscience in particular, e.g. [31, 33, 34, 37, 84]. For multivariate Gaussians, the TE is equivalent (up to a factor
of 2) to the Granger causality [85].

There are a number of important considerations regarding the use of this measure (see further discussion by Lizier

et al. [45]; Lizier [73]; Wibral et al. [28, 29]; and Vicente and Wibral [89]). First, for the embedding vectors x
(k)
n one

needs to at least take k larger than the Markovian order of X in order to eliminate any AIS from being redundantly
measured in the TE.15 Then, one may need to extend k to capture synergies generated in xn+1 between the source

y
(l)
n and earlier values in X. For non-Markovian processes X (or non-Markovian processes when considered jointly

with the source), one should theoretically take the limit as k →∞ [45]. Setting k in this manner gives the perspective
to separate information storage and transfer in the distributed computation in process X, and allows one to interpret
the transfer entropy as properly representing information transfer [45, 125].

Also, note that the transfer entropy can be defined for an arbitrary source-destination delay u [86]:

TY→X(k, l, u) = I(Y
(l)
n+1−u;Xn+1 | X(k)

n ), (A27)

and indeed that this should be done for the appropriate causal delay u > 0 . For ease of presentation here, we describe
the measures for u = 1 only, though all are straightforward to generalise and are implemented with generic u in JIDT.

While the simple setting l = 1 is often used, this is only completely appropriate where yn is directly causal to xn+1

and where it is the only direct causal source in Y [45, 125] (e.g. in cellular automata). In general circumstances, one

should use an embedded source state y
(l)
n (with l > 1), in particular where the observations y mask a hidden Markov

process that is causal to X (e.g. in brain imaging data), or where multiple past values of Y in addition to yn are
causal to xn+1.

Finally, for proper interpretation as information transfer, Y is constrained among the causal information contributors
to X [125]. With that said, the concepts of information transfer and causality are complementary but distinct, and
TE should not be thought of as measuring causal effect [125–127]. Prokopenko et al. [128] and Prokopenko and Lizier
[129] have also provided a thermodynamic interpretation of transfer entropy, as being proportional to external entropy
production, possibly due to irreversibility.

Now, the transfer entropy may also be conditioned on other possible sources Z to account for their effects on the
destination. The conditional transfer entropy16 was introduced for this purpose [45, 46]:

TY→X|Z(l) = lim
k→∞

TY→X|Z(k, l), (A28)

TY→X|Z(k, l) = I(Y(l)
n ;Xn+1 | X(k)

n , Zn), (A29)

Note that Zn may represent an embedded state of another variable, or be explicitly multivariate. Also, for simplicity
Eq. (A29) does not explicitly show arbitrary delays in the style of Eq. (A27) for source-destination and conditional-
destination relationships, though these may naturally be defined and are implemented in JIDT. Transfer entropies
conditioned on other variables have been used in several biophysical and neuroscience applications, e.g. [31, 32, 36,
130]. We typically describe TE measurements which are not conditioned on any other variables (as in Eq. (A25)) as
pairwise or apparent transfer entropy, and measurements conditioned on all other causal contributors to Xn+1

as complete transfer entropy [45]. Further, one can consider multivariate sources Y, in which case we refer to the
measure TY→X(k, l) as a collective transfer entropy [46].

15 The destination’s embedding dimension should be increased before that of the source, for this same reason.
16 This is sometimes known as “multivariate” TE, though this term can be confused with TE applied to multivariate source and destination

variables (i.e. the collective TE).
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Finally, while how to measure information modification remains an open problem (see Lizier et al. [119]), JIDT
contains an implementation of an early attempt at capturing this concept in the separable information [46]:

SX = lim
k→∞

SX(k), (A30)

SX(k) = AX(k) +
∑

Y ∈VX\X

TY→X(k, lY ). (A31)

Here, VX represents the set of causal information sources VX to X, while lY is the embedding dimension for source
Y .

