mirror of https://github.com/jlizier/jidt
Adding CA demo code for Frontiers Bits From Biology paper 2014
This commit is contained in:
parent
390e1cc6be
commit
c47fbda738
|
@ -0,0 +1,100 @@
|
|||
%%
|
||||
%% Java Information Dynamics Toolkit (JIDT)
|
||||
%% Copyright (C) 2012, Joseph T. Lizier
|
||||
%%
|
||||
%% This program is free software: you can redistribute it and/or modify
|
||||
%% it under the terms of the GNU General Public License as published by
|
||||
%% the Free Software Foundation, either version 3 of the License, or
|
||||
%% (at your option) any later version.
|
||||
%%
|
||||
%% This program is distributed in the hope that it will be useful,
|
||||
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
%% GNU General Public License for more details.
|
||||
%%
|
||||
%% You should have received a copy of the GNU General Public License
|
||||
%% along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
%%
|
||||
|
||||
% To recreate the plots in:
|
||||
% Michael Wibral, Joseph T. Lizier and Viola Priesemann, "Bits from Biology for Computational Intelligence", submitted to Frontiers in Robotics and AI, 2014.
|
||||
%
|
||||
% This is similar to one used in:
|
||||
% J.T. Lizier, M. Prokopenko and A.Y. Zomaya, "A framework for the local information dynamics of distributed computation in complex systems", in Guided self-organisation: Inception, ed. M. Prokopenko, pp. 115-158, Springer, Berlin/Heidelberg, 2014; doi: 10.1007/978-3-642-53734-9_5, arXiv:0811.2690.
|
||||
% but with slightly different number of cells and offset to make it technically a different figure.
|
||||
|
||||
clear all;
|
||||
|
||||
% Set up simulation options:
|
||||
cells = 10000;
|
||||
timeSteps = 600;
|
||||
neighbourhood = 3;
|
||||
caStates = 2;
|
||||
|
||||
% Set up options for information dynamics analysis, and which segment of the CA to plot
|
||||
measureParams.k=16;
|
||||
options.saveImages = true;
|
||||
options.saveImagesFormat = 'eps';
|
||||
options.plotOptions.scaleColoursToSubsetOfPlot = true;
|
||||
scaleColoursToExtremesDefault = false;
|
||||
options.plotOptions.scaleColoursToExtremes = scaleColoursToExtremesDefault;
|
||||
% Turn up the contrast so that the small values aren't disproportionately visible: (0.15, 0.30 was good, except for separable which was better with 0.15, 0.35)
|
||||
options.plotOptions.scalingMainComponent = 0.15;
|
||||
options.plotOptions.scalingScdryComponent = 0.30;
|
||||
options.plotOptions.gammaPower = 0.5;
|
||||
|
||||
|
||||
%%%%%%%%%
|
||||
% Examining rule phi_par:
|
||||
% (70, 70, 17, 585) - was used in the above GSO paper
|
||||
% (75, 75, 12, 300 - is ok, but another collision would be good)
|
||||
% (100, 100, 12, 500 - is very interesting, but perhaps slightly too complicated. Dynamics will lead to some strange colouring also)
|
||||
options.plotRawCa = true;
|
||||
options.plotOptions.plotRows = 75;
|
||||
options.plotOptions.plotCols = 75;
|
||||
options.plotOptions.plotStartRow = 1;
|
||||
options.plotOptions.plotStartCol = 585;
|
||||
options.seed = 2;
|
||||
if (exist('initialStates/GsoChapterDemo2013-initialState-phipar.txt', 'file'))
|
||||
% A file specifying the initial state exists -- this
|
||||
% ensures that Matlab and Octave use the same initial state
|
||||
% (otherwise only Octave recreates the same initial state used in our chapter).
|
||||
% (You can delete/move the initial state file if you want them generated from scratch.)
|
||||
options.initialState = load('initialStates/GsoChapterDemo2013-initialState-phipar.txt');
|
||||
elseif (isfield(options, 'initialState'))
|
||||
options = rmfield(options, 'initialState');
|
||||
end
|
||||
phi_par = 'feedffdec1aaeec0eef000a0e1a020a0';
|
||||
phi_par_neighbourhood = 7;
|
||||
phi_par_cells = 30000;
|
||||
phi_par_timeSteps = 200;
|
||||
measureParams.k=10; % Shorter for phi_par
|
||||
fprintf('\nStarting rule phi_par ...\n');
|
||||
fprintf('\nPlotting active info storage ...\n');
|
||||
plotLocalInfoMeasureForCA(phi_par_neighbourhood, caStates, phi_par, phi_par_cells, phi_par_timeSteps, 'active', measureParams, options);
|
||||
options.plotRawCa = false;
|
||||
fprintf('\nPress any key when ready for apparent transfer entropy j = -1 ...\n');
|
||||
pause
|
||||
% Use the full red scale for transfer and separable info, since we need to see the extreme negative values properly
|
||||
options.plotOptions.scaleColoursToExtremes = true;
|
||||
measureParams.j = -1;
|
||||
plotLocalInfoMeasureForCA(phi_par_neighbourhood, caStates, phi_par, phi_par_cells, phi_par_timeSteps, 'transfer', measureParams, options);
|
||||
fprintf('\nPress any key when ready for complete transfer entropy j = -1 ...\n');
|
||||
pause
|
||||
plotLocalInfoMeasureForCA(phi_par_neighbourhood, caStates, phi_par, phi_par_cells, phi_par_timeSteps, 'transfercomplete', measureParams, options);
|
||||
fprintf('\nPress any key when ready for apparent transfer entropy j = -3 ...\n');
|
||||
pause
|
||||
measureParams.j = -3;
|
||||
plotLocalInfoMeasureForCA(phi_par_neighbourhood, caStates, phi_par, phi_par_cells, phi_par_timeSteps, 'transfer', measureParams, options);
|
||||
fprintf('\nPress any key when ready for the separable information ...\n');
|
||||
pause
|
||||
options.plotOptions.scalingMainComponent = 0.35; % Make it easier to see stronger negatives
|
||||
options.plotOptions.scalingScdryComponent = 0.45;
|
||||
plotLocalInfoMeasureForCA(phi_par_neighbourhood, caStates, phi_par, phi_par_cells, phi_par_timeSteps, 'separable', measureParams, options);
|
||||
fprintf('\nPress any key when ready to apply to the next rule\n')
|
||||
pause
|
||||
options.plotOptions.scaleColoursToExtremes = scaleColoursToExtremesDefault; % return to default value
|
||||
options.plotOptions.scalingScdryComponent = 0.30; % return to previous value
|
||||
options.plotOptions.scalingMainComponent = 0.15; % Return to previous value
|
||||
measureParams.k=16; % back to default
|
||||
|
Loading…
Reference in New Issue