mirror of https://github.com/jlizier/jidt
Added unit tests for TransferEntropyCalculatorMultiVariateViaCondMutualInfo and derived classes for Kraskov and Gaussian estimators.
This commit is contained in:
parent
7a40b433b7
commit
9cad2737af
|
@ -0,0 +1,84 @@
|
|||
package infodynamics.measures.continuous;
|
||||
|
||||
import junit.framework.TestCase;
|
||||
import infodynamics.utils.MatrixUtils;
|
||||
import infodynamics.utils.RandomGenerator;
|
||||
|
||||
public abstract class TransferEntropyAbstractTester extends TestCase {
|
||||
|
||||
/**
|
||||
* Confirm that the local values average correctly back to the average value
|
||||
*
|
||||
* @param teCalc a pre-constructed TransferEntropyCalculator object
|
||||
* @param timeSteps number of time steps for the random data
|
||||
* @param k dest history length for the TE calculator to use
|
||||
*/
|
||||
public void testLocalsAverageCorrectly(TransferEntropyCalculator teCalc,
|
||||
int timeSteps, int k)
|
||||
throws Exception {
|
||||
|
||||
teCalc.initialise(k);
|
||||
|
||||
// generate some random data
|
||||
RandomGenerator rg = new RandomGenerator();
|
||||
double[] sourceData = rg.generateNormalData(timeSteps,
|
||||
0, 1);
|
||||
double[] destData = rg.generateNormalData(timeSteps,
|
||||
0, 1);
|
||||
|
||||
teCalc.setObservations(sourceData, destData);
|
||||
|
||||
//teCalc.setDebug(true);
|
||||
double te = teCalc.computeAverageLocalOfObservations();
|
||||
//teCalc.setDebug(false);
|
||||
double[] teLocal = teCalc.computeLocalOfPreviousObservations();
|
||||
|
||||
System.out.printf("Average was %.5f\n", te);
|
||||
|
||||
assertEquals(te, MatrixUtils.mean(teLocal, k, timeSteps-k), 0.00001);
|
||||
}
|
||||
|
||||
/**
|
||||
* Confirm that significance testing doesn't alter the average that
|
||||
* would be returned.
|
||||
*
|
||||
* @param teCalc a pre-constructed TransferEntropyCalculator object
|
||||
* @param timeSteps number of time steps for the random data
|
||||
* @param k history length for the TE calculator to use
|
||||
* @throws Exception
|
||||
*/
|
||||
public void testComputeSignificanceDoesntAlterAverage(TransferEntropyCalculator teCalc,
|
||||
int timeSteps, int k) throws Exception {
|
||||
|
||||
teCalc.initialise(k);
|
||||
|
||||
// generate some random data
|
||||
RandomGenerator rg = new RandomGenerator();
|
||||
double[] sourceData = rg.generateNormalData(timeSteps,
|
||||
0, 1);
|
||||
double[] destData = rg.generateNormalData(timeSteps,
|
||||
0, 1);
|
||||
|
||||
teCalc.setObservations(sourceData, destData);
|
||||
|
||||
//teCalc.setDebug(true);
|
||||
double te = teCalc.computeAverageLocalOfObservations();
|
||||
//teCalc.setDebug(false);
|
||||
//double[] teLocal = teCalc.computeLocalOfPreviousObservations();
|
||||
|
||||
System.out.printf("Average was %.5f\n", te);
|
||||
|
||||
// Now look at statistical significance tests
|
||||
int[][] newOrderings = rg.generateDistinctRandomPerturbations(
|
||||
timeSteps - k, 100);
|
||||
|
||||
teCalc.computeSignificance(newOrderings);
|
||||
|
||||
// And compute the average value again to check that it's consistent:
|
||||
for (int i = 0; i < 10; i++) {
|
||||
double averageCheck1 = teCalc.computeAverageLocalOfObservations();
|
||||
assertEquals(te, averageCheck1);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
|
@ -83,4 +83,43 @@ public abstract class TransferEntropyMultiVariateAbstractTester extends TestCase
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Confirm that a calculation for univariate data using univariate method signatures
|
||||
* matches that with multivariate signatures.