3. Local information-theoretic measures

Local information-theoretic measures (also known as pointwise information-theoretic measures) charac-
terise the information attributed with specific measurements x, y and z of variables X, Y and Z [73], rather than the
traditional expected or average information measures associated with these variables introduced in Section A 1 and
Section A 2. Although they are deeply ingrained in the fabric of information theory, and heavily used in some areas
(e.g. in natural language processing [131]), until recently [23, 45, 46, 76–79] local information-theoretic measures were
rarely applied to complex systems.

That these local measures are now being applied to complex systems is important, because they provide a direct,
model-free, mechanism to analyse the dynamics of how information processing unfolds in time. In other words:
traditional (expected) information-theoretic measures would return one value to characterise, for example, the transfer
entropy between Y and X. Local transfer entropy on the other hand, returns a time-series of values to characterise
the information transfer from Y to X as a function of time, so as to directly reveal the dynamics of their interaction.
Indeed, it is well-known that local values (within a global average) provide important insights into the dynamics of
nonlinear systems [132].

A more complete description of local information-theoretic measurements is provided by Lizier [73]. Here we provide
a brief overview of the local values of the measures previously introduced.

The most illustrative local measure is of course the local entropy or Shannon information content. The
Shannon information content of an outcome x of measurement of the variable X is [3]:

h(x) = − log2 p(x). (A32)

Note that by convention we use lower-case symbols to denote local information-theoretic measures. The Shannon
information content was shown to be the unique formulation for a local entropy (up to the base of the logarithm)
satisfying required properties corresponding to those of the expected Shannon entropy (see Ash [74] for details). Now,
the quantity h(x) is simply the information content attributed to the specific symbol x, or the information required to
predict or uniquely specify that specific value. Less probable outcomes x have higher information content than more
probable outcomes, and we have h(x) ≥ 0. The Shannon information content of a given symbol x is the code-length
for that symbol in an optimal encoding scheme for the measurements X, i.e. one that produces the minimal expected
code length.

We can form all traditional information-theoretic measures as the average or expectation value of their corresponding
local measure, e.g.:

H(X) =
∑
x∈αx

p(x)h(x), (A33)

= 〈h(x)〉 . (A34)

While the above represents this as an expectation over the relevant ensemble, we can write the same average over
all of the N samples xn (with each sample given an index n) used to generate the probability distribution function
(PDF) p(x) [45, 73], e.g.:

H(X) =
1

N

N∑
n=1

h(xn), (A35)

= 〈h(xn)〉n . (A36)



31

Next, we have the conditional Shannon information content (or local conditional entropy) [3]:

h(x | y) = − log2 p(x | y), (A37)

h(x, y) = − log2 p(x, y), (A38)

= h(y) + h(x | y), (A39)

H(X | Y ) = 〈h(x | y)〉 . (A40)

As above, local quantities satisfy corresponding chain rules to those of their expected quantities.
The local mutual information is defined (uniquely, see Fano [75, ch. 2]) as “the amount of information provided

by the occurrence of the event represented by yi about the occurrence of the event represented by xi”, i.e.:

i(x; y) = log2

p(x | y)

p(x)
, (A41)

= h(x)− h(x | y), (A42)

I(X;Y ) = 〈i(x; y)〉 . (A43)

i(x; y) is symmetric in x and y, as is the case for I(x; y). The local mutual information is the difference in code lengths
between coding the value x in isolation (under the optimal encoding scheme for X), or coding the value x given y
(under the optimal encoding scheme for X given Y ). In other words, this quantity captures the coding “cost” for x
in not being aware of the value y.

