mirror of https://github.com/jlizier/jidt
Adding sample tutorial solutions, updating image for the web, and updating build file to include tutorials
This commit is contained in:
parent
b07b6890ce
commit
af5f1264a0
|
@ -190,6 +190,7 @@
|
|||
<zipfileset dir="demos" includes="**/*.*,**/*" excludes="clojure/deploy,clojure/deploy/*.*,python/*.pyc" prefix="demos"/>
|
||||
<zipfileset dir="javadocs" includes="**/*.*,**/*" prefix="javadocs"/>
|
||||
<zipfileset dir="notices" includes="**/*.*,**/*" prefix="notices"/>
|
||||
<zipfileset dir="tutorial" prefix="tutorial"/>
|
||||
</zip>
|
||||
</target>
|
||||
</project>
|
||||
|
|
Binary file not shown.
Before Width: | Height: | Size: 7.4 KiB After Width: | Height: | Size: 8.1 KiB |
|
@ -0,0 +1,76 @@
|
|||
%%
|
||||
%% Java Information Dynamics Toolkit (JIDT)
|
||||
%% Copyright (C) 2012, Joseph T. Lizier
|
||||
%%
|
||||
%% This program is free software: you can redistribute it and/or modify
|
||||
%% it under the terms of the GNU General Public License as published by
|
||||
%% the Free Software Foundation, either version 3 of the License, or
|
||||
%% (at your option) any later version.
|
||||
%%
|
||||
%% This program is distributed in the hope that it will be useful,
|
||||
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
%% GNU General Public License for more details.
|
||||
%%
|
||||
%% You should have received a copy of the GNU General Public License
|
||||
%% along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
%%
|
||||
|
||||
% function [miHeartToBreath] = runHeartBreathRateKraskovMI()
|
||||
%
|
||||
% runHeartBreathRateKraskovMI
|
||||
% Version 1.0
|
||||
% Joseph Lizier
|
||||
% 3/2/2015
|
||||
%
|
||||
% Used to explore mutual information in the heart rate / breath rate example of Schreiber --
|
||||
% but estimates MI using Kraskov-Stoegbauer-Grassberger estimation.
|
||||
%
|
||||
% Note that the paths (to libraries, data, etc) are set assuming this code is run in
|
||||
% the folder tutorial/sampleExercises/matlabOctave, relative to the main folder of the JIDT distribution.
|
||||
%
|
||||
%
|
||||
% Outputs
|
||||
% - miHeartToBreath - MI (heart ; breath)
|
||||
|
||||
|
||||
function [miHeartToBreath] = runHeartBreathRateKraskovMI()
|
||||
|
||||
tic;
|
||||
|
||||
% Add Octave utilities to the path
|
||||
addpath('../../../demos/octave/');
|
||||
|
||||
% Assumes the jar is three levels up - change this if this is not the case
|
||||
% Octave is happy to have the path added multiple times; I'm unsure if this is true for matlab
|
||||
javaaddpath('../../../infodynamics.jar');
|
||||
|
||||
data = load('../../../demos/data/SFI-heartRate_breathVol_bloodOx.txt');
|
||||
|
||||
% Restrict to the samples that Schreiber mentions:
|
||||
data = data(2350:3550,:);
|
||||
|
||||
% Separate the data from each column:
|
||||
heart = data(:,1);
|
||||
chestVol = data(:,2);
|
||||
bloodOx = data(:,3);
|
||||
timeSteps = length(heart);
|
||||
|
||||
fprintf('MI for heart rate <-> breath rate for Kraskov estimation with %d samples:\n', timeSteps);
|
||||
|
||||
% Using a KSG estimator for MI is the least biased way to run this:
|
||||
miCalc=javaObject('infodynamics.measures.continuous.kraskov.MutualInfoCalculatorMultiVariateKraskov2');
|
||||
|
||||
% Compute an MI value between heart and breath
|
||||
|
||||
miCalc.initialise(1,1); % univariate calculation
|
||||
miCalc.setProperty('k', '4'); % 4 nearest neighbours for KSG estimator
|
||||
miCalc.setObservations(octaveToJavaDoubleArray(heart), ...
|
||||
octaveToJavaDoubleArray(chestVol));
|
||||
miHeartToBreath = miCalc.computeAverageLocalOfObservations();
|
||||
fprintf('MI: = %.3f nats\n', miHeartToBreath);
|
||||
|
||||
tElapsed = toc;
|
||||
fprintf('Total runtime was %.1f sec\n', tElapsed);
|
||||
end
|
||||
|
|
@ -0,0 +1,117 @@
|
|||
%%
|
||||
%% Java Information Dynamics Toolkit (JIDT)
|
||||
%% Copyright (C) 2012, Joseph T. Lizier
|
||||
%%
|
||||
%% This program is free software: you can redistribute it and/or modify
|
||||
%% it under the terms of the GNU General Public License as published by
|
||||
%% the Free Software Foundation, either version 3 of the License, or
|
||||
%% (at your option) any later version.
|
||||
%%
|
||||
%% This program is distributed in the hope that it will be useful,
|
||||
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
%% GNU General Public License for more details.
