mirror of https://github.com/jlizier/jidt
Adding example 9 multivariate TE to octave/matlab demos
This commit is contained in:
parent
7ee34fd8a1
commit
cf51e333c5
|
@ -0,0 +1,62 @@
|
|||
%%
|
||||
%% Java Information Dynamics Toolkit (JIDT)
|
||||
%% Copyright (C) 2014, Viola Priesemann, Joseph T. Lizier
|
||||
%%
|
||||
%% This program is free software: you can redistribute it and/or modify
|
||||
%% it under the terms of the GNU General Public License as published by
|
||||
%% the Free Software Foundation, either version 3 of the License, or
|
||||
%% (at your option) any later version.
|
||||
%%
|
||||
%% This program is distributed in the hope that it will be useful,
|
||||
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
%% GNU General Public License for more details.
|
||||
%%
|
||||
%% You should have received a copy of the GNU General Public License
|
||||
%% along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
%%
|
||||
|
||||
% = Example 9 - Transfer entropy on continuous multivariate data using Kraskov estimators =
|
||||
|
||||
% Transfer entropy (TE) calculation on multivariate continuous-valued data using the Kraskov-estimator TE calculator.
|
||||
|
||||
% Change location of jar to match yours:
|
||||
javaaddpath('../../infodynamics.jar')
|
||||
|
||||
% Generate some random normalised data.
|
||||
numObservations = 10000;
|
||||
covariance=0.4;
|
||||
|
||||
% Define the dimension of the states of the RVs
|
||||
sourceDim = 2;
|
||||
destDim = 3;
|
||||
|
||||
sourceMVArray = randn(numObservations, sourceDim);
|
||||
% Set first two columns of dest to copy source values
|
||||
destMVArray = [zeros(1,sourceDim); covariance*(sourceMVArray(1:numObservations-1,:)) + (1-covariance)*randn(numObservations-1, sourceDim)];
|
||||
% Set a third colum to be randomised
|
||||
destMVArray(:,3) = randn(numObservations, 1);
|
||||
sourceMVArray2= randn(numObservations, sourceDim); % Uncorrelated source
|
||||
|
||||
% Create a TE calculator and run it:
|
||||
teCalc=javaObject('infodynamics.measures.continuous.kraskov.TransferEntropyCalculatorMultiVariateKraskov');
|
||||
teCalc.initialise(1,sourceDim,destDim); % Use history length 1 (Schreiber k=1)
|
||||
teCalc.setProperty('k', '4'); % Use Kraskov parameter K=4 for 4 nearest points
|
||||
teCalc.setObservations(octaveToJavaDoubleMatrix(sourceMVArray), octaveToJavaDoubleMatrix(destMVArray));
|
||||
% Perform calculation with correlated source:
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
% Note that the calculation is a random variable (because the generated
|
||||
% data is a set of random variables) - the result will be of the order
|
||||
% of what we expect, but not exactly equal to it; in fact, there will
|
||||
% be some variance around it. It will probably be biased down here
|
||||
% due to small correlations between the supposedly uncorrelated variables.
|
||||
fprintf('TE result %.4f nats; expected to be close to %.4f nats for the two correlated Gaussians\n', ...
|
||||
result, 2*log(1/(1-covariance^2)));
|
||||
|
||||
% Perform calculation with uncorrelated source:
|
||||
teCalc.initialise(1,sourceDim,destDim); % Initialise leaving the parameters the same
|
||||
teCalc.setObservations(octaveToJavaDoubleMatrix(sourceMVArray2), octaveToJavaDoubleMatrix(destMVArray));
|
||||
result2 = teCalc.computeAverageLocalOfObservations();
|
||||
fprintf('TE result %.4f nats; expected to be close to 0 nats for these uncorrelated Gaussians\n', result2);
|
||||
clear teCalc
|
||||
|
Loading…
Reference in New Issue