Of course this “cost” averages to be non-negative, however the local mutual information may be either positive
or negative for a specific pair x, y. Positive values are fairly intuitive to understand: i(x; y) is positive where p(x |
y) > p(x), i.e. knowing the value of y increased our expectation of (or positively informed us about) the value of the
measurement x. Negative values simply occur in Eq. (A41) where p(x | y) < p(x). That is, knowing the value of y
changed our belief p(x) about the probability of occurrence of the outcome x to a smaller value p(x | y), and hence we
considered it less likely that x would occur when knowing y than when not knowing y, in a case were x nevertheless
occurred. Consider the following example from Lizier [73], of the probability that it will rain today, p(rain = 1), and
the probability that it will rain given that the weather forecast said it would not, p(rain = 1 | rain forecast = 0). We
could have p(rain = 1 | rain forecast = 0) < p(rain = 1), so we would have i(rain = 1; rain forecast = 0) < 0,
because we considered it less likely that rain would occur today when hearing the forecast than without the forecast,
in a case where rain nevertheless occurred. Such negative values of MI are actually quite meaningful, and can be
interpreted as there being negative information in the value of y about x. We could also interpret the value y as being
misleading or misinformative about the value of x, because it lowered our expectation of observing x prior to that
observation being made in this instance. In the above example, the weather forecast was misinformative about the
rain today.

Note that the local mutual information i(x; y) measure above is distinct from partial localization expressions, i.e.
the partial mutual information or specific information I(x;Y ) [133], which consider information contained in specific
values x of one variable X about the other (unknown) variable Y . While there are two valid approaches to measuring
partial mutual information, as above there is only one valid approach for the fully local mutual information i(x; y)
[75, ch. 2].

The local conditional mutual information is similarly defined by Fano [75, ch. 2]:

i(x; y | z) = log2

p(x | y, z)
p(x | z)

, (A44)

= h(x | z)− h(x | y, z), (A45)

I(X;Y | Z) = 〈i(x; y | z)〉 . (A46)

I(X;Y | Z) is the difference in code lengths (or coding cost) between coding the value x given z (under the optimal
encoding scheme for X given Z), or coding the value x given both y and z (under the optimal encoding scheme for X
given Y and Z). As per I(X;Y ), the local conditional MI is symmetric in x and y, and may take positive or negative
values.

The local multi-information follows for the observations x1, x2, . . . , xG as:

i(x1;x2; . . . ;xG) =

(
G∑
g=1

h(xg)

)
− h(x1, x2, . . . , xG). (A47)

Local measures of information dynamics are formed via the local definitions of the basic information-theoretic

measures above. Here, the local measures pertain to realisations xn, x
(k)
n , y

(l)
n , etc, of the processes at specific time
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index n. The PDFs may be estimated either from multiple realisations of the process for time index n, or from
multiple observations over time from one (or several) full time-series realisation(s) where the process is stationary (see
comments by Lizier [73]).

We have the local entropy rate:17

hµX(n+ 1, k) = h(xn+1 | x(k)
n ), (A48)

HµX(k) = 〈hµX(n, k)〉 . (A49)

Next, the local excess entropy is defined as (via the predictive information formulation from Eq. (A21)) [76]:

eX(n+ 1, k) = i(x(k)
n ; x

(k+)
n+1 ), (A50)

EX(k) = 〈eX(n, k)〉 . (A51)

We then have the local active information storage aX(n+ 1) [23]:

aX(n+ 1, k) = i(x(k)
n ;xn+1), (A52)

AX(k) = 〈aX(n+ 1, k)〉 . (A53)

The local values of active information storage measure the dynamics of information storage at different time points
within a system, revealing to us how the use of memory fluctuates during a process. As described for the local MI,
aX(n + 1, k) may be positive or negative, meaning the past history of the process can either positively inform us or
actually misinform us about its next value [23]. Fig. 1 indicates a local active information storage measurement for
time-series process X.

The local transfer entropy is [45] (with adjustment for source-destination lag u [86]):

tY→X(n+ 1, k, l, u) = i(y
(l)
n+1−u;xn+1 | x(k)

n ), (A54)

TY→Xk, l = 〈tY→X(n+ 1, k, l)〉 . (A55)

These local information transfer values measure the dynamics of transfer in time between a given pair of time-series
processes, revealing to us how information is transferred in time and space. Fig. 1 indicates a local transfer entropy
measurement for a pair of processes Y → X.