|
||||
%%
|
||||
%% You should have received a copy of the GNU General Public License
|
||||
%% along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
%%
|
||||
|
||||
% function [miHeartToBreath] = runHeartBreathRateKraskovMIWithLags(lags, numSurrogates)
|
||||
%
|
||||
% runHeartBreathRateKraskovMI
|
||||
% Version 1.0
|
||||
% Joseph Lizier
|
||||
% 3/2/2015
|
||||
%
|
||||
% Used to explore mutual information in the heart rate / breath rate example of Schreiber --
|
||||
% but estimates MI using Kraskov-Stoegbauer-Grassberger estimation.
|
||||
%
|
||||
% This script is used to address challenge 1, incorporating lags between heart and breath data.
|
||||
%
|
||||
% Note that the paths (to libraries, data, etc) are set assuming this code is run in
|
||||
% the folder tutorial/sampleExercises/matlabOctave, relative to the main folder of the JIDT distribution.
|
||||
%
|
||||
%
|
||||
% Inputs
|
||||
% - lags - a scalar specifying a single, or vector specifying multiple, lag from heart to breath to evaluate MI with.
|
||||
% These lags may be negative, implying a (positive) lag from breath to heart.
|
||||
% - surrogates - number of surrogates to compute MI for, showing the null distribution if there were no
|
||||
% relationship at the given lag.
|
||||
% Outputs
|
||||
% - miHeartToBreath - MI (heart ; breath) for each value of lags
|
||||
|
||||
|
||||
function [miHeartToBreath] = runHeartBreathRateKraskovMIWithLags(lags, numSurrogates)
|
||||
|
||||
tic;
|
||||
|
||||
% Add Octave utilities to the path
|
||||
addpath('../../../demos/octave/');
|
||||
|
||||
% Assumes the jar is three levels up - change this if this is not the case
|
||||
% Octave is happy to have the path added multiple times; I'm unsure if this is true for matlab
|
||||
javaaddpath('../../../infodynamics.jar');
|
||||
|
||||
if (nargin < 1)
|
||||
lags = [0];
|
||||
end
|
||||
|
||||
if (nargin < 2)
|
||||
numSurrogates = 0;
|
||||
end
|
||||
|
||||
data = load('../../../demos/data/SFI-heartRate_breathVol_bloodOx.txt');
|
||||
|
||||
% Restrict to the samples that Schreiber mentions:
|
||||
data = data(2350:3550,:);
|
||||
|
||||
% Separate the data from each column:
|
||||
heart = data(:,1);
|
||||
chestVol = data(:,2);
|
||||
bloodOx = data(:,3);
|
||||
timeSteps = length(heart);
|
||||
|
||||
fprintf('MI for heart rate <-> breath rate for Kraskov estimation with %d samples:\n', timeSteps);
|
||||
|
||||
% Using a KSG estimator for MI is the least biased way to run this:
|
||||
miCalc=javaObject('infodynamics.measures.continuous.kraskov.MutualInfoCalculatorMultiVariateKraskov2');
|
||||
|
||||
for lagIndex = 1:length(lags)
|
||||
lag = lags(lagIndex);
|
||||
% Compute an MI value for this lag
|
||||
|
||||
miCalc.initialise(1,1); % univariate calculation
|
||||
miCalc.setProperty('k', '4');
|
||||
if (lag < 0)
|
||||
source = chestVol;
|
||||
target = heart;
|
||||
else
|
||||
source = heart;
|
||||
target = chestVol;
|
||||
end
|
||||
miCalc.setProperty('TIME_DIFF', sprintf("%d", abs(lag)));
|
||||
miCalc.setObservations(octaveToJavaDoubleArray(source), ...
|
||||
octaveToJavaDoubleArray(target));
|
||||
miHeartToBreath(lagIndex) = miCalc.computeAverageLocalOfObservations();
|
||||
fprintf('MI(lag=%d): = %.3f nats', lag, miHeartToBreath(lagIndex));
|
||||
if (numSurrogates > 0)
|
||||
% My observations suggest that most results here for lags -15:15 are statistically significant
|
||||
% (threshold for multiple comparisons corrected 0.05 level would be about 0.08 nats.)
|
||||
miHeartToBreathNullDist = miCalc.computeSignificance(numSurrogates);
|
||||
miHeartToBreathNullMean = miHeartToBreathNullDist.getMeanOfDistribution();
|
||||
miHeartToBreathNullStd = miHeartToBreathNullDist.getStdOfDistribution();
|
||||
fprintf(" (null = %.3f +/- %.3f)", miHeartToBreathNullMean, miHeartToBreathNullStd),
|
||||
end
|
||||
fprintf("\n");
|
||||
end
|
||||
|
||||
tElapsed = toc;
|
||||
fprintf('Total runtime was %.1f sec\n', tElapsed);
|
||||
|
||||
plot(lags, miHeartToBreath, 'rx', 'markersize', 10);
|
||||
set (gca,'fontsize',26);
|
||||
xlabel('Lag', 'FontSize', 36, 'FontWeight', 'bold');
|
||||
ylabel('MI (nats)', 'FontSize', 36, 'FontWeight', 'bold');
|
||||
print('heartBreathResults-kraskovMI.eps', '-depsc');
|
||||
end
|
||||
|
Loading…
Reference in New Issue