|
||||
*
|
||||
* @param teCalc a pre-constructed TransferEntropyCalculatorMultiVariate object
|
||||
* @param timeSteps number of time steps for the random data
|
||||
* @param k history length for the TE calculator to use
|
||||
*/
|
||||
public void testUnivariateMatchesMultivariateRoute(TransferEntropyCalculatorMultiVariate teCalc,
|
||||
int timeSteps, int k)
|
||||
throws Exception {
|
||||
|
||||
if (!(teCalc instanceof TransferEntropyCalculator)) {
|
||||
throw new Exception("The given calculator does not implement univariate TE");
|
||||
}
|
||||
|
||||
// generate some random data
|
||||
RandomGenerator rg = new RandomGenerator();
|
||||
double[][] sourceData = rg.generateNormalData(timeSteps, 1,
|
||||
0, 1);
|
||||
double[][] destData = rg.generateNormalData(timeSteps, 1,
|
||||
0, 1);
|
||||
|
||||
// Compute via univariate signatures:
|
||||
TransferEntropyCalculator teCalcUni = (TransferEntropyCalculator) teCalc;
|
||||
teCalc.initialise(k, 1, 1);
|
||||
teCalcUni.setObservations(MatrixUtils.selectColumn(sourceData, 0),
|
||||
MatrixUtils.selectColumn(destData, 0));
|
||||
double teUnivariate = teCalc.computeAverageLocalOfObservations();
|
||||
|
||||
// compute via multivariate signatures:
|
||||
teCalc.initialise(k, 1, 1);
|
||||
teCalc.setObservations(sourceData, destData);
|
||||
//teCalc.setDebug(true);
|
||||
double teMultivariate = teCalc.computeAverageLocalOfObservations();
|
||||
//teCalc.setDebug(false);
|
||||
|
||||
assertEquals(teUnivariate, teMultivariate, 0.00001);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -0,0 +1,43 @@
|
|||
package infodynamics.measures.continuous.gaussian;
|
||||
|
||||
public class TransferEntropyMultiVariateGaussianTester
|
||||
extends infodynamics.measures.continuous.TransferEntropyMultiVariateAbstractTester {
|
||||
|
||||
/**
|
||||
* Confirm that the local values average correctly back to the average value
|
||||
*
|
||||
*/
|
||||
public void testLocalsAverageCorrectly() throws Exception {
|
||||
|
||||
TransferEntropyCalculatorMultiVariateGaussian teCalc =
|
||||
new TransferEntropyCalculatorMultiVariateGaussian();
|
||||
|
||||
super.testLocalsAverageCorrectly(teCalc, 2, 100, 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Confirm that significance testing doesn't alter the average that
|
||||
* would be returned.
|
||||
*
|
||||
* @throws Exception
|
||||
*/
|
||||
public void testComputeSignificanceDoesntAlterAverage() throws Exception {
|
||||
|
||||
TransferEntropyCalculatorMultiVariateGaussian teCalc =
|
||||
new TransferEntropyCalculatorMultiVariateGaussian();
|
||||
|
||||
super.testComputeSignificanceDoesntAlterAverage(teCalc, 2, 100, 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Confirm that the local values average correctly back to the average value
|
||||
*
|
||||
*/
|
||||
public void testUnivariateSignatureMatchesMultivariate() throws Exception {
|
||||
|
||||
TransferEntropyCalculatorMultiVariateGaussian teCalc =
|
||||
new TransferEntropyCalculatorMultiVariateGaussian();
|
||||
|
||||
super.testUnivariateMatchesMultivariateRoute(teCalc, 100, 1);
|
||||
}
|
||||
}
|
|
@ -47,4 +47,24 @@ public class TransferEntropyMultiVariateTester
|
|||
super.testComputeSignificanceDoesntAlterAverage(teCalc, 2, 100, 1);
|
||||
}
|
||||
|
||||
/**
|
||||
* Confirm that the local values average correctly back to the average value
|
||||
*
|
||||
*/
|
||||
public void testUnivariateSignatureMatchesMultivariate() throws Exception {
|
||||
|
||||
TransferEntropyCalculatorMultiVariateKraskov teCalc =
|
||||
new TransferEntropyCalculatorMultiVariateKraskov();
|
||||
|
||||
String kraskov_K = "4";
|
||||
|
||||
teCalc.setProperty(
|
||||
TransferEntropyCalculatorMultiVariateKraskov.PROP_KRASKOV_ALG_NUM,
|
||||
"1");
|
||||
teCalc.setProperty(
|
||||
MutualInfoCalculatorMultiVariateKraskov.PROP_K,
|
||||
kraskov_K);
|
||||
|
||||
super.testUnivariateMatchesMultivariateRoute(teCalc, 100, 1);
|
||||
}
|
||||
}
|
||||
|
|
|
@ -89,12 +89,12 @@ public class TransferEntropyTester
|
|||
// normalisation without taking the extra values in to account if we did it