Finally, we have the local conditional transfer entropy [45, 46] (again dropping arbitrary lags and embedding
of the conditional here for convenience):

tY→X|Z(n+ 1, k, l) = i(y(l)
n ;xn+1 | x(k)

n , zn), (A56)

TY→X|Z(n+ 1, k, l) =
〈
tY→X|Z(n+ 1, k, l)

〉
. (A57)

4. Differential entropy

Note that all of the information-theoretic measures above considered a discrete alphabet of symbols αx for a given
variable X. When X in fact is a continuous-valued variable, we shift to consider differential entropy measurements;
see Cover and Thomas [2, ch. 9]. We briefly discuss differential entropy, since some of our estimators discussed in
Section B evaluate these quantities for continuous-valued variables rather than strictly Shannon entropies.

The differential entropy of a continuous variable X with probability density function f(x) is defined as [2, ch. 9]:

HD(X) = −
∫
SX

f(x) log f(x)dx, (A58)

where SX is the set where f(x) > 0. The differential entropy is strongly related to the Shannon entropy, but has
important differences to what the Shannon entropy would return on discretizing the same variables. Primary amongst
these differences is that HD(X) changes with scaling of the variable X, and that it can be negative.

17 For the local measures of information dynamics, while formal definitions may be provided by taking the limit as k → ∞, we will state
only the formulae for their finite-k estimates.
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Joint and conditional (HD(X | Y )) differential entropies may be evaluated from Eq. (A58) expressions using the
same chain rules from the Shannon measures. Similarly, the differential mutual information may be defined as [2, ch.
9]:

ID(X;Y ) = HD(X)−HD(X | Y ), (A59)

=

∫
SX ,SY

f(x, y) log
f(x, y)

f(x)f(y)
dx dy. (A60)

Crucially, the properties of ID(X;Y ) are the same as for discrete variables, and indeed ID(X;Y ) is equal to the
discrete MI I(X∆;Y ∆) for discretizations X∆ and Y ∆ with bin size ∆, in the limit ∆→ 0 [2, ch. 9]. Conditional MI
and other derived measures (e.g. transfer entropy) follow.

5. Statistical significance testing

In theory, the MI between two unrelated variables Y and X is equal to 0. The same goes for the TE between two
variables Y and X with no directed relationship, or the conditional MI between Y and X given Z where there is
no conditional relationship. In practice, where the MI, conditional MI or TE are empirically measured from a finite
number of samples N , a bias of a non-zero measurement is likely to result even where there is no such (directed)
relationship. A common question is then whether a given empirical measurement is statistically different from 0, and
therefore represents sufficient evidence for a (directed) relationship between the variables.

This question is addressed in the following manner [29, 33, 34, 83, 84, 87, 88]. We form a null hypothesis H0 that
there is no such relationship, and then make a test of statistical significance of evidence (our original measurement) in
support of that hypothesis. To perform such a test, we need to know what the distribution for our measurement would
look like if H0 was true, and then evaluate a p-value for sampling our actual measurement from this distribution. If
the test fails, we accept the alternate hypothesis that there is a (directed) relationship.

For example, for an MI measurement I(Y ;X), we generate the distribution of surrogate measurements I(Y s;X)
under the assumption of H0. Here, Y s represents surrogate variables for Y generated under H0, which have the same
statistical properties as Y , but any potential correlation with X is destroyed. Specifically, this means that p(x | y) in
Eq. (A6) is distributed as p(x) (with p(y) retained also).

In some situations, we can compute the distribution of I(Y s;X) analytically. For example, for linearly-coupled
Gaussian multivariates X and Y, I(Ys; X) measured in nats follows a chi-square distribution, specifically χ2

|X||Y|/2N

with |X||Y| degrees of freedom, where |X| (|Y|) is the number of Gaussian variables in vector X (Y) [134, 135].
Also, for discrete variables X and Y with alphabet sizes MX and MY , I(Y s;X) measured in bits follows a chi-
square distribution, specifically χ2

(MX−1)(MY −1)/(2N log 2) [135, 136]. Note that these distributions are followed

asymptotically with the number of samples N , and the approach is much slower for discrete variables with skewed
distributions [137], which reduces the utility of this analytic result in practice.18 Barnett and Bossomaier [83] generalise
these results to state that a model-based null distribution (in nats) will follow χ2

d/2N , where d is the “difference
between the number of parameters” in a full model (capturing p(x | y) in Eq. (A6)) and a null model (capturing p(x)
only).

