mirror of https://github.com/jlizier/jidt
Minor patch to running of coupledLogisiticMap example
This commit is contained in:
parent
7185399680
commit
4345f7da15
|
@ -69,7 +69,7 @@ function coupledLogisticMap()
|
|||
cYToX = 0.2;
|
||||
cXToY = 0.5;
|
||||
T = 512;
|
||||
fprintf('For 1000 repeats, expect the calculations to take ~5 minutes ...\n');
|
||||
fprintf('For 1000 repeats, expect the calculations to take ~30 seconds ...\n');
|
||||
repeats = 1000; % General results visible for 100 repeats if you want to see them faster (~20 sec)
|
||||
k = 1; % history length
|
||||
|
||||
|
@ -136,20 +136,20 @@ function coupledLogisticMap()
|
|||
% Perform calculation for X -> Y (lag 1)
|
||||
teCalc.initialise(k,1,1,1,1); % Use history length k (Schreiber k)
|
||||
teCalc.setProperty('k', KraskovK);
|
||||
teCalc.setObservations(octaveToJavaDoubleMatrix(X(seedSteps:size(X,1),r)), ...
|
||||
octaveToJavaDoubleMatrix(Y(seedSteps:size(Y,1),r)));
|
||||
teCalc.setObservations(octaveToJavaDoubleArray(X(seedSteps:size(X,1),r)), ...
|
||||
octaveToJavaDoubleArray(Y(seedSteps:size(Y,1),r)));
|
||||
resultsLag1(r) = teCalc.computeAverageLocalOfObservations();
|
||||
% Perform calculation for X -> Y (lag 2)
|
||||
teCalc.initialise(k,1,1,1,2); % Use history length k (Schreiber k)
|
||||
teCalc.setProperty('k', KraskovK);
|
||||
teCalc.setObservations(octaveToJavaDoubleMatrix(X(seedSteps:size(X,1),r)), ...
|
||||
octaveToJavaDoubleMatrix(Y(seedSteps:size(Y,1),r)));
|
||||
teCalc.setObservations(octaveToJavaDoubleArray(X(seedSteps:size(X,1),r)), ...
|
||||
octaveToJavaDoubleArray(Y(seedSteps:size(Y,1),r)));
|
||||
resultsLag2(r) = teCalc.computeAverageLocalOfObservations();
|
||||
% Perform calculation for X -> Y (lag 3)
|
||||
teCalc.initialise(k,1,1,1,3); % Use history length k (Schreiber k)
|
||||
teCalc.setProperty('k', KraskovK);
|
||||
teCalc.setObservations(octaveToJavaDoubleMatrix(X(seedSteps:size(X,1),r)), ...
|
||||
octaveToJavaDoubleMatrix(Y(seedSteps:size(Y,1),r)));
|
||||
teCalc.setObservations(octaveToJavaDoubleArray(X(seedSteps:size(X,1),r)), ...
|
||||
octaveToJavaDoubleArray(Y(seedSteps:size(Y,1),r)));
|
||||
resultsLag3(r) = teCalc.computeAverageLocalOfObservations();
|
||||
|
||||
% Kernel estimator returns the correct ordering of lag 1 and 2 for
|
||||
|
|
|
@ -128,7 +128,7 @@ Notices for this software are found in the notices/JAMA directory.
|
|||
Release notes
|
||||
===============
|
||||
|
||||
v1.1 14/11/2014 at r573
|
||||
v1.1 14/11/2014 at r576
|
||||
-----------------------
|
||||
Implemented Fast Nearest Neighbour Search for Kraskov-Stögbauer-Grassberger (KSG) estimators for MI, conditional MI, TE, conditional TE, AIS, Predictive info, and multi-information. This includes a general (multivariate) k-d tree implementation;
|
||||
Added multi-threading (using all available processors by default) for the KSG estimators -- code contributed by Ipek Özdemir;
|
||||
|
|
Loading…
Reference in New Issue