mirror of https://github.com/jlizier/jidt
Made Kraskov Conditional MI calculator implement the common Conditional MI interface
This commit is contained in:
parent
a06efba6e0
commit
f466012556
|
@ -1,5 +1,6 @@
|
|||
package infodynamics.measures.continuous.kraskov;
|
||||
|
||||
import infodynamics.measures.continuous.ConditionalMutualInfoCalculatorMultiVariate;
|
||||
import infodynamics.utils.EuclideanUtils;
|
||||
import infodynamics.utils.MatrixUtils;
|
||||
import infodynamics.utils.EmpiricalMeasurementDistribution;
|
||||
|
@ -20,7 +21,8 @@ import infodynamics.utils.RandomGenerator;
|
|||
*
|
||||
* @author Joseph Lizier
|
||||
*/
|
||||
public abstract class ConditionalMutualInfoCalculatorMultiVariateKraskov {
|
||||
public abstract class ConditionalMutualInfoCalculatorMultiVariateKraskov
|
||||
implements ConditionalMutualInfoCalculatorMultiVariate {
|
||||
|
||||
/**
|
||||
* we compute distances to the kth neighbour in the joint space
|
||||
|
@ -185,44 +187,57 @@ public abstract class ConditionalMutualInfoCalculatorMultiVariateKraskov {
|
|||
* The user should ensure that all values 0..N-1 are represented exactly once in the
|
||||
* array reordering and that no other values are included here.
|
||||
*
|
||||
* @param variableToReorder 1 for variable 1, 2 for variable 2
|
||||
* @param reordering
|
||||
* @return
|
||||
* @throws Exception
|
||||
*/
|
||||
public abstract double computeAverageLocalOfObservations(int[] reordering) throws Exception;
|
||||
public abstract double computeAverageLocalOfObservations(int variableToReorder,
|
||||
int[] reordering) throws Exception;
|
||||
|
||||
/**
|
||||
* Compute the significance of the mutual information of the previously supplied observations.
|
||||
* We destroy the p(x,y,z) correlations, while retaining the p(x,z), p(y) marginals, to check how
|
||||
* We destroy the p(x,y,z) correlations, by permuting the given variable,
|
||||
* while retaining the joint distribution of the other variable
|
||||
* and the conditional, and the marginal distribution of the
|
||||
* permuted variable. This checks how
|
||||
* significant this conditional mutual information actually was.
|
||||
*
|
||||
* This is in the spirit of Chavez et. al., "Statistical assessment of nonlinear causality:
|
||||
* application to epileptic EEG signals", Journal of Neuroscience Methods 124 (2003) 113-128
|
||||
* which was performed for Transfer entropy.
|
||||
*
|
||||
* @param variableToReorder 1 for variable 1, 2 for variable 2
|
||||
* @param numPermutationsToCheck
|
||||
* @return the proportion of MI scores from the distribution which have higher or equal MIs to ours.
|
||||
*/
|
||||
public synchronized EmpiricalMeasurementDistribution computeSignificance(int numPermutationsToCheck) throws Exception {
|
||||
public synchronized EmpiricalMeasurementDistribution computeSignificance(
|
||||
int variableToReorder, int numPermutationsToCheck) throws Exception {
|
||||
// Generate the re-ordered indices:
|
||||
RandomGenerator rg = new RandomGenerator();
|
||||
int[][] newOrderings = rg.generateDistinctRandomPerturbations(data1.length, numPermutationsToCheck);
|
||||
return computeSignificance(newOrderings);
|
||||
return computeSignificance(variableToReorder, newOrderings);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute the significance of the mutual information of the previously supplied observations.
|
||||
* We destroy the p(x,y,z) correlations, while retaining the p(x,z), p(y) marginals, to check how
|
||||
* significant this mutual information actually was.
|
||||
* We destroy the p(x,y,z) correlations, by permuting the given variable,
|
||||
* while retaining the joint distribution of the other variable
|
||||
* and the conditional, and the marginal distribution of the
|
||||
* permuted variable. This checks how
|
||||
* significant this conditional mutual information actually was.
|
||||
*
|
||||
* This is in the spirit of Chavez et. al., "Statistical assessment of nonlinear causality:
|
||||
* application to epileptic EEG signals", Journal of Neuroscience Methods 124 (2003) 113-128
|
||||
* which was performed for Transfer entropy.
|
||||
*
|
||||
* @param variableToReorder 1 for variable 1, 2 for variable 2
|
||||
* @param newOrderings the specific new orderings to use
|
||||
* @return the proportion of conditional MI scores from the distribution which have higher or equal MIs to ours.