Where no analytic distribution is known, the distribution of I(Y s;X) must be computed empirically. This is done
by a resampling method (i.e. permutation or bootstrapping)19 [29, 33, 34, 84, 87, 88], creating a large number of
surrogate time-series pairs {Y s, X} by shuffling (for permutations, or redrawing for bootstrapping) the samples of Y
(so as to retain p(x) and p(y) but not p(x | y)), and computing a population of I(Y s;X) values.

Now, for a conditional MI, we generate the distribution of I(Y s;X | Z) under H0, which means that p(x | y, z) in
Eq. (A9) is distributed as p(x | z) (with p(y) retained also).20 The asymptotic distribution may be formed analytically
for linearly-coupled Gaussian multivariates defined above [83, 134] (in nats) as χ2

|X||Y|/2N with |X||Y| degrees of

freedom – interestingly, this does not depend on the Z variable. Similarly, for discrete variables the asymptotic
distribution (in bits) is χ2

(MX−1)(MY −1)MZ
/(2N log 2) [136]. Again, the distribution of I(Y s;X | Z) is otherwise

computed by permutation (or bootstrapping), this time by creating surrogate time-series {Y s, X, Z} by shuffling
(or redrawing) the samples of Y (retaining p(x | z) and p(y) but not p(x | y, z)), and computing a population of
I(Y s;X | Z) values.

18 See Section IV F for an investigation of this.
19 JIDT employs permutation tests for resampling.
20 Clearly, this approach specifically makes a directional hypothesis test of Eq. (A9) rather than a non-directional test of Eq. (A10).

Asymptotically these will be the same anyway (as is clear for the analytic cases discussed here). In practice, we favour this somewhat
directional approach since in most cases we are indeed interested in the directional question of whether Y adds information to X in the
context of Z.
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Statistical significance testing for the transfer entropy can be handled as a special case of the conditional MI. For
linear-coupled Gaussian multivariates X and Y, the null TY s→X(k, l) (in nats) is asymptotically χ2/2N distributed
with l|X||Y| degrees of freedom [83, 134, 137], while for discrete X and Y , TY s→X(k, l) (in bits) is asymptotically
χ2/(2N log 2) distributed with (MX−1)(M l

Y −1)Mk
X degrees of freedom [83]. Again, the distribution of TY s→X(k, l) is

otherwise computed by permutation (or bootstrapping) [29, 33, 34, 84, 87, 88], under which surrogates must preserve

p(xn+1 | x(k)
n ) but not p(xn+1 | x(k)

n ,y
(l)
n ). Directly shuffling the series Y to create the Y s is not a valid approach,

since it destroys y
(l)
n vectors (unless l = 1). Valid approaches include: shuffling (or redrawing) the y

(l)
n amongst the

set of {xn+1,x
(k)
n ,y

(l)
n } tuples;21 rotating the Y time-series (where we have stationarity); or swapping sample time

series Yi between different trials i in an ensemble approach [29, 34, 84, 102]. Conditional TE may be handled similarly
as a special case of a conditional MI.

Finally, we note that such assessment of statistical significance is often used in the application of effective network
inference from multivariate time-series data; e.g. [29, 33, 34, 84]. In this and other situations where multiple hypothesis
tests are considered together, one should correct for multiple comparisons using family-wise error rates (e.g. Bonferroni
correction) or false discovery rates.

Appendix B: Estimation techniques

While the mathematical formulation of the quantities in Section A are relatively straightforward, empirically es-
timating them in practice from a finite number N of samples of time-series data can be a complex process, and is
dependent on the type of data you have and its properties. Estimators are typically subject to bias and variance due
to finite sample size.