|
||||
teCalc.setProperty(ConditionalMutualInfoCalculatorMultiVariateKraskov.PROP_NORMALISE, "false");
|
||||
|
||||
teCalc.initialise(1, 1);
|
||||
teCalc.initialise(1);
|
||||
teCalc.setObservations(col0, col1);
|
||||
double result = teCalc.computeAverageLocalOfObservations();
|
||||
assertEquals(expectedFromTRENTOOL0to1, result, 0.000001);
|
||||
|
||||
teCalc.initialise(1, 1);
|
||||
teCalc.initialise(1);
|
||||
teCalc.setObservations(col1, col0);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
assertEquals(expectedFromTRENTOOL1to0, result, 0.000001);
|
||||
|
@ -150,35 +150,35 @@ public class TransferEntropyTester
|
|||
teCalc.setProperty(ConditionalMutualInfoCalculatorMultiVariateKraskov.PROP_NORMALISE, "false");
|
||||
|
||||
System.out.printf("Kraskov TE comparison 2 to TRENTOOL - univariate random data 1 (col 0->1)");
|
||||
teCalc.initialise(1, 1);
|
||||
teCalc.initialise(1);
|
||||
teCalc.setObservations(col0, col1);
|
||||
double result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
assertEquals(expectedFromTRENTOOL0to1, result, 0.000001);
|
||||
|
||||
System.out.printf(" (col 1->2):");
|
||||
teCalc.initialise(1, 1);
|
||||
teCalc.initialise(1);
|
||||
teCalc.setObservations(col1, col2);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
assertEquals(expectedFromTRENTOOL1to2, result, 0.000001);
|
||||
|
||||
System.out.printf(" (col 1->0):");
|
||||
teCalc.initialise(1, 1);
|
||||
teCalc.initialise(1);
|
||||
teCalc.setObservations(col1, col0);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
assertEquals(expectedFromTRENTOOL1to0, result, 0.000001);
|
||||
|
||||
System.out.printf(" (col 0->2):");
|
||||
teCalc.initialise(1, 1);
|
||||
teCalc.initialise(1);
|
||||
teCalc.setObservations(col0, col2);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
assertEquals(expectedFromTRENTOOL0to2, result, 0.000001);
|
||||
|
||||
System.out.printf(" (col 2->0):");
|
||||
teCalc.initialise(1, 1);
|
||||
teCalc.initialise(1);
|
||||
teCalc.setObservations(col2, col0);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
|
@ -239,28 +239,28 @@ public class TransferEntropyTester
|
|||
|
||||
System.out.println("Kraskov Cond MI as TE - multivariate coupled data 1, k=2,l=2");
|
||||
System.out.println(" (0->2)");
|
||||
teCalc.initialise(2, 2);
|
||||
teCalc.initialise(2, 1, 2, 1, 1);
|
||||
teCalc.setObservations(col0, col2);
|
||||
double result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
assertEquals(expectedFromTRENTOOL0to2, result, 0.000001);
|
||||
|
||||
System.out.println(" (2->0):");
|
||||
teCalc.initialise(2, 2);
|
||||
teCalc.initialise(2, 1, 2, 1, 1);
|
||||
teCalc.setObservations(col2, col0);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
assertEquals(expectedFromTRENTOOL2to0, result, 0.000001);
|
||||
|
||||
System.out.println(" (1->3):");
|
||||
teCalc.initialise(2, 2);
|
||||
teCalc.initialise(2, 1, 2, 1, 1);
|
||||
teCalc.setObservations(col1, col3);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
assertEquals(expectedFromTRENTOOL1to3, result, 0.000001);
|
||||
|
||||
System.out.println(" (3->1):");
|
||||
teCalc.initialise(2, 2);
|
||||
teCalc.initialise(2, 1, 2, 1, 1);
|
||||
teCalc.setObservations(col3, col1);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
|
@ -273,7 +273,7 @@ public class TransferEntropyTester
|
|||
double expectedFromTRENTOOL1to2_k1l1 = 0.0011738;
|
||||
|
||||
System.out.println(" (0->1) but with k=1,l=1:");
|
||||
teCalc.initialise(1, 1);
|
||||
teCalc.initialise(1, 1, 1, 1, 1);
|
||||
teCalc.setObservations(col0, col1);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
|
@ -281,7 +281,7 @@ public class TransferEntropyTester
|
|||
|
||||
// And in reverse
|
||||
System.out.println(" (1->2) but with k=1,l=1:");
|
||||
teCalc.initialise(1, 1);
|
||||
teCalc.initialise(1, 1, 1, 1, 1);
|
||||
teCalc.setObservations(col1, col2);
|
||||
result = teCalc.computeAverageLocalOfObservations();
|
||||
System.out.printf(" %.5f\n", result);
|
||||
|
|
Loading…
Reference in New Issue