|
||||
*/
|
||||
public EmpiricalMeasurementDistribution computeSignificance(int[][] newOrderings) throws Exception {
|
||||
public EmpiricalMeasurementDistribution computeSignificance(
|
||||
int variableToReorder, int[][] newOrderings) throws Exception {
|
||||
|
||||
int numPermutationsToCheck = newOrderings.length;
|
||||
if (!condMiComputed) {
|
||||
computeAverageLocalOfObservations();
|
||||
|
@ -235,7 +250,8 @@ public abstract class ConditionalMutualInfoCalculatorMultiVariateKraskov {
|
|||
int countWhereMiIsMoreSignificantThanOriginal = 0;
|
||||
for (int i = 0; i < numPermutationsToCheck; i++) {
|
||||
// Compute the MI under this reordering
|
||||
double newMI = computeAverageLocalOfObservations(newOrderings[i]);
|
||||
double newMI = computeAverageLocalOfObservations(
|
||||
variableToReorder, newOrderings[i]);
|
||||
measDistribution.distribution[i] = newMI;
|
||||
if (debug){
|
||||
System.out.println("New MI was " + newMI);
|
||||
|
@ -256,7 +272,8 @@ public abstract class ConditionalMutualInfoCalculatorMultiVariateKraskov {
|
|||
|
||||
public abstract double[] computeLocalOfPreviousObservations() throws Exception;
|
||||
|
||||
public double[] computeLocalUsingPreviousObservations(double[][] states1, double[][] states2) throws Exception {
|
||||
public double[] computeLocalUsingPreviousObservations(double[][] states1,
|
||||
double[][] states2, double[][] condStates) throws Exception {
|
||||
// If implemented, will need to incorporate any normalisation here
|
||||
// (normalising the incoming data the same way the previously
|
||||
// supplied observations were normalised).
|
||||
|
|
|
@ -28,32 +28,49 @@ public class ConditionalMutualInfoCalculatorMultiVariateKraskov1
|
|||
* Compute the average conditional MI from the previously set observations
|
||||
*/
|
||||
public double computeAverageLocalOfObservations() throws Exception {
|
||||
return computeAverageLocalOfObservations(null);
|
||||
return computeAverageLocalOfObservations(1, null);
|
||||
}
|
||||
|
||||
/**
|
||||
* Compute what the average conditional MI would look like were the second time series reordered
|
||||
* Compute what the average conditional MI would look like were the given
|
||||
* time series reordered
|
||||
* as per the array of time indices in reordering.
|
||||
* The user should ensure that all values 0..N-1 are represented exactly once in the
|
||||
* array reordering and that no other values are included here.
|
||||
* If reordering is null, it is assumed there is no reordering of
|
||||
* the y variable.
|
||||
*
|
||||
* @param reordering the reordered time steps of the y variable
|
||||
* If reordering is null, it is assumed there is no reordering of
|
||||
* the given variable.
|
||||
*
|
||||
* @param variableToReorder 1 for variable 1, 2 for variable 2
|
||||
* @param reordering the reordered time steps of the given variable
|
||||
* @return
|
||||
* @throws Exception
|
||||
*/
|
||||
public double computeAverageLocalOfObservations(int[] reordering) throws Exception {
|
||||
public double computeAverageLocalOfObservations(int variableToReorder,
|
||||
int[] reordering) throws Exception {
|
||||
if (!tryKeepAllPairsNorms || (data1.length > MAX_DATA_SIZE_FOR_KEEP_ALL_PAIRS_NORM)) {
|
||||
double[][] originalData2 = data2;
|
||||
double[][] originalData;
|
||||
if (variableToReorder == 1) {
|
||||
originalData = data1;
|
||||
} else {
|
||||
originalData = data2;
|
||||
}
|
||||
if (reordering != null) {
|
||||
// Generate a new re-ordered data2
|
||||
data2 = MatrixUtils.extractSelectedTimePointsReusingArrays(originalData2, reordering);
|
||||
// Generate a new re-ordered data array
|
||||
if (variableToReorder == 1) {
|
||||
data1 = MatrixUtils.extractSelectedTimePointsReusingArrays(originalData, reordering);
|
||||
} else {
|
||||
data2 = MatrixUtils.extractSelectedTimePointsReusingArrays(originalData, reordering);
|
||||
}
|
||||
}
|
||||
// Compute the MI
|
||||
double newMI = computeAverageLocalOfObservationsWhileComputingDistances();
|
||||
// restore data2
|
||||
data2 = originalData2;
|
||||
// restore original data
|
||||
if (variableToReorder == 1) {
|
||||
data1 = originalData;
|
||||
} else {
|
||||
data2 = originalData;
|
||||
}
|
||||
return newMI;
|
||||
}
|
||||
|
||||
|
@ -76,13 +93,21 @@ public class ConditionalMutualInfoCalculatorMultiVariateKraskov1
|
|||
// using x, y and z norms to all neighbours
|
||||
// (note that norm of point t to itself will be set to infinity).