In this section, we introduce the various types of estimators which are included in JIDT. Such estimators are
discussed in some depth by Vicente and Wibral [89], for the transfer entropy in particular. Unless otherwise noted,
all quoted features and time-complexities are as implemented in JIDT.

1. Discrete-valued variables

For discrete variables X, Y , Z etc, the definitions in Section A may be used directly, by counting the matching
configurations in the available data to obtain the relevant plug-in probability estimates (e.g. p̂(x | y) and p̂(x) for
MI). This approach may be taken for both local and average measures. These estimators are simple and fast, being
implemented in O (N) time even for measures such as transfer entropy which require embedded past vectors (since
these may be cached and updated at each step in a time-series). Several bias correction techniques are available, e.g.
[90, 91], though not yet implemented in JIDT.

2. Continuous-valued variables

For continuous variables X, Y , Z, one could simply discretise or bin the data and apply the discrete estimators
above. This is a simple and fast approach (O (N) as above), though it is likely to sacrifice accuracy. Alternatively,
we can use an estimator that harnesses the continuous nature of the variables, dealing with the differential entropy
and probability density functions. The latter is more complicated but yields a more accurate result. We discuss
several such estimators in the following. Note that except where otherwise noted, JIDT implements the most efficient
available algorithm for each estimator.

a. Gaussian-distribution model

The simplest estimator uses a multivariate Gaussian model for the relevant variables, assuming linear interactions
between them. Under this model, for X (of d dimensions) the entropy has the form [2]:

H(X) =
1

2
ln ((2πe)d | ΩX |), (B1)

21 This is the approach taken in JIDT.
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(in nats) where | ΩX | is the determinant of the d × d covariance matrix ΩX = XXT , and the overbar “represents
an average over the statistical ensemble” [138]. Any standard information-theoretic measure in Section A can then
be obtained from sums and differences of these joint entropies. For example, Kaiser and Schreiber [92] demonstrated
how to compute transfer entropy in this fashion. These estimators are fast (O

(
Nd2

)
) and parameter-free, but subject

to the linear-model assumption.
Since PDFs were effectively bypassed in Eq. (B1), the local entropies (and by sums and differences, other local

measures) can be obtained by first reconstructing the probability of a given observation x in a multivariate process
with covariance matrix ΩX:

p(x) =
1

(
√

2π)d | ΩX |1/2
exp

(
−1

2
(x− µ)TΩ−1

X (x− µ)

)
, (B2)

(where µ is the vector of expectation values of x), then using these values directly in the equation for the given local
quantity as a plug-in estimate [73].22

b. Kernel estimation

Using kernel-estimators (e.g. see Schreiber [22] and Kantz and Schreiber [93]), the relevant joint PDFs (e.g. p̂(x, y)
and p̂(x) for MI) are estimated with a kernel function Θ, which measures “similarity” between pairs of samples
{xn, yn} and {xn′ , yn′} using a resolution or kernel width r. For example, we can estimate:

p̂r(xn, yn) =
1

N

N∑
n′=1

Θ

(∣∣∣∣( xn − xn′

yn − yn′

)∣∣∣∣− r). (B3)

By default Θ is the step kernel (Θ(x > 0) = 0, Θ(x ≤ 0) = 1), and the norm | · | is the maximum distance. This
combination – a box kernel – is what is implemented in JIDT. It results in p̂r(xn, yn) being the proportion of the
N values which fall within r of {xn, yn} in both dimensions X and Y . Different resolutions r may be used for the
different variables, whilst if using the same r then prior normalisation of the variables is sensible. Other choices for
the kernel Θ and the norm | · | are possible. Conditional probabilities may be defined in terms of their component
joint probabilities. These plug-in estimates for the PDFs are then used directly in evaluating a local measure for
each sample n ∈ [1, N ] and averaging these over all samples, i.e. via Eq. (A36) for H(X) rather than via Eq. (A1)
(e.g. see Kaiser and Schreiber [92] for transfer entropy). Note that methods for bias-correction here are available
for individual entropy estimates (e.g. as proposed by Grassberger [139] for the box kernel), but when combined for
sums of entropies (as in MI, TE, etc.) Kaiser and Schreiber [92] state: “this approach is not viable . . . since the finite
sample fluctuations . . . are not independent and we cannot correct their bias separately”.23 Such issues are addressed
by the Kraskov-Stögbauer-Grassberger estimator in the next section.

Kernel estimation can measure non-linear relationships and is model-free (unlike Gaussian estimators), though
is sensitive to the parameter choice for resolution r [22, 92] (see below), is biased and is less time-efficient. Naive
algorithms require O

(
N2
)

time, although efficient neighbour searching can reduce this to O (N logN) or via box-

assisted methods to O (N) [93].24 Box-assisted methods are used in JIDT for maximal efficiency.
Selecting a value for r can be difficult, with a too small value yielding undersampling effects (e.g. MI the values

diverge [22]) whilst a too large value ignores subtleties in the data. One can heuristically determine a lower bound
for r to avoid undersampling. Assuming all data are normalised (such that r then refers to a number of standard
deviations) and spread somewhat evenly, the values for each variable roughly span 6 standard deviations and a
given sample has ∼ N/(6/2r) coincident samples in any given dimension or ∼ N/(6/2r)d in the full joint space of
d dimensions. Requiring some number K of coincident samples on average within r (Lungarella et al. [140] suggest
K ≥ 3 though at least 10 is more common), we then solve for K ≤ N/(6/2r)d.25 Even within these extremes however,
the choice of r can have a very large influence on the comparative results of the measure; see Schreiber [22] and Kaiser
and Schreiber [92].

22 This method can produce a local or pointwise Granger causality, as a local transfer entropy using a Gaussian model estimator.
23 As such, these are not implemented in JIDT, except for one method available for testing with the kernel estimator for TE.
24 These quoted time complexities ignore the dependency on dimension d of the data, but will require a multiplier of at least d to determine

norms, with larger multipliers perhaps required for more complicated box-assisted algorithms.
25 More formally, one can consider the average number of coincidences for the typical set, see Cover and Thomas [2] and Marton and

Shields [141].
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c. Kraskov-Stögbauer-Grassberger (KSG) technique

Kraskov, Stögbauer, and Grassberger [94] (KSG) (see also Kraskov [142]) improved on (box) kernel estimation for MI
by combining several specific enhancements designed to reduce errors when handling a small number of observations.
These include: the use of Kozachenko-Leonenko estimators [95] of log-probabilities via nearest-neighbour counting;
bias correction; and a fixed number K of nearest-neighbours in the full X-Y joint space. The latter effectively means
using a dynamically altered kernel width r to adjust to the density of samples in the vicinity of any given observation,
which smooths out errors in the PDF estimation. For each sample {x, y}, one finds the Kth nearest neighbour in
the full {x, y} space (using max norms to compare x and y distances), and sets kernel widths rx and ry from it. The
authors then propose two different algorithms for determining rx and ry from the Kth nearest neighbour.

For the first KSG algorithm, rx and ry are set to the maximum of the x and y distances to the Kth nearest
neighbour, and one then counts the number of neighbours nx and ny strictly within these widths in each marginal
space. Then the averages of nx and ny over all samples are used to compute:

I(1)(X;Y ) = ψ(K)− 〈ψ(nx + 1) + ψ(ny + 1)〉+ ψ(N), (B4)

(in nats) where ψ denotes the digamma function.
For the second KSG algorithm, rx and ry are set separately to the x and y distances to the Kth nearest neighbour,

and one then counts the number of neighbours nx and ny within and on these widths in each marginal space. Again
one uses the averages of nx and ny over all samples to compute (in nats):

I(2)(X;Y ) = ψ(K)− 1

K
− 〈ψ(nx) + ψ(ny)〉+ ψ(N). (B5)

Crucially, the estimator is bias corrected, and is demonstrated to be quite robust to variations in K (from K = 4
upwards, as variance in the estimate decreases with K) [94]. Of the two algorithms: algorithm 1 (Eq. (B4)) is more
accurate for smaller numbers of samples but is more biased, while algorithm 2 (Eq. (B5)) is more accurate for very
large sample sizes.

The KSG estimator is directly extendible to multi-information also; see Kraskov [142].
Furthermore, Kraskov [142] originally proposed that TE could be computed as the difference between two MIs (with

each estimated using the aforementioned technique). However, the KSG estimation technique has since been properly
extended to conditional MI by Frenzel and Pompe [96] and transfer entropy (originally by Gomez-Herrero et al. [97]
and later for algorithm 2 by Wibral et al. [29]) with single estimators. Here for I(X;Y | Z), for each sample {x, y, z},
one finds the Kth nearest neighbour in the full {x, y, z} space (using max norms to compare x, y and z distances),
and sets kernel widths rx, ry and rz from it. Following KSG algorithm 1, rz and {rxz, ryz} are set to the maximum
of the marginal distances to the Kth nearest neighbour, and one then counts {nz, nxz, nyz} strictly within this width
(where nxz and nyz refer to counts in the joint {x, z} and {y, z} joint spaces) to obtain [96, 97]:

I(1)(X;Y | Z) = ψ(K) + 〈ψ(nz + 1)− ψ(nxz + 1)− ψ(nyz + 1)〉 . (B6)

While following KSG algorithm 2, {rx, ry, rz} are set separately to the marginal distances to the Kth nearest neigh-
bour, and one then counts {nz, nxz, nyz} within or on these widths to obtain [29]:

I(2)(X;Y | Z) = ψ(K)− 2

K
+

〈
ψ(nz)− ψ(nxz) +

1

nxz
− ψ(nyz) +

1

nyz

〉
. (B7)

Local values for these estimators can be extracted by unrolling the expectation values and computing the nearest
neighbour counts only at the given observation {x, y}, e.g. for KSG algorithm 1 [73]:

i(1)(x; y) = ψ(K)− ψ(nx + 1)− ψ(ny + 1) + ψ(N), (B8)

i(1)(x; y | z) = ψ(K) + ψ(nz + 1)− ψ(nxz + 1)− ψ(nyz + 1). (B9)

This approach has been used to estimate local transfer entropy by Lizier et al. [143] and Steeg and Galstyan [53].
KSG estimation builds on the non-linear and model-free capabilities of kernel estimation to add bias correction,

better data efficiency and accuracy, and being effectively parameter-free (being relatively stable to choice of K).
As such, it is widely-used as best of breed solution for MI, conditional MI and TE for continuous data; see e.g.
Wibral et al. [29] and Vicente and Wibral [89]. On the downside, it can be computationally expensive with naive
algorithms requiring O

(
KN2

)
time (again ignoring the dimensionality of the data) though fast nearest neighbour

search techniques can reduce this to O (KN logN). For release v1.0 JIDT only implements a naive algorithm, though
fast nearest neighbour search is implemented and available via the project SVN, and as such will be included in future
releases.
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d. Permutation entropy and symbolic TE

Permutation entropy approaches [98] estimate the relevant PDFs based on the relative ordinal structure of the
joint vectors (this is not suitable for PDFs of single dimensional variables). That is, for a joint variable X of d
dimensions, a sample x with components xi (i ∈ {0 . . . d − 1}) is replaced by an ordinal vector o with components
oi ∈ {0 . . . d− 1}, where the value of oi = r assigned for xi being the r-th largest component in x. The PDF p(x) is
replaced by computation of p̂(o) for the corresponding ordinal vector, and these are used as plug-in estimates for the
relevant expected or local information-theoretic measure.

Permutation entropy has for example been adapted to estimate TE as the symbolic transfer entropy [99], with local
symbolic transfer entropy also defined [58, 59].

Permutation approaches are computationally fast, since they effectively compute a discrete entropy after the ordinal
symbolisation (O (N)). They are a model-based approach however, assuming that all relevant information is in the
ordinal relationship between the variables. This is not necessarily the case, and can lead to misleading results, as
demonstrated by Wibral et al. [86].
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