|
||||
|
||||
int tForY = (reordering == null) ? t : reordering[t];
|
||||
int tForReorderedVar = (reordering == null) ? t : reordering[t];
|
||||
|
||||
double[] jointNorm = new double[N];
|
||||
for (int t2 = 0; t2 < N; t2++) {
|
||||
int t2ForY = (reordering == null) ? t2 : reordering[t2];
|
||||
int t2ForReorderedVar = (reordering == null) ? t2 : reordering[t2];
|
||||
// Joint norm is the max of all three marginals
|
||||
jointNorm[t2] = Math.max(xNorms[t][t2], Math.max(yNorms[tForY][t2ForY], zNorms[t][t2]));
|
||||
if (variableToReorder == 1) {
|
||||
jointNorm[t2] = Math.max(xNorms[tForReorderedVar][t2ForReorderedVar],
|
||||
Math.max(yNorms[t][t2],
|
||||
zNorms[t][t2]));
|
||||
} else {
|
||||
jointNorm[t2] = Math.max(xNorms[t][t2],
|
||||
Math.max(yNorms[tForReorderedVar][t2ForReorderedVar],
|
||||
zNorms[t][t2]));
|
||||
}
|
||||
}
|
||||
// Then find the kth closest neighbour, using a heuristic to
|
||||
// select whether to keep the k mins only or to do a sort.
|
||||
|
@ -107,12 +132,21 @@ public class ConditionalMutualInfoCalculatorMultiVariateKraskov1
|
|||
for (int t2 = 0; t2 < N; t2++) {
|
||||
if (zNorms[t][t2] < epsilon) {
|
||||
n_z++;
|
||||
if (xNorms[t][t2] < epsilon) {
|
||||
n_xz++;
|
||||
}
|
||||
int t2ForY = (reordering == null) ? t2 : reordering[t2];
|
||||
if (yNorms[tForY][t2ForY] < epsilon) {
|
||||
n_yz++;
|
||||
int t2ForReorderedVar = (reordering == null) ? t2 : reordering[t2];
|
||||
if (variableToReorder == 1) {
|
||||
if (xNorms[tForReorderedVar][t2ForReorderedVar] < epsilon) {
|
||||
n_xz++;
|
||||
}
|
||||
if (yNorms[t][t2] < epsilon) {
|
||||
n_yz++;
|
||||
}
|
||||
} else {
|
||||
if (xNorms[t][t2] < epsilon) {
|
||||
n_xz++;
|
||||
}
|
||||
if (yNorms[tForReorderedVar][t2ForReorderedVar] < epsilon) {
|
||||
n_yz++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -38,24 +38,40 @@ public class ConditionalMutualInfoCalculatorMultiVariateKraskov2
|
|||
protected static final double CUTOFF_MULTIPLIER = 1.5;
|
||||
|
||||
/**
|
||||
* Compute what the average conditional MI would look like were the second time series reordered
|
||||
* Compute what the average conditional MI would look like were the given
|
||||
* time series reordered
|
||||
* as per the array of time indices in reordering.
|
||||
* The user should ensure that all values 0..N-1 are represented exactly once in the
|
||||
* array reordering and that no other values are included here.
|
||||
*
|
||||
* @param reordering
|
||||
* @param variableToReorder 1 for variable 1, 2 for variable 2
|
||||
* @param reordering the reordered time steps of the given variable
|
||||
* @return
|
||||
* @throws Exception
|
||||
*/
|
||||
public double computeAverageLocalOfObservations(int[] reordering) throws Exception {
|
||||
public double computeAverageLocalOfObservations(int variableToReorder,
|
||||
int[] reordering) throws Exception {
|
||||
if (!tryKeepAllPairsNorms || (data1.length > MAX_DATA_SIZE_FOR_KEEP_ALL_PAIRS_NORM)) {
|
||||
double[][] originalData2 = data2;
|
||||
// Generate a new re-ordered data2
|
||||
data2 = MatrixUtils.extractSelectedTimePointsReusingArrays(originalData2, reordering);
|
||||
double[][] originalData;
|
||||
if (variableToReorder == 1) {
|
||||
originalData = data1;
|
||||
} else {
|
||||
originalData = data2;
|
||||
}
|
||||
// Generate a new re-ordered data array
|
||||
if (variableToReorder == 1) {
|
||||
data1 = MatrixUtils.extractSelectedTimePointsReusingArrays(originalData, reordering);
|
||||
} else {
|
||||
data2 = MatrixUtils.extractSelectedTimePointsReusingArrays(originalData, reordering);
|
||||
}
|
||||
// Compute the MI
|
||||
double newMI = computeAverageLocalOfObservationsWhileComputingDistances();
|
||||
// restore data2
|
||||
data2 = originalData2;
|
||||
// restore original data
|
||||
if (variableToReorder == 1) {
|
||||
data1 = originalData;
|
||||
} else {
|
||||
data2 = originalData;
|
||||
}
|
||||
return newMI;
|
||||
}
|
||||
|
||||
|
@ -80,13 +96,19 @@ public class ConditionalMutualInfoCalculatorMultiVariateKraskov2
|
|||
// First get x and y and z norms to all neighbours
|
||||
// (note that norm of point t to itself will be set to infinity).
|
||||
|
||||
int tForY = reordering[t];
|
||||
int tForReorderedVar = reordering[t];
|
||||
|
||||
double[][] jointNorm = new double[N][2];
|
||||
for (int t2 = 0; t2 < N; t2++) {
|
||||
int t2ForY = reordering[t2];
|
||||
jointNorm[t2][JOINT_NORM_VAL_COLUMN] = Math.max(xNorms[t][t2],
|
||||
Math.max(yNorms[tForY][t2ForY], zNorms[t][t2]));
|
||||
int t2ForReorderedVar = reordering[t2];
|
||||
if (variableToReorder == 1) {
|
||||
jointNorm[t2][JOINT_NORM_VAL_COLUMN] = Math.max(
|
||||
xNorms[tForReorderedVar][t2ForReorderedVar],
|
||||
Math.max(yNorms[t][t2], zNorms[t][t2]));
|
||||
} else {
|
||||
jointNorm[t2][JOINT_NORM_VAL_COLUMN] = Math.max(xNorms[t][t2],
|
||||
Math.max(yNorms[tForReorderedVar][t2ForReorderedVar], zNorms[t][t2]));
|
||||
}
|
||||
// And store the time step for back reference after the
|
||||
// array is sorted.
|
||||
jointNorm[t2][JOINT_NORM_TIMESTEP_COLUMN] = t2;
|
||||
|
@ -112,11 +134,20 @@ public class ConditionalMutualInfoCalculatorMultiVariateKraskov2
|
|||
// Find eps_{x,y,z} as the maximum x and y and z norms amongst this set:
|
||||
for (int j = 0; j < k; j++) {
|
||||
int timeStepOfJthPoint = timeStepsOfKthMins[j];
|
||||
if (xNorms[t][timeStepOfJthPoint] > eps_x) {
|
||||
eps_x = xNorms[t][timeStepOfJthPoint];
|
||||
}
|
||||
if (yNorms[tForY][reordering[timeStepOfJthPoint]] > eps_y) {
|
||||
eps_y = yNorms[tForY][reordering[timeStepOfJthPoint]];
|
||||
if (variableToReorder == 1) {
|
||||
if (xNorms[tForReorderedVar][reordering[timeStepOfJthPoint]] > eps_x) {
|
||||
eps_x = xNorms[tForReorderedVar][reordering[timeStepOfJthPoint]];
|
||||
}
|
||||
if (yNorms[t][timeStepOfJthPoint] > eps_y) {
|
||||
eps_y = yNorms[t][timeStepOfJthPoint];
|
||||
}
|
||||
} else {
|
||||
if (xNorms[t][timeStepOfJthPoint] > eps_x) {
|
||||
eps_x = xNorms[t][timeStepOfJthPoint];
|
||||
}
|
||||
if (yNorms[tForReorderedVar][reordering[timeStepOfJthPoint]] > eps_y) {
|
||||
eps_y = yNorms[tForReorderedVar][reordering[timeStepOfJthPoint]];
|
||||
}
|
||||
}
|
||||
if (zNorms[t][timeStepOfJthPoint] > eps_z) {
|
||||
eps_z = zNorms[t][timeStepOfJthPoint];
|
||||
|
@ -133,11 +164,20 @@ public class ConditionalMutualInfoCalculatorMultiVariateKraskov2
|
|||
for (int t2 = 0; t2 < N; t2++) {
|
||||
if (zNorms[t][t2] <= eps_z) {
|
||||
n_z++;
|
||||
if (xNorms[t][t2] <= eps_x) {
|
||||
n_xz++;
|
||||
}
|
||||
if (yNorms[tForY][reordering[t2]] <= eps_y) {
|
||||
n_yz++;
|
||||
if (variableToReorder == 1) {
|
||||
if (xNorms[tForReorderedVar][reordering[t2]] <= eps_x) {
|
||||
n_xz++;
|
||||
}
|
||||
if (yNorms[t][t2] <= eps_y) {
|
||||
n_yz++;
|
||||
}
|
||||
} else {
|
||||
if (xNorms[t][t2] <= eps_x) {
|
||||
n_xz++;
|
||||
}
|
||||
if (yNorms[tForReorderedVar][reordering[t2]] <= eps_y) {
|
||||
n_yz++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue