add gd32303e-eval BSP

This commit is contained in:
luo jiao 2018-05-21 11:13:46 +08:00
parent a99b09658e
commit 4f4a04437f
129 changed files with 54583 additions and 0 deletions

286
bsp/gd32303e-eval/.config Normal file
View File

@ -0,0 +1,286 @@
#
# Automatically generated file; DO NOT EDIT.
# RT-Thread Configuration
#
#
# RT-Thread Kernel
#
CONFIG_RT_NAME_MAX=8
CONFIG_RT_ALIGN_SIZE=4
# CONFIG_RT_THREAD_PRIORITY_8 is not set
CONFIG_RT_THREAD_PRIORITY_32=y
# CONFIG_RT_THREAD_PRIORITY_256 is not set
CONFIG_RT_THREAD_PRIORITY_MAX=32
CONFIG_RT_TICK_PER_SECOND=100
CONFIG_RT_DEBUG=y
CONFIG_RT_USING_OVERFLOW_CHECK=y
CONFIG_RT_DEBUG_INIT=0
CONFIG_RT_DEBUG_THREAD=0
CONFIG_RT_USING_HOOK=y
CONFIG_IDLE_THREAD_STACK_SIZE=256
# CONFIG_RT_USING_TIMER_SOFT is not set
#
# Inter-Thread communication
#
CONFIG_RT_USING_SEMAPHORE=y
CONFIG_RT_USING_MUTEX=y
CONFIG_RT_USING_EVENT=y
CONFIG_RT_USING_MAILBOX=y
CONFIG_RT_USING_MESSAGEQUEUE=y
# CONFIG_RT_USING_SIGNALS is not set
#
# Memory Management
#
CONFIG_RT_USING_MEMPOOL=y
# CONFIG_RT_USING_MEMHEAP is not set
# CONFIG_RT_USING_NOHEAP is not set
CONFIG_RT_USING_SMALL_MEM=y
# CONFIG_RT_USING_SLAB is not set
# CONFIG_RT_USING_MEMTRACE is not set
CONFIG_RT_USING_HEAP=y
#
# Kernel Device Object
#
CONFIG_RT_USING_DEVICE=y
# CONFIG_RT_USING_INTERRUPT_INFO is not set
CONFIG_RT_USING_CONSOLE=y
CONFIG_RT_CONSOLEBUF_SIZE=128
CONFIG_RT_CONSOLE_DEVICE_NAME="uart0"
# CONFIG_RT_USING_MODULE is not set
#
# RT-Thread Components
#
CONFIG_RT_USING_COMPONENTS_INIT=y
CONFIG_RT_USING_USER_MAIN=y
CONFIG_RT_MAIN_THREAD_STACK_SIZE=2048
#
# C++ features
#
# CONFIG_RT_USING_CPLUSPLUS is not set
#
# Command shell
#
CONFIG_RT_USING_FINSH=y
CONFIG_FINSH_THREAD_NAME="tshell"
CONFIG_FINSH_USING_HISTORY=y
CONFIG_FINSH_HISTORY_LINES=5
CONFIG_FINSH_USING_SYMTAB=y
CONFIG_FINSH_USING_DESCRIPTION=y
# CONFIG_FINSH_ECHO_DISABLE_DEFAULT is not set
CONFIG_FINSH_THREAD_PRIORITY=20
CONFIG_FINSH_THREAD_STACK_SIZE=4096
CONFIG_FINSH_CMD_SIZE=80
# CONFIG_FINSH_USING_AUTH is not set
CONFIG_FINSH_USING_MSH=y
CONFIG_FINSH_USING_MSH_DEFAULT=y
# CONFIG_FINSH_USING_MSH_ONLY is not set
#
# Device virtual file system
#
CONFIG_RT_USING_DFS=y
CONFIG_DFS_USING_WORKDIR=y
CONFIG_DFS_FILESYSTEMS_MAX=2
CONFIG_DFS_FILESYSTEM_TYPES_MAX=2
CONFIG_DFS_FD_MAX=4
CONFIG_RT_USING_DFS_ELMFAT=y
#
# elm-chan's FatFs, Generic FAT Filesystem Module
#
CONFIG_RT_DFS_ELM_CODE_PAGE=437
CONFIG_RT_DFS_ELM_WORD_ACCESS=y
CONFIG_RT_DFS_ELM_USE_LFN_0=y
# CONFIG_RT_DFS_ELM_USE_LFN_1 is not set
# CONFIG_RT_DFS_ELM_USE_LFN_2 is not set
# CONFIG_RT_DFS_ELM_USE_LFN_3 is not set
CONFIG_RT_DFS_ELM_USE_LFN=0
CONFIG_RT_DFS_ELM_MAX_LFN=255
CONFIG_RT_DFS_ELM_DRIVES=2
CONFIG_RT_DFS_ELM_MAX_SECTOR_SIZE=4096
# CONFIG_RT_DFS_ELM_USE_ERASE is not set
CONFIG_RT_DFS_ELM_REENTRANT=y
CONFIG_RT_USING_DFS_DEVFS=y
# CONFIG_RT_USING_DFS_NET is not set
# CONFIG_RT_USING_DFS_ROMFS is not set
# CONFIG_RT_USING_DFS_RAMFS is not set
# CONFIG_RT_USING_DFS_UFFS is not set
# CONFIG_RT_USING_DFS_JFFS2 is not set
# CONFIG_RT_USING_DFS_NFS is not set
#
# Device Drivers
#
CONFIG_RT_USING_DEVICE_IPC=y
CONFIG_RT_USING_SERIAL=y
# CONFIG_RT_USING_CAN is not set
# CONFIG_RT_USING_HWTIMER is not set
# CONFIG_RT_USING_CPUTIME is not set
CONFIG_RT_USING_I2C=y
# CONFIG_RT_USING_I2C_BITOPS is not set
CONFIG_RT_USING_PIN=y
# CONFIG_RT_USING_MTD_NOR is not set
# CONFIG_RT_USING_MTD_NAND is not set
# CONFIG_RT_USING_RTC is not set
# CONFIG_RT_USING_SDIO is not set
CONFIG_RT_USING_SPI=y
# CONFIG_RT_USING_SPI_MSD is not set
CONFIG_RT_USING_SFUD=y
# CONFIG_RT_SFUD_USING_SFDP is not set
CONFIG_RT_SFUD_USING_FLASH_INFO_TABLE=y
# CONFIG_RT_SFUD_DEBUG is not set
# CONFIG_RT_USING_W25QXX is not set
# CONFIG_RT_USING_GD is not set
# CONFIG_RT_USING_ENC28J60 is not set
# CONFIG_RT_USING_SPI_WIFI is not set
# CONFIG_RT_USING_WDT is not set
# CONFIG_RT_USING_WIFI is not set
#
# Using USB
#
# CONFIG_RT_USING_USB_HOST is not set
# CONFIG_RT_USING_USB_DEVICE is not set
#
# POSIX layer and C standard library
#
CONFIG_RT_USING_LIBC=y
# CONFIG_RT_USING_PTHREADS is not set
# CONFIG_RT_USING_POSIX is not set
# CONFIG_HAVE_SYS_SIGNALS is not set
#
# Network stack
#
#
# light weight TCP/IP stack
#
# CONFIG_RT_USING_LWIP is not set
# CONFIG_RT_USING_LWIP141 is not set
# CONFIG_RT_USING_LWIP202 is not set
#
# Modbus master and slave stack
#
# CONFIG_RT_USING_MODBUS is not set
#
# VBUS(Virtual Software BUS)
#
# CONFIG_RT_USING_VBUS is not set
#
# Utilities
#
# CONFIG_RT_USING_LOGTRACE is not set
# CONFIG_RT_USING_RYM is not set
#
# RT-Thread online packages
#
#
# system packages
#
#
# RT-Thread GUI Engine
#
# CONFIG_PKG_USING_GUIENGINE is not set
# CONFIG_PKG_USING_LWEXT4 is not set
# CONFIG_PKG_USING_PARTITION is not set
# CONFIG_PKG_USING_SQLITE is not set
# CONFIG_PKG_USING_RTI is not set
# CONFIG_PKG_USING_LITTLEVGL2RTT is not set
#
# IoT - internet of things
#
# CONFIG_PKG_USING_PAHOMQTT is not set
# CONFIG_PKG_USING_WEBCLIENT is not set
# CONFIG_PKG_USING_MONGOOSE is not set
# CONFIG_PKG_USING_WEBTERMINAL is not set
# CONFIG_PKG_USING_CJSON is not set
# CONFIG_PKG_USING_LJSON is not set
# CONFIG_PKG_USING_EZXML is not set
# CONFIG_PKG_USING_NANOPB is not set
# CONFIG_PKG_USING_GAGENT_CLOUD is not set
#
# Wi-Fi
#
#
# Marvell WiFi
#
# CONFIG_PKG_USING_WLANMARVELL is not set
#
# Wiced WiFi
#
# CONFIG_PKG_USING_WLAN_WICED is not set
# CONFIG_PKG_USING_COAP is not set
# CONFIG_PKG_USING_NOPOLL is not set
# CONFIG_PKG_USING_NETUTILS is not set
# CONFIG_PKG_USING_ONENET is not set
#
# security packages
#
# CONFIG_PKG_USING_MBEDTLS is not set
# CONFIG_PKG_USING_libsodium is not set
# CONFIG_PKG_USING_TINYCRYPT is not set
#
# language packages
#
# CONFIG_PKG_USING_JERRYSCRIPT is not set
# CONFIG_PKG_USING_MICROPYTHON is not set
#
# multimedia packages
#
# CONFIG_PKG_USING_OPENMV is not set
#
# tools packages
#
# CONFIG_PKG_USING_CMBACKTRACE is not set
# CONFIG_PKG_USING_EASYFLASH is not set
# CONFIG_PKG_USING_EASYLOGGER is not set
# CONFIG_PKG_USING_SYSTEMVIEW is not set
# CONFIG_PKG_USING_IPERF is not set
#
# miscellaneous packages
#
# CONFIG_PKG_USING_FASTLZ is not set
# CONFIG_PKG_USING_MINILZO is not set
# CONFIG_PKG_USING_QUICKLZ is not set
# CONFIG_PKG_USING_MULTIBUTTON is not set
# CONFIG_PKG_USING_SAMPLES is not set
# CONFIG_PKG_USING_CANFESTIVAL is not set
#
# example package: hello
#
# CONFIG_PKG_USING_HELLO is not set
CONFIG_RT_USING_USART0=y
CONFIG_RT_USING_USART1=y
# CONFIG_RT_USING_USART2 is not set
# CONFIG_RT_USING_UART3 is not set
# CONFIG_RT_USING_UART4 is not set
CONFIG_RT_USING_SPI0=y
CONFIG_RT_USING_SPI1=y
# CONFIG_RT_USING_SPI2 is not set
CONFIG_RT_USING_I2C0=y
# CONFIG_RT_USING_I2C1 is not set

72
bsp/gd32303e-eval/Kconfig Normal file
View File

@ -0,0 +1,72 @@
mainmenu "RT-Thread Configuration"
config $BSP_DIR
string
option env="BSP_ROOT"
default "."
config $RTT_DIR
string
option env="RTT_ROOT"
default "../.."
config $PKGS_DIR
string
option env="PKGS_ROOT"
default "packages"
source "$RTT_DIR/Kconfig"
source "$PKGS_DIR/Kconfig"
config RT_USING_USART0
bool "Using USART0"
select RT_USING_SERIAL
default y
config RT_USING_USART1
bool "Using USART1"
select RT_USING_SERIAL
default n
config RT_USING_USART2
bool "Using USART2"
select RT_USING_SERIAL
default n
config RT_USING_UART3
bool "Using UART3"
select RT_USING_SERIAL
default n
config RT_USING_UART4
bool "Using UART4"
select RT_USING_SERIAL
default n
config RT_USING_SPI0
bool "Using SPI0"
select RT_USING_SPI
default y
config RT_USING_SPI1
bool "Using SPI1"
select RT_USING_SPI
default n
config RT_USING_SPI2
bool "Using SPI2"
select RT_USING_SPI
default n
config RT_USING_I2C0
bool "Using I2C0"
select RT_USING_I2C
default n
config RT_USING_I2C1
bool "Using I2C1"
select RT_USING_I2C
default n

View File

@ -0,0 +1,329 @@
/*!
\file gd32f30x.h
\brief general definitions for GD32F30x
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_H
#define GD32F30X_H
#ifdef cplusplus
extern "C" {
#endif
/* define GD32F30x */
#if !defined (GD32F30X_HD) && !defined (GD32F30X_XD) && !defined (GD32F30X_CL)
/* #define GD32F30X_HD */
/* #define GD32F30X_XD */
/* #define GD32F30X_CL */
#endif /* define GD32F30x */
#if !defined (GD32F30X_HD) && !defined (GD32F30X_XD) && !defined (GD32F30X_CL)
#error "Please select the target GD32F30x device in gd32f30x.h file"
#endif /* undefine GD32F30x tip */
/* define value of high speed crystal oscillator (HXTAL) in Hz */
#if !defined HXTAL_VALUE
#ifdef GD32F30X_CL
#define HXTAL_VALUE ((uint32_t)25000000) /*!< value of the external oscillator in Hz */
#else
#define HXTAL_VALUE ((uint32_t)8000000) /* !< from 4M to 16M *!< value of the external oscillator in Hz*/
#endif /* HXTAL_VALUE */
#endif /* high speed crystal oscillator value */
/* define startup timeout value of high speed crystal oscillator (HXTAL) */
#if !defined (HXTAL_STARTUP_TIMEOUT)
#define HXTAL_STARTUP_TIMEOUT ((uint16_t)0x0800)
#endif /* high speed crystal oscillator startup timeout */
/* define value of internal 48MHz RC oscillator (IRC48M) in Hz */
#if !defined (IRC48M_VALUE)
#define IRC48M_VALUE ((uint32_t)48000000)
#endif /* internal 48MHz RC oscillator value */
/* define value of internal 8MHz RC oscillator (IRC8M) in Hz */
#if !defined (IRC8M_VALUE)
#define IRC8M_VALUE ((uint32_t)8000000)
#endif /* internal 8MHz RC oscillator value */
/* define startup timeout value of internal 8MHz RC oscillator (IRC8M) */
#if !defined (IRC8M_STARTUP_TIMEOUT)
#define IRC8M_STARTUP_TIMEOUT ((uint16_t)0x0500)
#endif /* internal 8MHz RC oscillator startup timeout */
/* define value of internal 40KHz RC oscillator(IRC40K) in Hz */
#if !defined (IRC40K_VALUE)
#define IRC40K_VALUE ((uint32_t)40000)
#endif /* internal 40KHz RC oscillator value */
/* define value of low speed crystal oscillator (LXTAL)in Hz */
#if !defined (LXTAL_VALUE)
#define LXTAL_VALUE ((uint32_t)32768)
#endif /* low speed crystal oscillator value */
/* GD32F30x firmware library version number V1.0 */
#define __GD32F30x_STDPERIPH_VERSION_MAIN (0x01) /*!< [31:24] main version */
#define __GD32F30x_STDPERIPH_VERSION_SUB1 (0x00) /*!< [23:16] sub1 version */
#define __GD32F30x_STDPERIPH_VERSION_SUB2 (0x00) /*!< [15:8] sub2 version */
#define __GD32F30x_STDPERIPH_VERSION_RC (0x00) /*!< [7:0] release candidate */
#define __GD32F30x_STDPERIPH_VERSION ((__GD32F30x_STDPERIPH_VERSION_MAIN << 24)\
|(__GD32F30x_STDPERIPH_VERSION_SUB1 << 16)\
|(__GD32F30x_STDPERIPH_VERSION_SUB2 << 8)\
|(__GD32F30x_STDPERIPH_VERSION_RC))
/* configuration of the Cortex-M4 processor and core peripherals */
#define __CM4_REV 0x0001 /*!< Core revision r0p1 */
#define __MPU_PRESENT 1 /*!< GD32F30x do not provide MPU */
#define __NVIC_PRIO_BITS 4 /*!< GD32F30x uses 4 bits for the priority levels */
#define __Vendor_SysTickConfig 0 /*!< set to 1 if different sysTick config is used */
/* define interrupt number */
typedef enum IRQn
{
/* Cortex-M4 processor exceptions numbers */
NonMaskableInt_IRQn = -14, /*!< 2 non maskable interrupt */
MemoryManagement_IRQn = -12, /*!< 4 Cortex-M4 memory management interrupt */
BusFault_IRQn = -11, /*!< 5 Cortex-M4 bus fault interrupt */
UsageFault_IRQn = -10, /*!< 6 Cortex-M4 usage fault interrupt */
SVCall_IRQn = -5, /*!< 11 Cortex-M4 SV call interrupt */
DebugMonitor_IRQn = -4, /*!< 12 Cortex-M4 debug monitor interrupt */
PendSV_IRQn = -2, /*!< 14 Cortex-M4 pend SV interrupt */
SysTick_IRQn = -1, /*!< 15 Cortex-M4 system tick interrupt */
/* interruput numbers */
WWDGT_IRQn = 0, /*!< window watchDog timer interrupt */
LVD_IRQn = 1, /*!< LVD through EXTI line detect interrupt */
TAMPER_IRQn = 2, /*!< tamper through EXTI line detect */
RTC_IRQn = 3, /*!< RTC through EXTI line interrupt */
FMC_IRQn = 4, /*!< FMC interrupt */
RCU_CTC_IRQn = 5, /*!< RCU and CTC interrupt */
EXTI0_IRQn = 6, /*!< EXTI line 0 interrupts */
EXTI1_IRQn = 7, /*!< EXTI line 1 interrupts */
EXTI2_IRQn = 8, /*!< EXTI line 2 interrupts */
EXTI3_IRQn = 9, /*!< EXTI line 3 interrupts */
EXTI4_IRQn = 10, /*!< EXTI line 4 interrupts */
DMA0_Channel0_IRQn = 11, /*!< DMA0 channel0 interrupt */
DMA0_Channel1_IRQn = 12, /*!< DMA0 channel1 interrupt */
DMA0_Channel2_IRQn = 13, /*!< DMA0 channel2 interrupt */
DMA0_Channel3_IRQn = 14, /*!< DMA0 channel3 interrupt */
DMA0_Channel4_IRQn = 15, /*!< DMA0 channel4 interrupt */
DMA0_Channel5_IRQn = 16, /*!< DMA0 channel5 interrupt */
DMA0_Channel6_IRQn = 17, /*!< DMA0 channel6 interrupt */
ADC0_1_IRQn = 18, /*!< ADC0 and ADC1 interrupt */
#ifdef GD32F30X_HD
USBD_HP_CAN0_TX_IRQn = 19, /*!< CAN0 TX interrupts */
USBD_LP_CAN0_RX0_IRQn = 20, /*!< CAN0 RX0 interrupts */
CAN0_RX1_IRQn = 21, /*!< CAN0 RX1 interrupts */
CAN0_EWMC_IRQn = 22, /*!< CAN0 EWMC interrupts */
EXTI5_9_IRQn = 23, /*!< EXTI[9:5] interrupts */
TIMER0_BRK_IRQn = 24, /*!< TIMER0 break interrupts */
TIMER0_UP_IRQn = 25, /*!< TIMER0 update interrupts */
TIMER0_TRG_CMT_IRQn = 26, /*!< TIMER0 trigger and commutation interrupts */
TIMER0_Channel_IRQn = 27, /*!< TIMER0 channel capture compare interrupts */
TIMER1_IRQn = 28, /*!< TIMER1 interrupt */
TIMER2_IRQn = 29, /*!< TIMER2 interrupt */
TIMER3_IRQn = 30, /*!< TIMER3 interrupts */
I2C0_EV_IRQn = 31, /*!< I2C0 event interrupt */
I2C0_ER_IRQn = 32, /*!< I2C0 error interrupt */
I2C1_EV_IRQn = 33, /*!< I2C1 event interrupt */
I2C1_ER_IRQn = 34, /*!< I2C1 error interrupt */
SPI0_IRQn = 35, /*!< SPI0 interrupt */
SPI1_IRQn = 36, /*!< SPI1 interrupt */
USART0_IRQn = 37, /*!< USART0 interrupt */
USART1_IRQn = 38, /*!< USART1 interrupt */
USART2_IRQn = 39, /*!< USART2 interrupt */
EXTI10_15_IRQn = 40, /*!< EXTI[15:10] interrupts */
RTC_Alarm_IRQn = 41, /*!< RTC alarm interrupt */
USBD_WKUP_IRQn = 42, /*!< USBD Wakeup interrupt */
TIMER7_BRK_IRQn = 43, /*!< TIMER7 break interrupts */
TIMER7_UP_IRQn = 44, /*!< TIMER7 update interrupts */
TIMER7_TRG_CMT_IRQn = 45, /*!< TIMER7 trigger and commutation interrupts */
TIMER7_Channel_IRQn = 46, /*!< TIMER7 channel capture compare interrupts */
ADC2_IRQn = 47, /*!< ADC2 global interrupt */
EXMC_IRQn = 48, /*!< EXMC global interrupt */
SDIO_IRQn = 49, /*!< SDIO global interrupt */
TIMER4_IRQn = 50, /*!< TIMER4 global interrupt */
SPI2_IRQn = 51, /*!< SPI2 global interrupt */
UART3_IRQn = 52, /*!< UART3 global interrupt */
UART4_IRQn = 53, /*!< UART4 global interrupt */
TIMER5_IRQn = 54, /*!< TIMER5 global interrupt */
TIMER6_IRQn = 55, /*!< TIMER6 global interrupt */
DMA1_Channel0_IRQn = 56, /*!< DMA1 channel0 global interrupt */
DMA1_Channel1_IRQn = 57, /*!< DMA1 channel1 global interrupt */
DMA1_Channel2_IRQn = 58, /*!< DMA1 channel2 global interrupt */
DMA1_Channel3_Channel4_IRQn = 59, /*!< DMA1 channel3 and channel4 global Interrupt */
#endif /* GD32F30X_HD */
#ifdef GD32F30X_XD
USBD_HP_CAN0_TX_IRQn = 19, /*!< CAN0 TX interrupts */
USBD_LP_CAN0_RX0_IRQn = 20, /*!< CAN0 RX0 interrupts */
CAN0_RX1_IRQn = 21, /*!< CAN0 RX1 interrupts */
CAN0_EWMC_IRQn = 22, /*!< CAN0 EWMC interrupts */
EXTI5_9_IRQn = 23, /*!< EXTI[9:5] interrupts */
TIMER0_BRK_TIMER8_IRQn = 24, /*!< TIMER0 break and TIMER8 interrupts */
TIMER0_UP_TIMER9_IRQn = 25, /*!< TIMER0 update and TIMER9 interrupts */
TIMER0_TRG_CMT_TIMER10_IRQn = 26, /*!< TIMER0 trigger and commutation and TIMER10 interrupts */
TIMER0_Channel_IRQn = 27, /*!< TIMER0 channel capture compare interrupts */
TIMER1_IRQn = 28, /*!< TIMER1 interrupt */
TIMER2_IRQn = 29, /*!< TIMER2 interrupt */
TIMER3_IRQn = 30, /*!< TIMER3 interrupts */
I2C0_EV_IRQn = 31, /*!< I2C0 event interrupt */
I2C0_ER_IRQn = 32, /*!< I2C0 error interrupt */
I2C1_EV_IRQn = 33, /*!< I2C1 event interrupt */
I2C1_ER_IRQn = 34, /*!< I2C1 error interrupt */
SPI0_IRQn = 35, /*!< SPI0 interrupt */
SPI1_IRQn = 36, /*!< SPI1 interrupt */
USART0_IRQn = 37, /*!< USART0 interrupt */
USART1_IRQn = 38, /*!< USART1 interrupt */
USART2_IRQn = 39, /*!< USART2 interrupt */
EXTI10_15_IRQn = 40, /*!< EXTI[15:10] interrupts */
RTC_Alarm_IRQn = 41, /*!< RTC alarm interrupt */
USBD_WKUP_IRQn = 42, /*!< USBD wakeup interrupt */
TIMER7_BRK_TIMER11_IRQn = 43, /*!< TIMER7 break and TIMER11 interrupts */
TIMER7_UP_TIMER12_IRQn = 44, /*!< TIMER7 update and TIMER12 interrupts */
TIMER7_TRG_CMT_TIMER13_IRQn = 45, /*!< TIMER7 trigger and commutation and TIMER13 interrupts */
TIMER7_Channel_IRQn = 46, /*!< TIMER7 channel capture compare interrupts */
ADC2_IRQn = 47, /*!< ADC2 global interrupt */
EXMC_IRQn = 48, /*!< EXMC global interrupt */
SDIO_IRQn = 49, /*!< SDIO global interrupt */
TIMER4_IRQn = 50, /*!< TIMER4 global interrupt */
SPI2_IRQn = 51, /*!< SPI2 global interrupt */
UART3_IRQn = 52, /*!< UART3 global interrupt */
UART4_IRQn = 53, /*!< UART4 global interrupt */
TIMER5_IRQn = 54, /*!< TIMER5 global interrupt */
TIMER6_IRQn = 55, /*!< TIMER6 global interrupt */
DMA1_Channel0_IRQn = 56, /*!< DMA1 channel0 global interrupt */
DMA1_Channel1_IRQn = 57, /*!< DMA1 channel1 global interrupt */
DMA1_Channel2_IRQn = 58, /*!< DMA1 channel2 global interrupt */
DMA1_Channel3_Channel4_IRQn = 59, /*!< DMA1 channel3 and channel4 global interrupt */
#endif /* GD32F30X_XD */
#ifdef GD32F30X_CL
CAN0_TX_IRQn = 19, /*!< CAN0 TX interrupts */
CAN0_RX0_IRQn = 20, /*!< CAN0 RX0 interrupts */
CAN0_RX1_IRQn = 21, /*!< CAN0 RX1 interrupts */
CAN0_EWMC_IRQn = 22, /*!< CAN0 EWMC interrupts */
EXTI5_9_IRQn = 23, /*!< EXTI[9:5] interrupts */
TIMER0_BRK_TIMER8_IRQn = 24, /*!< TIMER0 break and TIMER8 interrupts */
TIMER0_UP_TIMER9_IRQn = 25, /*!< TIMER0 update and TIMER9 interrupts */
TIMER0_TRG_CMT_TIMER10_IRQn = 26, /*!< TIMER0 trigger and commutation and TIMER10 interrupts */
TIMER0_Channel_IRQn = 27, /*!< TIMER0 channel capture compare interrupts */
TIMER1_IRQn = 28, /*!< TIMER1 interrupt */
TIMER2_IRQn = 29, /*!< TIMER2 interrupt */
TIMER3_IRQn = 30, /*!< TIMER3 interrupts */
I2C0_EV_IRQn = 31, /*!< I2C0 event interrupt */
I2C0_ER_IRQn = 32, /*!< I2C0 error interrupt */
I2C1_EV_IRQn = 33, /*!< I2C1 event interrupt */
I2C1_ER_IRQn = 34, /*!< I2C1 error interrupt */
SPI0_IRQn = 35, /*!< SPI0 interrupt */
SPI1_IRQn = 36, /*!< SPI1 interrupt */
USART0_IRQn = 37, /*!< USART0 interrupt */
USART1_IRQn = 38, /*!< USART1 interrupt */
USART2_IRQn = 39, /*!< USART2 interrupt */
EXTI10_15_IRQn = 40, /*!< EXTI[15:10] interrupts */
RTC_ALARM_IRQn = 41, /*!< RTC alarm interrupt */
USBFS_WKUP_IRQn = 42, /*!< USBFS wakeup interrupt */
TIMER7_BRK_TIMER11_IRQn = 43, /*!< TIMER7 break and TIMER11 interrupts */
TIMER7_UP_TIMER12_IRQn = 44, /*!< TIMER7 update and TIMER12 interrupts */
TIMER7_TRG_CMT_TIMER13_IRQn = 45, /*!< TIMER7 trigger and commutation and TIMER13 interrupts */
TIMER7_Channel_IRQn = 46, /*!< TIMER7 channel capture compare interrupts */
EXMC_IRQn = 48, /*!< EXMC global interrupt */
TIMER4_IRQn = 50, /*!< TIMER4 global interrupt */
SPI2_IRQn = 51, /*!< SPI2 global interrupt */
UART3_IRQn = 52, /*!< UART3 global interrupt */
UART4_IRQn = 53, /*!< UART4 global interrupt */
TIMER5_IRQn = 54, /*!< TIMER5 global interrupt */
TIMER6_IRQn = 55, /*!< TIMER6 global interrupt */
DMA1_Channel0_IRQn = 56, /*!< DMA1 channel0 global interrupt */
DMA1_Channel1_IRQn = 57, /*!< DMA1 channel1 global interrupt */
DMA1_Channel2_IRQn = 58, /*!< DMA1 channel2 global interrupt */
DMA1_Channel3_IRQn = 59, /*!< DMA1 channel3 global interrupt */
DMA1_Channel4_IRQn = 60, /*!< DMA1 channel3 global interrupt */
ENET_IRQn = 61, /*!< ENET global interrupt */
ENET_WKUP_IRQn = 62, /*!< ENET Wakeup interrupt */
CAN1_TX_IRQn = 63, /*!< CAN1 TX interrupt */
CAN1_RX0_IRQn = 64, /*!< CAN1 RX0 interrupt */
CAN1_RX1_IRQn = 65, /*!< CAN1 RX1 interrupt */
CAN1_EWMC_IRQn = 66, /*!< CAN1 EWMC interrupt */
USBFS_IRQn = 67, /*!< USBFS global interrupt */
#endif /* GD32F30X_CL */
} IRQn_Type;
/* includes */
#include "core_cm4.h"
#include "system_gd32f30x.h"
#include <stdint.h>
/* enum definitions */
typedef enum {DISABLE = 0, ENABLE = !DISABLE} EventStatus, ControlStatus;
typedef enum {FALSE = 0, TRUE = !FALSE} bool;
typedef enum {RESET = 0, SET = !RESET} FlagStatus;
typedef enum {ERROR = 0, SUCCESS = !ERROR} ErrStatus;
/* bit operations */
#define REG32(addr) (*(volatile uint32_t *)(uint32_t)(addr))
#define REG16(addr) (*(volatile uint16_t *)(uint32_t)(addr))
#define REG8(addr) (*(volatile uint8_t *)(uint32_t)(addr))
#define BIT(x) ((uint32_t)((uint32_t)0x01U<<(x)))
#define BITS(start, end) ((0xFFFFFFFFUL << (start)) & (0xFFFFFFFFUL >> (31U - (uint32_t)(end))))
#define GET_BITS(regval, start, end) (((regval) & BITS((start),(end))) >> (start))
/* main flash and SRAM memory map */
#define FLASH_BASE ((uint32_t)0x08000000U) /*!< main FLASH base address */
#define SRAM_BASE ((uint32_t)0x20000000U) /*!< SRAM0 base address */
#define OB_BASE ((uint32_t)0x1FFFF800U) /*!< OB base address */
#define DBG_BASE ((uint32_t)0xE0042000U) /*!< DBG base address */
#define EXMC_BASE ((uint32_t)0xA0000000U) /*!< EXMC register base address */
/* peripheral memory map */
#define APB1_BUS_BASE ((uint32_t)0x40000000U) /*!< apb1 base address */
#define APB2_BUS_BASE ((uint32_t)0x40010000U) /*!< apb2 base address */
#define AHB1_BUS_BASE ((uint32_t)0x40018000U) /*!< ahb1 base address */
#define AHB3_BUS_BASE ((uint32_t)0x60000000U) /*!< ahb3 base address */
/* advanced peripheral bus 1 memory map */
#define TIMER_BASE (APB1_BUS_BASE + 0x00000000U) /*!< TIMER base address */
#define RTC_BASE (APB1_BUS_BASE + 0x00002800U) /*!< RTC base address */
#define WWDGT_BASE (APB1_BUS_BASE + 0x00002C00U) /*!< WWDGT base address */
#define FWDGT_BASE (APB1_BUS_BASE + 0x00003000U) /*!< FWDGT base address */
#define SPI_BASE (APB1_BUS_BASE + 0x00003800U) /*!< SPI base address */
#define USART_BASE (APB1_BUS_BASE + 0x00004400U) /*!< USART base address */
#define I2C_BASE (APB1_BUS_BASE + 0x00005400U) /*!< I2C base address */
#define USBD_BASE (APB1_BUS_BASE + 0x00005C00U) /*!< USBD base address */
#define CAN_BASE (APB1_BUS_BASE + 0x00006400U) /*!< CAN base address */
#define BKP_BASE (APB1_BUS_BASE + 0x00006C00U) /*!< BKP base address */
#define PMU_BASE (APB1_BUS_BASE + 0x00007000U) /*!< PMU base address */
#define DAC_BASE (APB1_BUS_BASE + 0x00007400U) /*!< DAC base address */
#define CTC_BASE (APB1_BUS_BASE + 0x0000C800U) /*!< CTC base address */
/* advanced peripheral bus 2 memory map */
#define AFIO_BASE (APB2_BUS_BASE + 0x00000000U) /*!< AFIO base address */
#define EXTI_BASE (APB2_BUS_BASE + 0x00000400U) /*!< EXTI base address */
#define GPIO_BASE (APB2_BUS_BASE + 0x00000800U) /*!< GPIO base address */
#define ADC_BASE (APB2_BUS_BASE + 0x00002400U) /*!< ADC base address */
/* advanced high performance bus 1 memory map */
#define SDIO_BASE (AHB1_BUS_BASE + 0x00000000U) /*!< SDIO base address */
#define DMA_BASE (AHB1_BUS_BASE + 0x00008000U) /*!< DMA base address */
#define RCU_BASE (AHB1_BUS_BASE + 0x00009000U) /*!< RCU base address */
#define FMC_BASE (AHB1_BUS_BASE + 0x0000A000U) /*!< FMC base address */
#define CRC_BASE (AHB1_BUS_BASE + 0x0000B000U) /*!< CRC base address */
#define ENET_BASE (AHB1_BUS_BASE + 0x00010000U) /*!< ENET base address */
#define USBFS_BASE (AHB1_BUS_BASE + 0x0FFE8000U) /*!< USBFS base address */
/* define marco USE_STDPERIPH_DRIVER */
#if !defined USE_STDPERIPH_DRIVER
#define USE_STDPERIPH_DRIVER
#endif
#ifdef USE_STDPERIPH_DRIVER
#include "gd32f30x_libopt.h"
#endif /* USE_STDPERIPH_DRIVER */
#ifdef cplusplus
}
#endif
#endif

View File

@ -0,0 +1,58 @@
/*!
\file system_gd32f30x.h
\brief CMSIS Cortex-M4 Device Peripheral Access Layer Header File for
GD32F30x Device Series
*/
/* Copyright (c) 2012 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
/* This file refers the CMSIS standard, some adjustments are made according to GigaDevice chips */
#ifndef SYSTEM_GD32F30X_H
#define SYSTEM_GD32F30X_H
#ifdef __cplusplus
extern "C" {
#endif
#include <stdint.h>
/* system clock frequency (core clock) */
extern uint32_t SystemCoreClock;
/* function declarations */
/* initialize the system and update the SystemCoreClock variable */
extern void SystemInit (void);
/* update the SystemCoreClock with current core clock retrieved from cpu registers */
extern void SystemCoreClockUpdate (void);
#ifdef __cplusplus
}
#endif
#endif /* SYSTEM_GD32F30X_H */

View File

@ -0,0 +1,359 @@
;/*!
; \file startup_gd32f30x_cl.s
; \brief start up file
;*/
;/*
; Copyright (C) 2017 GigaDevice
; 2017-02-10, V1.0.1, firmware for GD32F30x
;*/
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000400
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; /* reset Vector Mapped to at Address 0 */
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; /* external interrupts handler */
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_IRQHandler ; 18:Tamper through EXTI Line detect
DCD RTC_IRQHandler ; 19:RTC through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC0_1_IRQHandler ; 34:ADC0 and ADC1
DCD CAN0_TX_IRQHandler ; 35:CAN0 TX
DCD CAN0_RX0_IRQHandler ; 36:CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commutation and TIMER10
DCD TIMER0_Channel_IRQHandler ; 43:TIMER0 Channel Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBFS_WKUP_IRQHandler ; 58:USBFS Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commutation and TIMER13
DCD TIMER7_Channel_IRQHandler ; 62:TIMER7 Channel Capture Compare
DCD 0 ; Reserved
DCD EXMC_IRQHandler ; 64:EXMC
DCD 0 ; Reserved
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_IRQHandler ; 70:TIMER5
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_IRQHandler ; 75:DMA1 Channel3
DCD DMA1_Channel4_IRQHandler ; 76:DMA1 Channel4
DCD ENET_IRQHandler ; 77:Ethernet
DCD ENET_WKUP_IRQHandler ; 78:Ethernet Wakeup through EXTI Line
DCD CAN1_TX_IRQHandler ; 79:CAN1 TX
DCD CAN1_RX0_IRQHandler ; 80:CAN1 RX0
DCD CAN1_RX1_IRQHandler ; 81:CAN1 RX1
DCD CAN1_EWMC_IRQHandler ; 82:CAN1 EWMC
DCD USBFS_IRQHandler ; 83:USBFS
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
;/* reset Handler */
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
;/* dummy Exception Handlers */
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler\
PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler\
PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
; /* external interrupts handler */
EXPORT WWDGT_IRQHandler [WEAK]
EXPORT LVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FMC_IRQHandler [WEAK]
EXPORT RCU_CTC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA0_Channel0_IRQHandler [WEAK]
EXPORT DMA0_Channel1_IRQHandler [WEAK]
EXPORT DMA0_Channel2_IRQHandler [WEAK]
EXPORT DMA0_Channel3_IRQHandler [WEAK]
EXPORT DMA0_Channel4_IRQHandler [WEAK]
EXPORT DMA0_Channel5_IRQHandler [WEAK]
EXPORT DMA0_Channel6_IRQHandler [WEAK]
EXPORT ADC0_1_IRQHandler [WEAK]
EXPORT CAN0_TX_IRQHandler [WEAK]
EXPORT CAN0_RX0_IRQHandler [WEAK]
EXPORT CAN0_RX1_IRQHandler [WEAK]
EXPORT CAN0_EWMC_IRQHandler [WEAK]
EXPORT EXTI5_9_IRQHandler [WEAK]
EXPORT TIMER0_BRK_TIMER8_IRQHandler [WEAK]
EXPORT TIMER0_UP_TIMER9_IRQHandler [WEAK]
EXPORT TIMER0_TRG_CMT_TIMER10_IRQHandler [WEAK]
EXPORT TIMER0_Channel_IRQHandler [WEAK]
EXPORT TIMER1_IRQHandler [WEAK]
EXPORT TIMER2_IRQHandler [WEAK]
EXPORT TIMER3_IRQHandler [WEAK]
EXPORT I2C0_EV_IRQHandler [WEAK]
EXPORT I2C0_ER_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT SPI0_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT USART0_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT EXTI10_15_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT USBFS_WKUP_IRQHandler [WEAK]
EXPORT TIMER7_BRK_TIMER11_IRQHandler [WEAK]
EXPORT TIMER7_UP_TIMER12_IRQHandler [WEAK]
EXPORT TIMER7_TRG_CMT_TIMER13_IRQHandler [WEAK]
EXPORT TIMER7_Channel_IRQHandler [WEAK]
EXPORT EXMC_IRQHandler [WEAK]
EXPORT TIMER4_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT UART3_IRQHandler [WEAK]
EXPORT UART4_IRQHandler [WEAK]
EXPORT TIMER5_IRQHandler [WEAK]
EXPORT TIMER6_IRQHandler [WEAK]
EXPORT DMA1_Channel0_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT ENET_IRQHandler [WEAK]
EXPORT ENET_WKUP_IRQHandler [WEAK]
EXPORT CAN1_TX_IRQHandler [WEAK]
EXPORT CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_EWMC_IRQHandler [WEAK]
EXPORT USBFS_IRQHandler [WEAK]
;/* external interrupts handler */
WWDGT_IRQHandler
LVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FMC_IRQHandler
RCU_CTC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA0_Channel0_IRQHandler
DMA0_Channel1_IRQHandler
DMA0_Channel2_IRQHandler
DMA0_Channel3_IRQHandler
DMA0_Channel4_IRQHandler
DMA0_Channel5_IRQHandler
DMA0_Channel6_IRQHandler
ADC0_1_IRQHandler
CAN0_TX_IRQHandler
CAN0_RX0_IRQHandler
CAN0_RX1_IRQHandler
CAN0_EWMC_IRQHandler
EXTI5_9_IRQHandler
TIMER0_BRK_TIMER8_IRQHandler
TIMER0_UP_TIMER9_IRQHandler
TIMER0_TRG_CMT_TIMER10_IRQHandler
TIMER0_Channel_IRQHandler
TIMER1_IRQHandler
TIMER2_IRQHandler
TIMER3_IRQHandler
I2C0_EV_IRQHandler
I2C0_ER_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
SPI0_IRQHandler
SPI1_IRQHandler
USART0_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
EXTI10_15_IRQHandler
RTC_Alarm_IRQHandler
USBFS_WKUP_IRQHandler
TIMER7_BRK_TIMER11_IRQHandler
TIMER7_UP_TIMER12_IRQHandler
TIMER7_TRG_CMT_TIMER13_IRQHandler
TIMER7_Channel_IRQHandler
EXMC_IRQHandler
TIMER4_IRQHandler
SPI2_IRQHandler
UART3_IRQHandler
UART4_IRQHandler
TIMER5_IRQHandler
TIMER6_IRQHandler
DMA1_Channel0_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
ENET_IRQHandler
ENET_WKUP_IRQHandler
CAN1_TX_IRQHandler
CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_EWMC_IRQHandler
USBFS_IRQHandler
B .
ENDP
ALIGN
; user Initial Stack & Heap
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap PROC
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ENDP
ALIGN
ENDIF
END

View File

@ -0,0 +1,339 @@
;/*!
; \file startup_gd32f30x_hd.s
; \brief start up file
;*/
;/*
; Copyright (C) 2017 GigaDevice
; 2017-02-10, V1.0.1, firmware for GD32F30x
;*/
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000400
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; /* reset Vector Mapped to at Address 0 */
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; /* external interrupts handler */
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_IRQHandler ; 18:Tamper through EXTI Line detect
DCD RTC_IRQHandler ; 19:RTC through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC0_1_IRQHandler ; 34:ADC0 and ADC1
DCD USBD_HP_CAN0_TX_IRQHandler ; 35:USBD HP and CAN0 TX
DCD USBD_LP_CAN0_RX0_IRQHandler ; 36:USBD LP and CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_IRQHandler ; 40:TIMER0 Break
DCD TIMER0_UP_IRQHandler ; 41:TIMER0 Update
DCD TIMER0_TRG_CMT_IRQHandler ; 42:TIMER0 Trigger and Commutation
DCD TIMER0_Channel_IRQHandler ; 43:TIMER0 Channel Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBD_WKUP_IRQHandler ; 58:USBD Wakeup
DCD TIMER7_BRK_IRQHandler ; 59:TIMER7 Break
DCD TIMER7_UP_IRQHandler ; 60:TIMER7 Update
DCD TIMER7_TRG_CMT_IRQHandler ; 61:TIMER7 Trigger and Commutation
DCD TIMER7_Channel_IRQHandler ; 62:TIMER7 Channel Capture Compare
DCD ADC2_IRQHandler ; 63:ADC2
DCD EXMC_IRQHandler ; 64:EXMC
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_IRQHandler ; 70:TIMER5
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_4_IRQHandler ; 75:DMA1 Channel3 and Channel4
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
;/* reset Handler */
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
;/* dummy Exception Handlers */
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler\
PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler\
PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
; /* external interrupts handler */
EXPORT WWDGT_IRQHandler [WEAK]
EXPORT LVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FMC_IRQHandler [WEAK]
EXPORT RCU_CTC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA0_Channel0_IRQHandler [WEAK]
EXPORT DMA0_Channel1_IRQHandler [WEAK]
EXPORT DMA0_Channel2_IRQHandler [WEAK]
EXPORT DMA0_Channel3_IRQHandler [WEAK]
EXPORT DMA0_Channel4_IRQHandler [WEAK]
EXPORT DMA0_Channel5_IRQHandler [WEAK]
EXPORT DMA0_Channel6_IRQHandler [WEAK]
EXPORT ADC0_1_IRQHandler [WEAK]
EXPORT USBD_HP_CAN0_TX_IRQHandler [WEAK]
EXPORT USBD_LP_CAN0_RX0_IRQHandler [WEAK]
EXPORT CAN0_RX1_IRQHandler [WEAK]
EXPORT CAN0_EWMC_IRQHandler [WEAK]
EXPORT EXTI5_9_IRQHandler [WEAK]
EXPORT TIMER0_BRK_IRQHandler [WEAK]
EXPORT TIMER0_UP_IRQHandler [WEAK]
EXPORT TIMER0_TRG_CMT_IRQHandler [WEAK]
EXPORT TIMER0_Channel_IRQHandler [WEAK]
EXPORT TIMER1_IRQHandler [WEAK]
EXPORT TIMER2_IRQHandler [WEAK]
EXPORT TIMER3_IRQHandler [WEAK]
EXPORT I2C0_EV_IRQHandler [WEAK]
EXPORT I2C0_ER_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT SPI0_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT USART0_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT EXTI10_15_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT USBD_WKUP_IRQHandler [WEAK]
EXPORT TIMER7_BRK_IRQHandler [WEAK]
EXPORT TIMER7_UP_IRQHandler [WEAK]
EXPORT TIMER7_TRG_CMT_IRQHandler [WEAK]
EXPORT TIMER7_Channel_IRQHandler [WEAK]
EXPORT ADC2_IRQHandler [WEAK]
EXPORT EXMC_IRQHandler [WEAK]
EXPORT SDIO_IRQHandler [WEAK]
EXPORT TIMER4_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT UART3_IRQHandler [WEAK]
EXPORT UART4_IRQHandler [WEAK]
EXPORT TIMER5_IRQHandler [WEAK]
EXPORT TIMER6_IRQHandler [WEAK]
EXPORT DMA1_Channel0_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_4_IRQHandler [WEAK]
;/* external interrupts handler */
WWDGT_IRQHandler
LVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FMC_IRQHandler
RCU_CTC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA0_Channel0_IRQHandler
DMA0_Channel1_IRQHandler
DMA0_Channel2_IRQHandler
DMA0_Channel3_IRQHandler
DMA0_Channel4_IRQHandler
DMA0_Channel5_IRQHandler
DMA0_Channel6_IRQHandler
ADC0_1_IRQHandler
USBD_HP_CAN0_TX_IRQHandler
USBD_LP_CAN0_RX0_IRQHandler
CAN0_RX1_IRQHandler
CAN0_EWMC_IRQHandler
EXTI5_9_IRQHandler
TIMER0_BRK_IRQHandler
TIMER0_UP_IRQHandler
TIMER0_TRG_CMT_IRQHandler
TIMER0_Channel_IRQHandler
TIMER1_IRQHandler
TIMER2_IRQHandler
TIMER3_IRQHandler
I2C0_EV_IRQHandler
I2C0_ER_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
SPI0_IRQHandler
SPI1_IRQHandler
USART0_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
EXTI10_15_IRQHandler
RTC_Alarm_IRQHandler
USBD_WKUP_IRQHandler
TIMER7_BRK_IRQHandler
TIMER7_UP_IRQHandler
TIMER7_TRG_CMT_IRQHandler
TIMER7_Channel_IRQHandler
ADC2_IRQHandler
EXMC_IRQHandler
SDIO_IRQHandler
TIMER4_IRQHandler
SPI2_IRQHandler
UART3_IRQHandler
UART4_IRQHandler
TIMER5_IRQHandler
TIMER6_IRQHandler
DMA1_Channel0_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_4_IRQHandler
B .
ENDP
ALIGN
; user Initial Stack & Heap
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap PROC
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ENDP
ALIGN
ENDIF
END

View File

@ -0,0 +1,339 @@
;/*!
; \file startup_gd32f30x_xd.s
; \brief start up file
;*/
;/*
; Copyright (C) 2017 GigaDevice
; 2017-02-10, V1.0.1, firmware for GD32F30x
;*/
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000400
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; /* reset Vector Mapped to at Address 0 */
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; /* external interrupts handler */
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_IRQHandler ; 18:Tamper through EXTI Line detect
DCD RTC_IRQHandler ; 19:RTC through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC0_1_IRQHandler ; 34:ADC0 and ADC1
DCD USBD_HP_CAN0_TX_IRQHandler ; 35:USBD HP and CAN0 TX
DCD USBD_LP_CAN0_RX0_IRQHandler ; 36:USBD LP and CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commutation and TIMER10
DCD TIMER0_Channel_IRQHandler ; 43:TIMER0 Channel Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBD_WKUP_IRQHandler ; 58:USBD Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commutation and TIMER13
DCD TIMER7_Channel_IRQHandler ; 62:TIMER7 Channel Capture Compare
DCD ADC2_IRQHandler ; 63:ADC2
DCD EXMC_IRQHandler ; 64:EXMC
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_IRQHandler ; 70:TIMER5
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_4_IRQHandler ; 75:DMA1 Channel3 and Channel4
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
;/* reset Handler */
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT SystemInit
IMPORT __main
LDR R0, =SystemInit
BLX R0
LDR R0, =__main
BX R0
ENDP
;/* dummy Exception Handlers */
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler\
PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler\
PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
; /* external interrupts handler */
EXPORT WWDGT_IRQHandler [WEAK]
EXPORT LVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FMC_IRQHandler [WEAK]
EXPORT RCU_CTC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA0_Channel0_IRQHandler [WEAK]
EXPORT DMA0_Channel1_IRQHandler [WEAK]
EXPORT DMA0_Channel2_IRQHandler [WEAK]
EXPORT DMA0_Channel3_IRQHandler [WEAK]
EXPORT DMA0_Channel4_IRQHandler [WEAK]
EXPORT DMA0_Channel5_IRQHandler [WEAK]
EXPORT DMA0_Channel6_IRQHandler [WEAK]
EXPORT ADC0_1_IRQHandler [WEAK]
EXPORT USBD_HP_CAN0_TX_IRQHandler [WEAK]
EXPORT USBD_LP_CAN0_RX0_IRQHandler [WEAK]
EXPORT CAN0_RX1_IRQHandler [WEAK]
EXPORT CAN0_EWMC_IRQHandler [WEAK]
EXPORT EXTI5_9_IRQHandler [WEAK]
EXPORT TIMER0_BRK_TIMER8_IRQHandler [WEAK]
EXPORT TIMER0_UP_TIMER9_IRQHandler [WEAK]
EXPORT TIMER0_TRG_CMT_TIMER10_IRQHandler [WEAK]
EXPORT TIMER0_Channel_IRQHandler [WEAK]
EXPORT TIMER1_IRQHandler [WEAK]
EXPORT TIMER2_IRQHandler [WEAK]
EXPORT TIMER3_IRQHandler [WEAK]
EXPORT I2C0_EV_IRQHandler [WEAK]
EXPORT I2C0_ER_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT SPI0_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT USART0_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT EXTI10_15_IRQHandler [WEAK]
EXPORT RTC_Alarm_IRQHandler [WEAK]
EXPORT USBD_WKUP_IRQHandler [WEAK]
EXPORT TIMER7_BRK_TIMER11_IRQHandler [WEAK]
EXPORT TIMER7_UP_TIMER12_IRQHandler [WEAK]
EXPORT TIMER7_TRG_CMT_TIMER13_IRQHandler [WEAK]
EXPORT TIMER7_Channel_IRQHandler [WEAK]
EXPORT ADC2_IRQHandler [WEAK]
EXPORT EXMC_IRQHandler [WEAK]
EXPORT SDIO_IRQHandler [WEAK]
EXPORT TIMER4_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT UART3_IRQHandler [WEAK]
EXPORT UART4_IRQHandler [WEAK]
EXPORT TIMER5_IRQHandler [WEAK]
EXPORT TIMER6_IRQHandler [WEAK]
EXPORT DMA1_Channel0_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_4_IRQHandler [WEAK]
;/* external interrupts handler */
WWDGT_IRQHandler
LVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FMC_IRQHandler
RCU_CTC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA0_Channel0_IRQHandler
DMA0_Channel1_IRQHandler
DMA0_Channel2_IRQHandler
DMA0_Channel3_IRQHandler
DMA0_Channel4_IRQHandler
DMA0_Channel5_IRQHandler
DMA0_Channel6_IRQHandler
ADC0_1_IRQHandler
USBD_HP_CAN0_TX_IRQHandler
USBD_LP_CAN0_RX0_IRQHandler
CAN0_RX1_IRQHandler
CAN0_EWMC_IRQHandler
EXTI5_9_IRQHandler
TIMER0_BRK_TIMER8_IRQHandler
TIMER0_UP_TIMER9_IRQHandler
TIMER0_TRG_CMT_TIMER10_IRQHandler
TIMER0_Channel_IRQHandler
TIMER1_IRQHandler
TIMER2_IRQHandler
TIMER3_IRQHandler
I2C0_EV_IRQHandler
I2C0_ER_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
SPI0_IRQHandler
SPI1_IRQHandler
USART0_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
EXTI10_15_IRQHandler
RTC_Alarm_IRQHandler
USBD_WKUP_IRQHandler
TIMER7_BRK_TIMER11_IRQHandler
TIMER7_UP_TIMER12_IRQHandler
TIMER7_TRG_CMT_TIMER13_IRQHandler
TIMER7_Channel_IRQHandler
ADC2_IRQHandler
EXMC_IRQHandler
SDIO_IRQHandler
TIMER4_IRQHandler
SPI2_IRQHandler
UART3_IRQHandler
UART4_IRQHandler
TIMER5_IRQHandler
TIMER6_IRQHandler
DMA1_Channel0_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_4_IRQHandler
B .
ENDP
ALIGN
; user Initial Stack & Heap
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap PROC
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ENDP
ALIGN
ENDIF
END

View File

@ -0,0 +1,501 @@
;/*!
; \file startup_gd32f30x_cl.s
; \brief start up file
;*/
;/*
; Copyright (C) 2017 GigaDevice
; 2017-02-10, V1.0.1, firmware for GD32F30x
;*/
MODULE ?cstartup
;; Forward declaration of sections.
SECTION CSTACK:DATA:NOROOT(3)
SECTION .intvec:CODE:NOROOT(2)
EXTERN __iar_program_start
EXTERN SystemInit
PUBLIC __vector_table
DATA
__vector_table
DCD sfe(CSTACK) ; top of stack
DCD Reset_Handler ; Vector Number 1,Reset Handler
DCD NMI_Handler ; Vector Number 2,NMI Handler
DCD HardFault_Handler ; Vector Number 3,Hard Fault Handler
DCD MemManage_Handler ; Vector Number 4,MPU Fault Handler
DCD BusFault_Handler ; Vector Number 5,Bus Fault Handler
DCD UsageFault_Handler ; Vector Number 6,Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; Vector Number 11,SVCall Handler
DCD DebugMon_Handler ; Vector Number 12,Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; Vector Number 14,PendSV Handler
DCD SysTick_Handler ; Vector Number 15,SysTick Handler
; External Interrupts
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_IRQHandler ; 18:Tamper through EXTI Line detect
DCD RTC_IRQHandler ; 19:RTC through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC0_1_IRQHandler ; 34:ADC0 and ADC1
DCD CAN0_TX_IRQHandler ; 35:CAN0 TX
DCD CAN0_RX0_IRQHandler ; 36:CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commucation and TIMER10
DCD TIMER0_Channel_IRQHandler ; 43:TIMER0 Channel Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBFS_WKUP_IRQHandler ; 58:USBFS Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commucation and TIMER13
DCD TIMER7_Channel_IRQHandler ; 62:TIMER7 Channel Capture Compare
DCD 0 ; 63:Reserved
DCD EXMC_IRQHandler ; 64:EXMC
DCD 0 ; 65:Reserved
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_IRQHandler ; 70:TIMER5
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_IRQHandler ; 75:DMA1 Channel3
DCD DMA1_Channel4_IRQHandler ; 76:DMA1 Channel4
DCD ENET_IRQHandler ; 77:Ethernet
DCD ENET_WKUP_IRQHandler ; 78:Ethernet Wakeup through EXTI Line
DCD CAN1_TX_IRQHandler ; 79:CAN1 TX
DCD CAN1_RX0_IRQHandler ; 80:CAN1 RX0
DCD CAN1_RX1_IRQHandler ; 81:CAN1 RX1
DCD CAN1_EWMC_IRQHandler ; 82:CAN1 EWMC
DCD USBFS_IRQHandler ; 83:USBFS
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Default interrupt handlers.
;;
THUMB
PUBWEAK Reset_Handler
SECTION .text:CODE:NOROOT:REORDER(2)
Reset_Handler
LDR R0, =SystemInit
BLX R0
LDR R0, =__iar_program_start
BX R0
PUBWEAK NMI_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
NMI_Handler
B NMI_Handler
PUBWEAK HardFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
HardFault_Handler
B HardFault_Handler
PUBWEAK MemManage_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
MemManage_Handler
B MemManage_Handler
PUBWEAK BusFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
BusFault_Handler
B BusFault_Handler
PUBWEAK UsageFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
UsageFault_Handler
B UsageFault_Handler
PUBWEAK SVC_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SVC_Handler
B SVC_Handler
PUBWEAK DebugMon_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
DebugMon_Handler
B DebugMon_Handler
PUBWEAK PendSV_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
PendSV_Handler
B PendSV_Handler
PUBWEAK SysTick_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SysTick_Handler
B SysTick_Handler
PUBWEAK WWDGT_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
WWDGT_IRQHandler
B WWDGT_IRQHandler
PUBWEAK LVD_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
LVD_IRQHandler
B LVD_IRQHandler
PUBWEAK TAMPER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TAMPER_IRQHandler
B TAMPER_IRQHandler
PUBWEAK RTC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_IRQHandler
B RTC_IRQHandler
PUBWEAK FMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
FMC_IRQHandler
B FMC_IRQHandler
PUBWEAK RCU_CTC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RCU_CTC_IRQHandler
B RCU_CTC_IRQHandler
PUBWEAK EXTI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI0_IRQHandler
B EXTI0_IRQHandler
PUBWEAK EXTI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI1_IRQHandler
B EXTI1_IRQHandler
PUBWEAK EXTI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI2_IRQHandler
B EXTI2_IRQHandler
PUBWEAK EXTI3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI3_IRQHandler
B EXTI3_IRQHandler
PUBWEAK EXTI4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI4_IRQHandler
B EXTI4_IRQHandler
PUBWEAK DMA0_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel0_IRQHandler
B DMA0_Channel0_IRQHandler
PUBWEAK DMA0_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel1_IRQHandler
B DMA0_Channel1_IRQHandler
PUBWEAK DMA0_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel2_IRQHandler
B DMA0_Channel2_IRQHandler
PUBWEAK DMA0_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel3_IRQHandler
B DMA0_Channel3_IRQHandler
PUBWEAK DMA0_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel4_IRQHandler
B DMA0_Channel4_IRQHandler
PUBWEAK DMA0_Channel5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel5_IRQHandler
B DMA0_Channel5_IRQHandler
PUBWEAK DMA0_Channel6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel6_IRQHandler
B DMA0_Channel6_IRQHandler
PUBWEAK ADC0_1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ADC0_1_IRQHandler
B ADC0_1_IRQHandler
PUBWEAK CAN0_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_TX_IRQHandler
B CAN0_TX_IRQHandler
PUBWEAK CAN0_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX0_IRQHandler
B CAN0_RX0_IRQHandler
PUBWEAK CAN0_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX1_IRQHandler
B CAN0_RX1_IRQHandler
PUBWEAK CAN0_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_EWMC_IRQHandler
B CAN0_EWMC_IRQHandler
PUBWEAK EXTI5_9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI5_9_IRQHandler
B EXTI5_9_IRQHandler
PUBWEAK TIMER0_BRK_TIMER8_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_BRK_TIMER8_IRQHandler
B TIMER0_BRK_TIMER8_IRQHandler
PUBWEAK TIMER0_UP_TIMER9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_UP_TIMER9_IRQHandler
B TIMER0_UP_TIMER9_IRQHandler
PUBWEAK TIMER0_TRG_CMT_TIMER10_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_TRG_CMT_TIMER10_IRQHandler
B TIMER0_TRG_CMT_TIMER10_IRQHandler
PUBWEAK TIMER0_Channel_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_Channel_IRQHandler
B TIMER0_Channel_IRQHandler
PUBWEAK TIMER1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER1_IRQHandler
B TIMER1_IRQHandler
PUBWEAK TIMER2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER2_IRQHandler
B TIMER2_IRQHandler
PUBWEAK TIMER3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER3_IRQHandler
B TIMER3_IRQHandler
PUBWEAK I2C0_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_EV_IRQHandler
B I2C0_EV_IRQHandler
PUBWEAK I2C0_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_ER_IRQHandler
B I2C0_ER_IRQHandler
PUBWEAK I2C1_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_EV_IRQHandler
B I2C1_EV_IRQHandler
PUBWEAK I2C1_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_ER_IRQHandler
B I2C1_ER_IRQHandler
PUBWEAK SPI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI0_IRQHandler
B SPI0_IRQHandler
PUBWEAK SPI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI1_IRQHandler
B SPI1_IRQHandler
PUBWEAK USART0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART0_IRQHandler
B USART0_IRQHandler
PUBWEAK USART1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART1_IRQHandler
B USART1_IRQHandler
PUBWEAK USART2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART2_IRQHandler
B USART2_IRQHandler
PUBWEAK EXTI10_15_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI10_15_IRQHandler
B EXTI10_15_IRQHandler
PUBWEAK RTC_Alarm_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_Alarm_IRQHandler
B RTC_Alarm_IRQHandler
PUBWEAK USBFS_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBFS_WKUP_IRQHandler
B USBFS_WKUP_IRQHandler
PUBWEAK TIMER7_BRK_TIMER11_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_BRK_TIMER11_IRQHandler
B TIMER7_BRK_TIMER11_IRQHandler
PUBWEAK TIMER7_UP_TIMER12_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_UP_TIMER12_IRQHandler
B TIMER7_UP_TIMER12_IRQHandler
PUBWEAK TIMER7_TRG_CMT_TIMER13_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_TRG_CMT_TIMER13_IRQHandler
B TIMER7_TRG_CMT_TIMER13_IRQHandler
PUBWEAK TIMER7_Channel_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_Channel_IRQHandler
B TIMER7_Channel_IRQHandler
PUBWEAK EXMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXMC_IRQHandler
B EXMC_IRQHandler
PUBWEAK TIMER4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER4_IRQHandler
B TIMER4_IRQHandler
PUBWEAK SPI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI2_IRQHandler
B SPI2_IRQHandler
PUBWEAK UART3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART3_IRQHandler
B UART3_IRQHandler
PUBWEAK UART4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART4_IRQHandler
B UART4_IRQHandler
PUBWEAK TIMER5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER5_IRQHandler
B TIMER5_IRQHandler
PUBWEAK TIMER6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER6_IRQHandler
B TIMER6_IRQHandler
PUBWEAK DMA1_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel0_IRQHandler
B DMA1_Channel0_IRQHandler
PUBWEAK DMA1_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel1_IRQHandler
B DMA1_Channel1_IRQHandler
PUBWEAK DMA1_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel2_IRQHandler
B DMA1_Channel2_IRQHandler
PUBWEAK DMA1_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel3_IRQHandler
B DMA1_Channel3_IRQHandler
PUBWEAK DMA1_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel4_IRQHandler
B DMA1_Channel4_IRQHandler
PUBWEAK ENET_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ENET_IRQHandler
B ENET_IRQHandler
PUBWEAK ENET_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ENET_WKUP_IRQHandler
B ENET_WKUP_IRQHandler
PUBWEAK CAN1_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_TX_IRQHandler
B CAN1_TX_IRQHandler
PUBWEAK CAN1_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_RX0_IRQHandler
B CAN1_RX0_IRQHandler
PUBWEAK CAN1_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_RX1_IRQHandler
B CAN1_RX1_IRQHandler
PUBWEAK CAN1_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN1_EWMC_IRQHandler
B CAN1_EWMC_IRQHandler
PUBWEAK USBFS_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBFS_IRQHandler
B USBFS_IRQHandler
END

View File

@ -0,0 +1,463 @@
;/*!
; \file startup_gd32f30x_hd.s
; \brief start up file
;*/
;/*
; Copyright (C) 2017 GigaDevice
; 2017-02-10, V1.0.1, firmware for GD32F30x
;*/
MODULE ?cstartup
;; Forward declaration of sections.
SECTION CSTACK:DATA:NOROOT(3)
SECTION .intvec:CODE:NOROOT(2)
EXTERN __iar_program_start
EXTERN SystemInit
PUBLIC __vector_table
DATA
__vector_table
DCD sfe(CSTACK) ; top of stack
DCD Reset_Handler ; Vector Number 1,Reset Handler
DCD NMI_Handler ; Vector Number 2,NMI Handler
DCD HardFault_Handler ; Vector Number 3,Hard Fault Handler
DCD MemManage_Handler ; Vector Number 4,MPU Fault Handler
DCD BusFault_Handler ; Vector Number 5,Bus Fault Handler
DCD UsageFault_Handler ; Vector Number 6,Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; Vector Number 11,SVCall Handler
DCD DebugMon_Handler ; Vector Number 12,Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; Vector Number 14,PendSV Handler
DCD SysTick_Handler ; Vector Number 15,SysTick Handler
; External Interrupts
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_IRQHandler ; 18:Tamper through EXTI Line detect
DCD RTC_IRQHandler ; 19:RTC through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC0_1_IRQHandler ; 34:ADC0 and ADC1
DCD USBD_HP_CAN0_TX_IRQHandler ; 35:USBD HP and CAN0 TX
DCD USBD_LP_CAN0_RX0_IRQHandler ; 36:USBD LP and CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_IRQHandler ; 40:TIMER0 Break
DCD TIMER0_UP_IRQHandler ; 41:TIMER0 Update
DCD TIMER0_TRG_CMT_IRQHandler ; 42:TIMER0 Trigger and Commucation
DCD TIMER0_Channel_IRQHandler ; 43:TIMER0 Channel Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBD_WKUP_IRQHandler ; 58:USBD Wakeup
DCD TIMER7_BRK_IRQHandler ; 59:TIMER7 Break
DCD TIMER7_UP_IRQHandler ; 60:TIMER7 Update
DCD TIMER7_TRG_CMT_IRQHandler ; 61:TIMER7 Trigger and Commucation
DCD TIMER7_Channel_IRQHandler ; 62:TIMER7 Channel Capture Compare
DCD ADC2_IRQHandler ; 63:ADC2
DCD EXMC_IRQHandler ; 64:EXMC
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_IRQHandler ; 70:TIMER5
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_4_IRQHandler ; 75:DMA1 Channel3 and channel4
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Default interrupt handlers.
;;
THUMB
PUBWEAK Reset_Handler
SECTION .text:CODE:NOROOT:REORDER(2)
Reset_Handler
LDR R0, =SystemInit
BLX R0
LDR R0, =__iar_program_start
BX R0
PUBWEAK NMI_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
NMI_Handler
B NMI_Handler
PUBWEAK HardFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
HardFault_Handler
B HardFault_Handler
PUBWEAK MemManage_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
MemManage_Handler
B MemManage_Handler
PUBWEAK BusFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
BusFault_Handler
B BusFault_Handler
PUBWEAK UsageFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
UsageFault_Handler
B UsageFault_Handler
PUBWEAK SVC_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SVC_Handler
B SVC_Handler
PUBWEAK DebugMon_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
DebugMon_Handler
B DebugMon_Handler
PUBWEAK PendSV_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
PendSV_Handler
B PendSV_Handler
PUBWEAK SysTick_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SysTick_Handler
B SysTick_Handler
PUBWEAK WWDGT_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
WWDGT_IRQHandler
B WWDGT_IRQHandler
PUBWEAK LVD_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
LVD_IRQHandler
B LVD_IRQHandler
PUBWEAK TAMPER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TAMPER_IRQHandler
B TAMPER_IRQHandler
PUBWEAK RTC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_IRQHandler
B RTC_IRQHandler
PUBWEAK FMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
FMC_IRQHandler
B FMC_IRQHandler
PUBWEAK RCU_CTC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RCU_CTC_IRQHandler
B RCU_CTC_IRQHandler
PUBWEAK EXTI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI0_IRQHandler
B EXTI0_IRQHandler
PUBWEAK EXTI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI1_IRQHandler
B EXTI1_IRQHandler
PUBWEAK EXTI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI2_IRQHandler
B EXTI2_IRQHandler
PUBWEAK EXTI3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI3_IRQHandler
B EXTI3_IRQHandler
PUBWEAK EXTI4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI4_IRQHandler
B EXTI4_IRQHandler
PUBWEAK DMA0_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel0_IRQHandler
B DMA0_Channel0_IRQHandler
PUBWEAK DMA0_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel1_IRQHandler
B DMA0_Channel1_IRQHandler
PUBWEAK DMA0_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel2_IRQHandler
B DMA0_Channel2_IRQHandler
PUBWEAK DMA0_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel3_IRQHandler
B DMA0_Channel3_IRQHandler
PUBWEAK DMA0_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel4_IRQHandler
B DMA0_Channel4_IRQHandler
PUBWEAK DMA0_Channel5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel5_IRQHandler
B DMA0_Channel5_IRQHandler
PUBWEAK DMA0_Channel6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel6_IRQHandler
B DMA0_Channel6_IRQHandler
PUBWEAK ADC0_1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ADC0_1_IRQHandler
B ADC0_1_IRQHandler
PUBWEAK USBD_HP_CAN0_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBD_HP_CAN0_TX_IRQHandler
B USBD_HP_CAN0_TX_IRQHandler
PUBWEAK USBD_LP_CAN0_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBD_LP_CAN0_RX0_IRQHandler
B USBD_LP_CAN0_RX0_IRQHandler
PUBWEAK CAN0_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX1_IRQHandler
B CAN0_RX1_IRQHandler
PUBWEAK CAN0_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_EWMC_IRQHandler
B CAN0_EWMC_IRQHandler
PUBWEAK EXTI5_9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI5_9_IRQHandler
B EXTI5_9_IRQHandler
PUBWEAK TIMER0_BRK_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_BRK_IRQHandler
B TIMER0_BRK_IRQHandler
PUBWEAK TIMER0_UP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_UP_IRQHandler
B TIMER0_UP_IRQHandler
PUBWEAK TIMER0_TRG_CMT_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_TRG_CMT_IRQHandler
B TIMER0_TRG_CMT_IRQHandler
PUBWEAK TIMER0_Channel_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_Channel_IRQHandler
B TIMER0_Channel_IRQHandler
PUBWEAK TIMER1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER1_IRQHandler
B TIMER1_IRQHandler
PUBWEAK TIMER2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER2_IRQHandler
B TIMER2_IRQHandler
PUBWEAK TIMER3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER3_IRQHandler
B TIMER3_IRQHandler
PUBWEAK I2C0_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_EV_IRQHandler
B I2C0_EV_IRQHandler
PUBWEAK I2C0_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_ER_IRQHandler
B I2C0_ER_IRQHandler
PUBWEAK I2C1_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_EV_IRQHandler
B I2C1_EV_IRQHandler
PUBWEAK I2C1_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_ER_IRQHandler
B I2C1_ER_IRQHandler
PUBWEAK SPI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI0_IRQHandler
B SPI0_IRQHandler
PUBWEAK SPI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI1_IRQHandler
B SPI1_IRQHandler
PUBWEAK USART0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART0_IRQHandler
B USART0_IRQHandler
PUBWEAK USART1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART1_IRQHandler
B USART1_IRQHandler
PUBWEAK USART2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART2_IRQHandler
B USART2_IRQHandler
PUBWEAK EXTI10_15_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI10_15_IRQHandler
B EXTI10_15_IRQHandler
PUBWEAK RTC_Alarm_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_Alarm_IRQHandler
B RTC_Alarm_IRQHandler
PUBWEAK USBD_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBD_WKUP_IRQHandler
B USBD_WKUP_IRQHandler
PUBWEAK TIMER7_BRK_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_BRK_IRQHandler
B TIMER7_BRK_IRQHandler
PUBWEAK TIMER7_UP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_UP_IRQHandler
B TIMER7_UP_IRQHandler
PUBWEAK TIMER7_TRG_CMT_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_TRG_CMT_IRQHandler
B TIMER7_TRG_CMT_IRQHandler
PUBWEAK TIMER7_Channel_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_Channel_IRQHandler
B TIMER7_Channel_IRQHandler
PUBWEAK ADC2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ADC2_IRQHandler
B ADC2_IRQHandler
PUBWEAK EXMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXMC_IRQHandler
B EXMC_IRQHandler
PUBWEAK SDIO_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SDIO_IRQHandler
B SDIO_IRQHandler
PUBWEAK TIMER4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER4_IRQHandler
B TIMER4_IRQHandler
PUBWEAK SPI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI2_IRQHandler
B SPI2_IRQHandler
PUBWEAK UART3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART3_IRQHandler
B UART3_IRQHandler
PUBWEAK UART4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART4_IRQHandler
B UART4_IRQHandler
PUBWEAK TIMER5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER5_IRQHandler
B TIMER5_IRQHandler
PUBWEAK TIMER6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER6_IRQHandler
B TIMER6_IRQHandler
PUBWEAK DMA1_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel0_IRQHandler
B DMA1_Channel0_IRQHandler
PUBWEAK DMA1_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel1_IRQHandler
B DMA1_Channel1_IRQHandler
PUBWEAK DMA1_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel2_IRQHandler
B DMA1_Channel2_IRQHandler
PUBWEAK DMA1_Channel3_4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel3_4_IRQHandler
B DMA1_Channel3_4_IRQHandler
END

View File

@ -0,0 +1,463 @@
;/*!
; \file startup_gd32f30x_xd.s
; \brief start up file
;*/
;/*
; Copyright (C) 2017 GigaDevice
; 2017-02-10, V1.0.1, firmware for GD32F30x
;*/
MODULE ?cstartup
;; Forward declaration of sections.
SECTION CSTACK:DATA:NOROOT(3)
SECTION .intvec:CODE:NOROOT(2)
EXTERN __iar_program_start
EXTERN SystemInit
PUBLIC __vector_table
DATA
__vector_table
DCD sfe(CSTACK) ; top of stack
DCD Reset_Handler ; Vector Number 1,Reset Handler
DCD NMI_Handler ; Vector Number 2,NMI Handler
DCD HardFault_Handler ; Vector Number 3,Hard Fault Handler
DCD MemManage_Handler ; Vector Number 4,MPU Fault Handler
DCD BusFault_Handler ; Vector Number 5,Bus Fault Handler
DCD UsageFault_Handler ; Vector Number 6,Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; Vector Number 11,SVCall Handler
DCD DebugMon_Handler ; Vector Number 12,Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; Vector Number 14,PendSV Handler
DCD SysTick_Handler ; Vector Number 15,SysTick Handler
; External Interrupts
DCD WWDGT_IRQHandler ; 16:Window Watchdog Timer
DCD LVD_IRQHandler ; 17:LVD through EXTI Line detect
DCD TAMPER_IRQHandler ; 18:Tamper through EXTI Line detect
DCD RTC_IRQHandler ; 19:RTC through EXTI Line
DCD FMC_IRQHandler ; 20:FMC
DCD RCU_CTC_IRQHandler ; 21:RCU and CTC
DCD EXTI0_IRQHandler ; 22:EXTI Line 0
DCD EXTI1_IRQHandler ; 23:EXTI Line 1
DCD EXTI2_IRQHandler ; 24:EXTI Line 2
DCD EXTI3_IRQHandler ; 25:EXTI Line 3
DCD EXTI4_IRQHandler ; 26:EXTI Line 4
DCD DMA0_Channel0_IRQHandler ; 27:DMA0 Channel0
DCD DMA0_Channel1_IRQHandler ; 28:DMA0 Channel1
DCD DMA0_Channel2_IRQHandler ; 29:DMA0 Channel2
DCD DMA0_Channel3_IRQHandler ; 30:DMA0 Channel3
DCD DMA0_Channel4_IRQHandler ; 31:DMA0 Channel4
DCD DMA0_Channel5_IRQHandler ; 32:DMA0 Channel5
DCD DMA0_Channel6_IRQHandler ; 33:DMA0 Channel6
DCD ADC0_1_IRQHandler ; 34:ADC0 and ADC1
DCD USBD_HP_CAN0_TX_IRQHandler ; 35:USBD HP and CAN0 TX
DCD USBD_LP_CAN0_RX0_IRQHandler ; 36:USBD LP and CAN0 RX0
DCD CAN0_RX1_IRQHandler ; 37:CAN0 RX1
DCD CAN0_EWMC_IRQHandler ; 38:CAN0 EWMC
DCD EXTI5_9_IRQHandler ; 39:EXTI5 to EXTI9
DCD TIMER0_BRK_TIMER8_IRQHandler ; 40:TIMER0 Break and TIMER8
DCD TIMER0_UP_TIMER9_IRQHandler ; 41:TIMER0 Update and TIMER9
DCD TIMER0_TRG_CMT_TIMER10_IRQHandler ; 42:TIMER0 Trigger and Commucation and TIMER10
DCD TIMER0_Channel_IRQHandler ; 43:TIMER0 Channel Capture Compare
DCD TIMER1_IRQHandler ; 44:TIMER1
DCD TIMER2_IRQHandler ; 45:TIMER2
DCD TIMER3_IRQHandler ; 46:TIMER3
DCD I2C0_EV_IRQHandler ; 47:I2C0 Event
DCD I2C0_ER_IRQHandler ; 48:I2C0 Error
DCD I2C1_EV_IRQHandler ; 49:I2C1 Event
DCD I2C1_ER_IRQHandler ; 50:I2C1 Error
DCD SPI0_IRQHandler ; 51:SPI0
DCD SPI1_IRQHandler ; 52:SPI1
DCD USART0_IRQHandler ; 53:USART0
DCD USART1_IRQHandler ; 54:USART1
DCD USART2_IRQHandler ; 55:USART2
DCD EXTI10_15_IRQHandler ; 56:EXTI10 to EXTI15
DCD RTC_Alarm_IRQHandler ; 57:RTC Alarm
DCD USBD_WKUP_IRQHandler ; 58:USBD Wakeup
DCD TIMER7_BRK_TIMER11_IRQHandler ; 59:TIMER7 Break and TIMER11
DCD TIMER7_UP_TIMER12_IRQHandler ; 60:TIMER7 Update and TIMER12
DCD TIMER7_TRG_CMT_TIMER13_IRQHandler ; 61:TIMER7 Trigger and Commucation and TIMER13
DCD TIMER7_Channel_IRQHandler ; 62:TIMER7 Channel Capture Compare
DCD ADC2_IRQHandler ; 63:ADC2
DCD EXMC_IRQHandler ; 64:EXMC
DCD SDIO_IRQHandler ; 65:SDIO
DCD TIMER4_IRQHandler ; 66:TIMER4
DCD SPI2_IRQHandler ; 67:SPI2
DCD UART3_IRQHandler ; 68:UART3
DCD UART4_IRQHandler ; 69:UART4
DCD TIMER5_IRQHandler ; 70:TIMER5
DCD TIMER6_IRQHandler ; 71:TIMER6
DCD DMA1_Channel0_IRQHandler ; 72:DMA1 Channel0
DCD DMA1_Channel1_IRQHandler ; 73:DMA1 Channel1
DCD DMA1_Channel2_IRQHandler ; 74:DMA1 Channel2
DCD DMA1_Channel3_4_IRQHandler ; 75:DMA1 Channel3 and channel4
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;
;; Default interrupt handlers.
;;
THUMB
PUBWEAK Reset_Handler
SECTION .text:CODE:NOROOT:REORDER(2)
Reset_Handler
LDR R0, =SystemInit
BLX R0
LDR R0, =__iar_program_start
BX R0
PUBWEAK NMI_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
NMI_Handler
B NMI_Handler
PUBWEAK HardFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
HardFault_Handler
B HardFault_Handler
PUBWEAK MemManage_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
MemManage_Handler
B MemManage_Handler
PUBWEAK BusFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
BusFault_Handler
B BusFault_Handler
PUBWEAK UsageFault_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
UsageFault_Handler
B UsageFault_Handler
PUBWEAK SVC_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SVC_Handler
B SVC_Handler
PUBWEAK DebugMon_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
DebugMon_Handler
B DebugMon_Handler
PUBWEAK PendSV_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
PendSV_Handler
B PendSV_Handler
PUBWEAK SysTick_Handler
SECTION .text:CODE:NOROOT:REORDER(1)
SysTick_Handler
B SysTick_Handler
PUBWEAK WWDGT_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
WWDGT_IRQHandler
B WWDGT_IRQHandler
PUBWEAK LVD_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
LVD_IRQHandler
B LVD_IRQHandler
PUBWEAK TAMPER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TAMPER_IRQHandler
B TAMPER_IRQHandler
PUBWEAK RTC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_IRQHandler
B RTC_IRQHandler
PUBWEAK FMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
FMC_IRQHandler
B FMC_IRQHandler
PUBWEAK RCU_CTC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RCU_CTC_IRQHandler
B RCU_CTC_IRQHandler
PUBWEAK EXTI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI0_IRQHandler
B EXTI0_IRQHandler
PUBWEAK EXTI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI1_IRQHandler
B EXTI1_IRQHandler
PUBWEAK EXTI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI2_IRQHandler
B EXTI2_IRQHandler
PUBWEAK EXTI3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI3_IRQHandler
B EXTI3_IRQHandler
PUBWEAK EXTI4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI4_IRQHandler
B EXTI4_IRQHandler
PUBWEAK DMA0_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel0_IRQHandler
B DMA0_Channel0_IRQHandler
PUBWEAK DMA0_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel1_IRQHandler
B DMA0_Channel1_IRQHandler
PUBWEAK DMA0_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel2_IRQHandler
B DMA0_Channel2_IRQHandler
PUBWEAK DMA0_Channel3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel3_IRQHandler
B DMA0_Channel3_IRQHandler
PUBWEAK DMA0_Channel4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel4_IRQHandler
B DMA0_Channel4_IRQHandler
PUBWEAK DMA0_Channel5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel5_IRQHandler
B DMA0_Channel5_IRQHandler
PUBWEAK DMA0_Channel6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA0_Channel6_IRQHandler
B DMA0_Channel6_IRQHandler
PUBWEAK ADC0_1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ADC0_1_IRQHandler
B ADC0_1_IRQHandler
PUBWEAK USBD_HP_CAN0_TX_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBD_HP_CAN0_TX_IRQHandler
B USBD_HP_CAN0_TX_IRQHandler
PUBWEAK USBD_LP_CAN0_RX0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBD_LP_CAN0_RX0_IRQHandler
B USBD_LP_CAN0_RX0_IRQHandler
PUBWEAK CAN0_RX1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_RX1_IRQHandler
B CAN0_RX1_IRQHandler
PUBWEAK CAN0_EWMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
CAN0_EWMC_IRQHandler
B CAN0_EWMC_IRQHandler
PUBWEAK EXTI5_9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI5_9_IRQHandler
B EXTI5_9_IRQHandler
PUBWEAK TIMER0_BRK_TIMER8_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_BRK_TIMER8_IRQHandler
B TIMER0_BRK_TIMER8_IRQHandler
PUBWEAK TIMER0_UP_TIMER9_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_UP_TIMER9_IRQHandler
B TIMER0_UP_TIMER9_IRQHandler
PUBWEAK TIMER0_TRG_CMT_TIMER10_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_TRG_CMT_TIMER10_IRQHandler
B TIMER0_TRG_CMT_TIMER10_IRQHandler
PUBWEAK TIMER0_Channel_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER0_Channel_IRQHandler
B TIMER0_Channel_IRQHandler
PUBWEAK TIMER1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER1_IRQHandler
B TIMER1_IRQHandler
PUBWEAK TIMER2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER2_IRQHandler
B TIMER2_IRQHandler
PUBWEAK TIMER3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER3_IRQHandler
B TIMER3_IRQHandler
PUBWEAK I2C0_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_EV_IRQHandler
B I2C0_EV_IRQHandler
PUBWEAK I2C0_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C0_ER_IRQHandler
B I2C0_ER_IRQHandler
PUBWEAK I2C1_EV_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_EV_IRQHandler
B I2C1_EV_IRQHandler
PUBWEAK I2C1_ER_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
I2C1_ER_IRQHandler
B I2C1_ER_IRQHandler
PUBWEAK SPI0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI0_IRQHandler
B SPI0_IRQHandler
PUBWEAK SPI1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI1_IRQHandler
B SPI1_IRQHandler
PUBWEAK USART0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART0_IRQHandler
B USART0_IRQHandler
PUBWEAK USART1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART1_IRQHandler
B USART1_IRQHandler
PUBWEAK USART2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USART2_IRQHandler
B USART2_IRQHandler
PUBWEAK EXTI10_15_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXTI10_15_IRQHandler
B EXTI10_15_IRQHandler
PUBWEAK RTC_Alarm_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
RTC_Alarm_IRQHandler
B RTC_Alarm_IRQHandler
PUBWEAK USBD_WKUP_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
USBD_WKUP_IRQHandler
B USBD_WKUP_IRQHandler
PUBWEAK TIMER7_BRK_TIMER11_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_BRK_TIMER11_IRQHandler
B TIMER7_BRK_TIMER11_IRQHandler
PUBWEAK TIMER7_UP_TIMER12_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_UP_TIMER12_IRQHandler
B TIMER7_UP_TIMER12_IRQHandler
PUBWEAK TIMER7_TRG_CMT_TIMER13_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_TRG_CMT_TIMER13_IRQHandler
B TIMER7_TRG_CMT_TIMER13_IRQHandler
PUBWEAK TIMER7_Channel_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER7_Channel_IRQHandler
B TIMER7_Channel_IRQHandler
PUBWEAK ADC2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
ADC2_IRQHandler
B ADC2_IRQHandler
PUBWEAK EXMC_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
EXMC_IRQHandler
B EXMC_IRQHandler
PUBWEAK SDIO_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SDIO_IRQHandler
B SDIO_IRQHandler
PUBWEAK TIMER4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER4_IRQHandler
B TIMER4_IRQHandler
PUBWEAK SPI2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
SPI2_IRQHandler
B SPI2_IRQHandler
PUBWEAK UART3_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART3_IRQHandler
B UART3_IRQHandler
PUBWEAK UART4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
UART4_IRQHandler
B UART4_IRQHandler
PUBWEAK TIMER5_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER5_IRQHandler
B TIMER5_IRQHandler
PUBWEAK TIMER6_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
TIMER6_IRQHandler
B TIMER6_IRQHandler
PUBWEAK DMA1_Channel0_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel0_IRQHandler
B DMA1_Channel0_IRQHandler
PUBWEAK DMA1_Channel1_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel1_IRQHandler
B DMA1_Channel1_IRQHandler
PUBWEAK DMA1_Channel2_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel2_IRQHandler
B DMA1_Channel2_IRQHandler
PUBWEAK DMA1_Channel3_4_IRQHandler
SECTION .text:CODE:NOROOT:REORDER(1)
DMA1_Channel3_4_IRQHandler
B DMA1_Channel3_4_IRQHandler
END

View File

@ -0,0 +1,987 @@
/*!
\file system_gd32f30x.c
\brief CMSIS Cortex-M4 Device Peripheral Access Layer Source File for
GD32F30x Device Series
*/
/* Copyright (c) 2012 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
/* This file refers the CMSIS standard, some adjustments are made according to GigaDevice chips */
#include "gd32f30x.h"
/* system frequency define */
#define __IRC8M (IRC8M_VALUE) /* internal 8 MHz RC oscillator frequency */
#define __HXTAL (HXTAL_VALUE) /* high speed crystal oscillator frequency */
#define __SYS_OSC_CLK (__IRC8M) /* main oscillator frequency */
/* select a system clock by uncommenting the following line */
/* use IRC8M */
//#define __SYSTEM_CLOCK_IRC8M (uint32_t)(__IRC8M)
//#define __SYSTEM_CLOCK_48M_PLL_IRC8M (uint32_t)(48000000)
//#define __SYSTEM_CLOCK_72M_PLL_IRC8M (uint32_t)(72000000)
//#define __SYSTEM_CLOCK_108M_PLL_IRC8M (uint32_t)(108000000)
//#define __SYSTEM_CLOCK_120M_PLL_IRC8M (uint32_t)(120000000)
/* use HXTAL(XD series CK_HXTAL = 8M, CL series CK_HXTAL = 25M) */
//#define __SYSTEM_CLOCK_HXTAL (uint32_t)(__HXTAL)
//#define __SYSTEM_CLOCK_48M_PLL_HXTAL (uint32_t)(48000000)
//#define __SYSTEM_CLOCK_72M_PLL_HXTAL (uint32_t)(72000000)
//#define __SYSTEM_CLOCK_108M_PLL_HXTAL (uint32_t)(108000000)
#define __SYSTEM_CLOCK_120M_PLL_HXTAL (uint32_t)(120000000)
#define SEL_IRC8M 0x00U
#define SEL_HXTAL 0x01U
#define SEL_PLL 0x02U
/* set the system clock frequency and declare the system clock configuration function */
#ifdef __SYSTEM_CLOCK_IRC8M
uint32_t SystemCoreClock = __SYSTEM_CLOCK_IRC8M;
static void system_clock_8m_irc8m(void);
#elif defined (__SYSTEM_CLOCK_48M_PLL_IRC8M)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_48M_PLL_IRC8M;
static void system_clock_48m_irc8m(void);
#elif defined (__SYSTEM_CLOCK_72M_PLL_IRC8M)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_72M_PLL_IRC8M;
static void system_clock_72m_irc8m(void);
#elif defined (__SYSTEM_CLOCK_108M_PLL_IRC8M)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_108M_PLL_IRC8M;
static void system_clock_108m_irc8m(void);
#elif defined (__SYSTEM_CLOCK_120M_PLL_IRC8M)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_120M_PLL_IRC8M;
static void system_clock_120m_irc8m(void);
#elif defined (__SYSTEM_CLOCK_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_HXTAL;
static void system_clock_hxtal(void);
#elif defined (__SYSTEM_CLOCK_48M_PLL_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_48M_PLL_HXTAL;
static void system_clock_48m_hxtal(void);
#elif defined (__SYSTEM_CLOCK_72M_PLL_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_72M_PLL_HXTAL;
static void system_clock_72m_hxtal(void);
#elif defined (__SYSTEM_CLOCK_108M_PLL_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_108M_PLL_HXTAL;
static void system_clock_108m_hxtal(void);
#elif defined (__SYSTEM_CLOCK_120M_PLL_HXTAL)
uint32_t SystemCoreClock = __SYSTEM_CLOCK_120M_PLL_HXTAL;
static void system_clock_120m_hxtal(void);
#endif /* __SYSTEM_CLOCK_IRC8M */
/* configure the system clock */
static void system_clock_config(void);
/*!
\brief setup the microcontroller system, initialize the system
\param[in] none
\param[out] none
\retval none
*/
void SystemInit (void)
{
/* FPU settings */
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */
#endif
/* reset the RCU clock configuration to the default reset state */
/* Set IRC8MEN bit */
RCU_CTL |= RCU_CTL_IRC8MEN;
/* Reset CFG0 and CFG1 registers */
RCU_CFG0 = 0x00000000U;
RCU_CFG1 = 0x00000000U;
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
/* reset HXTALEN, CKMEN and PLLEN bits */
RCU_CTL &= ~(RCU_CTL_PLLEN | RCU_CTL_CKMEN | RCU_CTL_HXTALEN);
/* disable all interrupts */
RCU_INT = 0x009f0000U;
#elif defined(GD32F30X_CL)
/* Reset HXTALEN, CKMEN, PLLEN, PLL1EN and PLL2EN bits */
RCU_CTL &= ~(RCU_CTL_PLLEN |RCU_CTL_PLL1EN | RCU_CTL_PLL2EN | RCU_CTL_CKMEN | RCU_CTL_HXTALEN);
/* disable all interrupts */
RCU_INT = 0x00ff0000U;
#endif
/* reset HXTALBPS bit */
RCU_CTL &= ~(RCU_CTL_HXTALBPS);
/* configure the system clock source, PLL Multiplier, AHB/APBx prescalers and Flash settings */
system_clock_config();
}
/*!
\brief configure the system clock
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_config(void)
{
#ifdef __SYSTEM_CLOCK_IRC8M
system_clock_8m_irc8m();
#elif defined (__SYSTEM_CLOCK_48M_PLL_IRC8M)
system_clock_48m_irc8m();
#elif defined (__SYSTEM_CLOCK_72M_PLL_IRC8M)
system_clock_72m_irc8m();
#elif defined (__SYSTEM_CLOCK_108M_PLL_IRC8M)
system_clock_108m_irc8m();
#elif defined (__SYSTEM_CLOCK_120M_PLL_IRC8M)
system_clock_120m_irc8m();
#elif defined (__SYSTEM_CLOCK_HXTAL)
system_clock_hxtal();
#elif defined (__SYSTEM_CLOCK_48M_PLL_HXTAL)
system_clock_48m_hxtal();
#elif defined (__SYSTEM_CLOCK_72M_PLL_HXTAL)
system_clock_72m_hxtal();
#elif defined (__SYSTEM_CLOCK_108M_PLL_HXTAL)
system_clock_108m_hxtal();
#elif defined (__SYSTEM_CLOCK_120M_PLL_HXTAL)
system_clock_120m_hxtal();
#endif /* __SYSTEM_CLOCK_IRC8M */
}
#ifdef __SYSTEM_CLOCK_IRC8M
/*!
\brief configure the system clock to 8M by IRC8M
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_8m_irc8m(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable IRC8M */
RCU_CTL |= RCU_CTL_IRC8MEN;
/* wait until IRC8M is stable or the startup time is longer than IRC8M_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_IRC8MSTB);
}
while((0U == stab_flag) && (IRC8M_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_IRC8MSTB)){
while(1){
}
}
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
/* select IRC8M as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_IRC8M;
/* wait until IRC8M is selected as system clock */
while(0U != (RCU_CFG0 & RCU_SCSS_IRC8M)){
}
}
#elif defined (__SYSTEM_CLOCK_48M_PLL_IRC8M)
/*!
\brief configure the system clock to 48M by PLL which selects IRC8M as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_48m_irc8m(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable IRC8M */
RCU_CTL |= RCU_CTL_IRC8MEN;
/* wait until IRC8M is stable or the startup time is longer than IRC8M_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_IRC8MSTB);
}
while((0U == stab_flag) && (IRC8M_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_IRC8MSTB)){
while(1){
}
}
/* LDO output voltage high mode */
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* IRC8M is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
/* CK_PLL = (CK_IRC8M/2) * 12 = 48 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL12;
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* enable the high-drive to extend the clock frequency to 120 MHz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLL;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
}
}
#elif defined (__SYSTEM_CLOCK_72M_PLL_IRC8M)
/*!
\brief configure the system clock to 72M by PLL which selects IRC8M as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_72m_irc8m(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable IRC8M */
RCU_CTL |= RCU_CTL_IRC8MEN;
/* wait until IRC8M is stable or the startup time is longer than IRC8M_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_IRC8MSTB);
}while((0U == stab_flag) && (IRC8M_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_IRC8MSTB)){
while(1){
}
}
/* LDO output voltage high mode */
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* IRC8M is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
/* CK_PLL = (CK_IRC8M/2) * 18 = 72 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL18;
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* enable the high-drive to extend the clock frequency to 120 MHz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLL;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
}
}
#elif defined (__SYSTEM_CLOCK_108M_PLL_IRC8M)
/*!
\brief configure the system clock to 108M by PLL which selects IRC8M as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_108m_irc8m(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable IRC8M */
RCU_CTL |= RCU_CTL_IRC8MEN;
/* wait until IRC8M is stable or the startup time is longer than IRC8M_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_IRC8MSTB);
}while((0U == stab_flag) && (IRC8M_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_IRC8MSTB)){
while(1){
}
}
/* LDO output voltage high mode */
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* IRC8M is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
/* CK_PLL = (CK_IRC8M/2) * 27 = 108 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL27;
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* enable the high-drive to extend the clock frequency to 120 MHz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLL;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
}
}
#elif defined (__SYSTEM_CLOCK_120M_PLL_IRC8M)
/*!
\brief configure the system clock to 120M by PLL which selects IRC8M as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_120m_irc8m(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable IRC8M */
RCU_CTL |= RCU_CTL_IRC8MEN;
/* wait until IRC8M is stable or the startup time is longer than IRC8M_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_IRC8MSTB);
}while((0U == stab_flag) && (IRC8M_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_IRC8MSTB)){
while(1){
}
}
/* LDO output voltage high mode */
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* IRC8M is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
/* CK_PLL = (CK_IRC8M/2) * 30 = 120 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL30;
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* enable the high-drive to extend the clock frequency to 120 MHz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLL;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
}
}
#elif defined (__SYSTEM_CLOCK_HXTAL)
/*!
\brief configure the system clock to HXTAL
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
/* select HXTAL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_HXTAL;
/* wait until HXTAL is selected as system clock */
while(0 == (RCU_CFG0 & RCU_SCSS_HXTAL)){
}
}
#elif defined (__SYSTEM_CLOCK_48M_PLL_HXTAL)
/*!
\brief configure the system clock to 48M by PLL which selects HXTAL(8M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_48m_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
/* select HXTAL/2 as clock source */
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PREDV0);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_CFG0_PREDV0);
/* CK_PLL = (CK_HXTAL/2) * 12 = 48 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL12;
#elif defined(GD32F30X_CL)
/* CK_PLL = (CK_PREDIV0) * 12 = 48 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_PLL_MUL12);
/* CK_PREDIV0 = (CK_HXTAL)/5 *8 /10 = 4 MHz */
RCU_CFG1 &= ~(RCU_CFG1_PLLPRESEL | RCU_CFG1_PREDV0SEL | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV1 | RCU_CFG1_PREDV0);
RCU_CFG1 |= (RCU_PLLPRESEL_HXTAL | RCU_PREDV0SEL_CKPLL1 | RCU_PLL1_MUL8 | RCU_PREDV1_DIV5 | RCU_PREDV0_DIV10);
/* enable PLL1 */
RCU_CTL |= RCU_CTL_PLL1EN;
/* wait till PLL1 is ready */
while((RCU_CTL & RCU_CTL_PLL1STB) == 0){
}
#endif /* GD32F30X_HD and GD32F30X_XD */
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* enable the high-drive to extend the clock frequency to 120 MHz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLL;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
}
}
#elif defined (__SYSTEM_CLOCK_72M_PLL_HXTAL)
/*!
\brief configure the system clock to 72M by PLL which selects HXTAL(8M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_72m_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
/* select HXTAL/2 as clock source */
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PREDV0);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_CFG0_PREDV0);
/* CK_PLL = (CK_HXTAL/2) * 18 = 72 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL18;
#elif defined(GD32F30X_CL)
/* CK_PLL = (CK_PREDIV0) * 18 = 72 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_PLL_MUL18);
/* CK_PREDIV0 = (CK_HXTAL)/5 *8 /10 = 4 MHz */
RCU_CFG1 &= ~(RCU_CFG1_PLLPRESEL | RCU_CFG1_PREDV0SEL | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV1 | RCU_CFG1_PREDV0);
RCU_CFG1 |= (RCU_PLLPRESEL_HXTAL | RCU_PREDV0SEL_CKPLL1 | RCU_PLL1_MUL8 | RCU_PREDV1_DIV5 | RCU_PREDV0_DIV10);
/* enable PLL1 */
RCU_CTL |= RCU_CTL_PLL1EN;
/* wait till PLL1 is ready */
while((RCU_CTL & RCU_CTL_PLL1STB) == 0){
}
#endif /* GD32F30X_HD and GD32F30X_XD */
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* enable the high-drive to extend the clock frequency to 120 MHz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLL;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
}
}
#elif defined (__SYSTEM_CLOCK_108M_PLL_HXTAL)
/*!
\brief configure the system clock to 108M by PLL which selects HXTAL(8M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_108m_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
/* select HXTAL/2 as clock source */
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PREDV0);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_CFG0_PREDV0);
/* CK_PLL = (CK_HXTAL/2) * 27 = 108 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL27;
#elif defined(GD32F30X_CL)
/* CK_PLL = (CK_PREDIV0) * 27 = 108 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_PLL_MUL27);
/* CK_PREDIV0 = (CK_HXTAL)/5 *8 /10 = 4 MHz */
RCU_CFG1 &= ~(RCU_CFG1_PLLPRESEL | RCU_CFG1_PREDV0SEL | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV1 | RCU_CFG1_PREDV0);
RCU_CFG1 |= (RCU_PLLPRESEL_HXTAL | RCU_PREDV0SEL_CKPLL1 | RCU_PLL1_MUL8 | RCU_PREDV1_DIV5 | RCU_PREDV0_DIV10);
/* enable PLL1 */
RCU_CTL |= RCU_CTL_PLL1EN;
/* wait till PLL1 is ready */
while((RCU_CTL & RCU_CTL_PLL1STB) == 0){
}
#endif /* GD32F30X_HD and GD32F30X_XD */
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* enable the high-drive to extend the clock frequency to 120 MHz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLL;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
}
}
#elif defined (__SYSTEM_CLOCK_120M_PLL_HXTAL)
/*!
\brief configure the system clock to 120M by PLL which selects HXTAL(8M) as its clock source
\param[in] none
\param[out] none
\retval none
*/
static void system_clock_120m_hxtal(void)
{
uint32_t timeout = 0U;
uint32_t stab_flag = 0U;
/* enable HXTAL */
RCU_CTL |= RCU_CTL_HXTALEN;
/* wait until HXTAL is stable or the startup time is longer than HXTAL_STARTUP_TIMEOUT */
do{
timeout++;
stab_flag = (RCU_CTL & RCU_CTL_HXTALSTB);
}while((0U == stab_flag) && (HXTAL_STARTUP_TIMEOUT != timeout));
/* if fail */
if(0U == (RCU_CTL & RCU_CTL_HXTALSTB)){
while(1){
}
}
RCU_APB1EN |= RCU_APB1EN_PMUEN;
PMU_CTL |= PMU_CTL_LDOVS;
/* HXTAL is stable */
/* AHB = SYSCLK */
RCU_CFG0 |= RCU_AHB_CKSYS_DIV1;
/* APB2 = AHB/1 */
RCU_CFG0 |= RCU_APB2_CKAHB_DIV1;
/* APB1 = AHB/2 */
RCU_CFG0 |= RCU_APB1_CKAHB_DIV2;
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
/* select HXTAL/2 as clock source */
RCU_CFG0 &= ~(RCU_CFG0_PLLSEL | RCU_CFG0_PREDV0);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_CFG0_PREDV0);
/* CK_PLL = (CK_HXTAL/2) * 30 = 120 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= RCU_PLL_MUL30;
#elif defined(GD32F30X_CL)
/* CK_PLL = (CK_PREDIV0) * 30 = 120 MHz */
RCU_CFG0 &= ~(RCU_CFG0_PLLMF | RCU_CFG0_PLLMF_4 | RCU_CFG0_PLLMF_5);
RCU_CFG0 |= (RCU_PLLSRC_HXTAL_IRC48M | RCU_PLL_MUL30);
/* CK_PREDIV0 = (CK_HXTAL)/5 *8 /10 = 4 MHz */
RCU_CFG1 &= ~(RCU_CFG1_PLLPRESEL | RCU_CFG1_PREDV0SEL | RCU_CFG1_PLL1MF | RCU_CFG1_PREDV1 | RCU_CFG1_PREDV0);
RCU_CFG1 |= (RCU_PLLPRESRC_HXTAL | RCU_PREDV0SRC_CKPLL1 | RCU_PLL1_MUL8 | RCU_PREDV1_DIV5 | RCU_PREDV0_DIV10);
/* enable PLL1 */
RCU_CTL |= RCU_CTL_PLL1EN;
/* wait till PLL1 is ready */
while((RCU_CTL & RCU_CTL_PLL1STB) == 0U){
}
#endif /* GD32F30X_HD and GD32F30X_XD */
/* enable PLL */
RCU_CTL |= RCU_CTL_PLLEN;
/* wait until PLL is stable */
while(0U == (RCU_CTL & RCU_CTL_PLLSTB)){
}
/* enable the high-drive to extend the clock frequency to 120 MHz */
PMU_CTL |= PMU_CTL_HDEN;
while(0U == (PMU_CS & PMU_CS_HDRF)){
}
/* select the high-drive mode */
PMU_CTL |= PMU_CTL_HDS;
while(0U == (PMU_CS & PMU_CS_HDSRF)){
}
/* select PLL as system clock */
RCU_CFG0 &= ~RCU_CFG0_SCS;
RCU_CFG0 |= RCU_CKSYSSRC_PLL;
/* wait until PLL is selected as system clock */
while(0U == (RCU_CFG0 & RCU_SCSS_PLL)){
}
}
#endif /* __SYSTEM_CLOCK_IRC8M */
/*!
\brief update the SystemCoreClock with current core clock retrieved from cpu registers
\param[in] none
\param[out] none
\retval none
*/
void SystemCoreClockUpdate (void)
{
uint32_t sws;
uint32_t pllsel, pllpresel, predv0sel, pllmf,ck_src;
#ifdef GD32F30X_CL
uint32_t predv0, predv1, pll1mf;
#endif /* GD32F30X_CL */
sws = GET_BITS(RCU_CFG0, 2, 3);
switch(sws){
/* IRC8M is selected as CK_SYS */
case SEL_IRC8M:
SystemCoreClock = IRC8M_VALUE;
break;
/* HXTAL is selected as CK_SYS */
case SEL_HXTAL:
SystemCoreClock = HXTAL_VALUE;
break;
/* PLL is selected as CK_SYS */
case SEL_PLL:
/* PLL clock source selection, HXTAL, IRC48M or IRC8M/2 */
pllsel = (RCU_CFG0 & RCU_CFG0_PLLSEL);
if (RCU_PLLSRC_HXTAL_IRC48M == pllsel) {
/* PLL clock source is HXTAL or IRC48M */
pllpresel = (RCU_CFG1 & RCU_CFG1_PLLPRESEL);
if(RCU_PLLPRESRC_HXTAL == pllpresel){
/* PLL clock source is HXTAL */
ck_src = HXTAL_VALUE;
}else{
/* PLL clock source is IRC48 */
ck_src = IRC48M_VALUE;
}
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
predv0sel = (RCU_CFG0 & RCU_CFG0_PREDV0);
/* PREDV0 input source clock divided by 2 */
if(RCU_CFG0_PREDV0 == predv0sel){
ck_src = HXTAL_VALUE/2U;
}
#elif defined(GD32F30X_CL)
predv0sel = (RCU_CFG1 & RCU_CFG1_PREDV0SEL);
/* source clock use PLL1 */
if(RCU_PREDV0SRC_CKPLL1 == predv0sel){
predv1 = ((RCU_CFG1 & RCU_CFG1_PREDV1) >> 4) + 1U;
pll1mf = ((RCU_CFG1 & RCU_CFG1_PLL1MF) >> 8) + 2U;
if(17U == pll1mf){
pll1mf = 20U;
}
ck_src = (ck_src/predv1)*pll1mf;
}
predv0 = (RCU_CFG1 & RCU_CFG1_PREDV0) + 1U;
ck_src /= predv0;
#endif /* GD32F30X_HD and GD32F30X_XD */
}else{
/* PLL clock source is IRC8M/2 */
ck_src = IRC8M_VALUE/2U;
}
/* PLL multiplication factor */
pllmf = GET_BITS(RCU_CFG0, 18, 21);
if((RCU_CFG0 & RCU_CFG0_PLLMF_4)){
pllmf |= 0x10U;
}
if((RCU_CFG0 & RCU_CFG0_PLLMF_5)){
pllmf |= 0x20U;
}
if( pllmf >= 15U){
pllmf += 1U;
}else{
pllmf += 2U;
}
if(pllmf > 61U){
pllmf = 63U;
}
SystemCoreClock = ck_src*pllmf;
#ifdef GD32F30X_CL
if(15U == pllmf){
SystemCoreClock = ck_src*6U + ck_src/2U;
}
#endif /* GD32F30X_CL */
break;
/* IRC8M is selected as CK_SYS */
default:
SystemCoreClock = IRC8M_VALUE;
break;
}
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,697 @@
/**************************************************************************//**
* @file core_cm4_simd.h
* @brief CMSIS Cortex-M4 SIMD Header File
* @version V3.30
* @date 17. February 2014
*
* @note
*
******************************************************************************/
/* Copyright (c) 2009 - 2014 ARM LIMITED
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of ARM nor the names of its contributors may be used
to endorse or promote products derived from this software without
specific prior written permission.
*
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDERS AND CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
---------------------------------------------------------------------------*/
#if defined ( __ICCARM__ )
#pragma system_include /* treat file as system include file for MISRA check */
#endif
#ifndef __CORE_CM4_SIMD_H
#define __CORE_CM4_SIMD_H
#ifdef __cplusplus
extern "C" {
#endif
/*******************************************************************************
* Hardware Abstraction Layer
******************************************************************************/
/* ################### Compiler specific Intrinsics ########################### */
/** \defgroup CMSIS_SIMD_intrinsics CMSIS SIMD Intrinsics
Access to dedicated SIMD instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#define __SADD8 __sadd8
#define __QADD8 __qadd8
#define __SHADD8 __shadd8
#define __UADD8 __uadd8
#define __UQADD8 __uqadd8
#define __UHADD8 __uhadd8
#define __SSUB8 __ssub8
#define __QSUB8 __qsub8
#define __SHSUB8 __shsub8
#define __USUB8 __usub8
#define __UQSUB8 __uqsub8
#define __UHSUB8 __uhsub8
#define __SADD16 __sadd16
#define __QADD16 __qadd16
#define __SHADD16 __shadd16
#define __UADD16 __uadd16
#define __UQADD16 __uqadd16
#define __UHADD16 __uhadd16
#define __SSUB16 __ssub16
#define __QSUB16 __qsub16
#define __SHSUB16 __shsub16
#define __USUB16 __usub16
#define __UQSUB16 __uqsub16
#define __UHSUB16 __uhsub16
#define __SASX __sasx
#define __QASX __qasx
#define __SHASX __shasx
#define __UASX __uasx
#define __UQASX __uqasx
#define __UHASX __uhasx
#define __SSAX __ssax
#define __QSAX __qsax
#define __SHSAX __shsax
#define __USAX __usax
#define __UQSAX __uqsax
#define __UHSAX __uhsax
#define __USAD8 __usad8
#define __USADA8 __usada8
#define __SSAT16 __ssat16
#define __USAT16 __usat16
#define __UXTB16 __uxtb16
#define __UXTAB16 __uxtab16
#define __SXTB16 __sxtb16
#define __SXTAB16 __sxtab16
#define __SMUAD __smuad
#define __SMUADX __smuadx
#define __SMLAD __smlad
#define __SMLADX __smladx
#define __SMLALD __smlald
#define __SMLALDX __smlaldx
#define __SMUSD __smusd
#define __SMUSDX __smusdx
#define __SMLSD __smlsd
#define __SMLSDX __smlsdx
#define __SMLSLD __smlsld
#define __SMLSLDX __smlsldx
#define __SEL __sel
#define __QADD __qadd
#define __QSUB __qsub
#define __PKHBT(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0x0000FFFFUL) | \
((((uint32_t)(ARG2)) << (ARG3)) & 0xFFFF0000UL) )
#define __PKHTB(ARG1,ARG2,ARG3) ( ((((uint32_t)(ARG1)) ) & 0xFFFF0000UL) | \
((((uint32_t)(ARG2)) >> (ARG3)) & 0x0000FFFFUL) )
#define __SMMLA(ARG1,ARG2,ARG3) ( (int32_t)((((int64_t)(ARG1) * (ARG2)) + \
((int64_t)(ARG3) << 32) ) >> 32))
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHADD16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhadd16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSUB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsub16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHASX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhasx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("ssax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("shsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UQSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uqsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UHSAX(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uhsax %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USAD8(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("usad8 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __USADA8(uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("usada8 %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#define __SSAT16(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
#define __USAT16(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat16 %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("uxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __UXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("uxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTB16(uint32_t op1)
{
uint32_t result;
__ASM volatile ("sxtb16 %0, %1" : "=r" (result) : "r" (op1));
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SXTAB16(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sxtab16 %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUAD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuad %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUADX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smuadx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLAD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlad %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLADX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smladx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALD (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ // Little endian
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else // Big endian
__ASM volatile ("smlald %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLALDX (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ // Little endian
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else // Big endian
__ASM volatile ("smlaldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSD (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMUSDX (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("smusdx %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSD (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsd %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMLSDX (uint32_t op1, uint32_t op2, uint32_t op3)
{
uint32_t result;
__ASM volatile ("smlsdx %0, %1, %2, %3" : "=r" (result) : "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLD (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ // Little endian
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else // Big endian
__ASM volatile ("smlsld %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint64_t __SMLSLDX (uint32_t op1, uint32_t op2, uint64_t acc)
{
union llreg_u{
uint32_t w32[2];
uint64_t w64;
} llr;
llr.w64 = acc;
#ifndef __ARMEB__ // Little endian
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[0]), "=r" (llr.w32[1]): "r" (op1), "r" (op2) , "0" (llr.w32[0]), "1" (llr.w32[1]) );
#else // Big endian
__ASM volatile ("smlsldx %0, %1, %2, %3" : "=r" (llr.w32[1]), "=r" (llr.w32[0]): "r" (op1), "r" (op2) , "0" (llr.w32[1]), "1" (llr.w32[0]) );
#endif
return(llr.w64);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SEL (uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("sel %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QADD(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qadd %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __QSUB(uint32_t op1, uint32_t op2)
{
uint32_t result;
__ASM volatile ("qsub %0, %1, %2" : "=r" (result) : "r" (op1), "r" (op2) );
return(result);
}
#define __PKHBT(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
__ASM ("pkhbt %0, %1, %2, lsl %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
#define __PKHTB(ARG1,ARG2,ARG3) \
({ \
uint32_t __RES, __ARG1 = (ARG1), __ARG2 = (ARG2); \
if (ARG3 == 0) \
__ASM ("pkhtb %0, %1, %2" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2) ); \
else \
__ASM ("pkhtb %0, %1, %2, asr %3" : "=r" (__RES) : "r" (__ARG1), "r" (__ARG2), "I" (ARG3) ); \
__RES; \
})
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __SMMLA (int32_t op1, int32_t op2, int32_t op3)
{
int32_t result;
__ASM volatile ("smmla %0, %1, %2, %3" : "=r" (result): "r" (op1), "r" (op2), "r" (op3) );
return(result);
}
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
#include <cmsis_ccs.h>
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/* not yet supported */
#elif defined ( __CSMC__ ) /*------------------ COSMIC Compiler -------------------*/
/* Cosmic specific functions */
#include <cmsis_csm.h>
#endif
/*@} end of group CMSIS_SIMD_intrinsics */
#ifdef __cplusplus
}
#endif
#endif /* __CORE_CM4_SIMD_H */

View File

@ -0,0 +1,616 @@
/**************************************************************************//**
* @file core_cmFunc.h
* @brief CMSIS Cortex-M Core Function Access Header File
* @version V3.01
* @date 06. March 2012
*
* @note
* Copyright (C) 2009-2012 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __CORE_CMFUNC_H
#define __CORE_CMFUNC_H
/* ########################### Core Function Access ########################### */
/** \ingroup CMSIS_Core_FunctionInterface
\defgroup CMSIS_Core_RegAccFunctions CMSIS Core Register Access Functions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
/* intrinsic void __enable_irq(); */
/* intrinsic void __disable_irq(); */
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
__STATIC_INLINE uint32_t __get_CONTROL(void)
{
register uint32_t __regControl __ASM("control");
return(__regControl);
}
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__STATIC_INLINE void __set_CONTROL(uint32_t control)
{
register uint32_t __regControl __ASM("control");
__regControl = control;
}
/** \brief Get IPSR Register
This function returns the content of the IPSR Register.
\return IPSR Register value
*/
__STATIC_INLINE uint32_t __get_IPSR(void)
{
register uint32_t __regIPSR __ASM("ipsr");
return(__regIPSR);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__STATIC_INLINE uint32_t __get_APSR(void)
{
register uint32_t __regAPSR __ASM("apsr");
return(__regAPSR);
}
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
__STATIC_INLINE uint32_t __get_xPSR(void)
{
register uint32_t __regXPSR __ASM("xpsr");
return(__regXPSR);
}
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t __regProcessStackPointer __ASM("psp");
return(__regProcessStackPointer);
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
register uint32_t __regProcessStackPointer __ASM("psp");
__regProcessStackPointer = topOfProcStack;
}
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t __regMainStackPointer __ASM("msp");
return(__regMainStackPointer);
}
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
register uint32_t __regMainStackPointer __ASM("msp");
__regMainStackPointer = topOfMainStack;
}
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__STATIC_INLINE uint32_t __get_PRIMASK(void)
{
register uint32_t __regPriMask __ASM("primask");
return(__regPriMask);
}
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
register uint32_t __regPriMask __ASM("primask");
__regPriMask = (priMask);
}
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __enable_fault_irq __enable_fiq
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
#define __disable_fault_irq __disable_fiq
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
__STATIC_INLINE uint32_t __get_BASEPRI(void)
{
register uint32_t __regBasePri __ASM("basepri");
return(__regBasePri);
}
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__STATIC_INLINE void __set_BASEPRI(uint32_t basePri)
{
register uint32_t __regBasePri __ASM("basepri");
__regBasePri = (basePri & 0xff);
}
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
register uint32_t __regFaultMask __ASM("faultmask");
return(__regFaultMask);
}
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
register uint32_t __regFaultMask __ASM("faultmask");
__regFaultMask = (faultMask & (uint32_t)1);
}
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
return(__regfpscr);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
register uint32_t __regfpscr __ASM("fpscr");
__regfpscr = (fpscr);
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
#include <cmsis_ccs.h>
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/** \brief Enable IRQ Interrupts
This function enables IRQ interrupts by clearing the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_irq(void)
{
__ASM volatile ("cpsie i");
}
/** \brief Disable IRQ Interrupts
This function disables IRQ interrupts by setting the I-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_irq(void)
{
__ASM volatile ("cpsid i");
}
/** \brief Get Control Register
This function returns the content of the Control Register.
\return Control Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_CONTROL(void)
{
uint32_t result;
__ASM volatile ("MRS %0, control" : "=r" (result) );
return(result);
}
/** \brief Set Control Register
This function writes the given value to the Control Register.
\param [in] control Control Register value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_CONTROL(uint32_t control)
{
__ASM volatile ("MSR control, %0" : : "r" (control) );
}
/** \brief Get IPSR Register
This function returns the content of the IPSR Register.
\return IPSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_IPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, ipsr" : "=r" (result) );
return(result);
}
/** \brief Get APSR Register
This function returns the content of the APSR Register.
\return APSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_APSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, apsr" : "=r" (result) );
return(result);
}
/** \brief Get xPSR Register
This function returns the content of the xPSR Register.
\return xPSR Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_xPSR(void)
{
uint32_t result;
__ASM volatile ("MRS %0, xpsr" : "=r" (result) );
return(result);
}
/** \brief Get Process Stack Pointer
This function returns the current value of the Process Stack Pointer (PSP).
\return PSP Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, psp\n" : "=r" (result) );
return(result);
}
/** \brief Set Process Stack Pointer
This function assigns the given value to the Process Stack Pointer (PSP).
\param [in] topOfProcStack Process Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PSP(uint32_t topOfProcStack)
{
__ASM volatile ("MSR psp, %0\n" : : "r" (topOfProcStack) );
}
/** \brief Get Main Stack Pointer
This function returns the current value of the Main Stack Pointer (MSP).
\return MSP Register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_MSP(void)
{
register uint32_t result;
__ASM volatile ("MRS %0, msp\n" : "=r" (result) );
return(result);
}
/** \brief Set Main Stack Pointer
This function assigns the given value to the Main Stack Pointer (MSP).
\param [in] topOfMainStack Main Stack Pointer value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_MSP(uint32_t topOfMainStack)
{
__ASM volatile ("MSR msp, %0\n" : : "r" (topOfMainStack) );
}
/** \brief Get Priority Mask
This function returns the current state of the priority mask bit from the Priority Mask Register.
\return Priority Mask value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_PRIMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, primask" : "=r" (result) );
return(result);
}
/** \brief Set Priority Mask
This function assigns the given value to the Priority Mask Register.
\param [in] priMask Priority Mask
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_PRIMASK(uint32_t priMask)
{
__ASM volatile ("MSR primask, %0" : : "r" (priMask) );
}
#if (__CORTEX_M >= 0x03)
/** \brief Enable FIQ
This function enables FIQ interrupts by clearing the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __enable_fault_irq(void)
{
__ASM volatile ("cpsie f");
}
/** \brief Disable FIQ
This function disables FIQ interrupts by setting the F-bit in the CPSR.
Can only be executed in Privileged modes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __disable_fault_irq(void)
{
__ASM volatile ("cpsid f");
}
/** \brief Get Base Priority
This function returns the current value of the Base Priority register.
\return Base Priority register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_BASEPRI(void)
{
uint32_t result;
__ASM volatile ("MRS %0, basepri_max" : "=r" (result) );
return(result);
}
/** \brief Set Base Priority
This function assigns the given value to the Base Priority register.
\param [in] basePri Base Priority value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_BASEPRI(uint32_t value)
{
__ASM volatile ("MSR basepri, %0" : : "r" (value) );
}
/** \brief Get Fault Mask
This function returns the current value of the Fault Mask register.
\return Fault Mask register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FAULTMASK(void)
{
uint32_t result;
__ASM volatile ("MRS %0, faultmask" : "=r" (result) );
return(result);
}
/** \brief Set Fault Mask
This function assigns the given value to the Fault Mask register.
\param [in] faultMask Fault Mask value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FAULTMASK(uint32_t faultMask)
{
__ASM volatile ("MSR faultmask, %0" : : "r" (faultMask) );
}
#endif /* (__CORTEX_M >= 0x03) */
#if (__CORTEX_M == 0x04)
/** \brief Get FPSCR
This function returns the current value of the Floating Point Status/Control register.
\return Floating Point Status/Control register value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __get_FPSCR(void)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
uint32_t result;
__ASM volatile ("VMRS %0, fpscr" : "=r" (result) );
return(result);
#else
return(0);
#endif
}
/** \brief Set FPSCR
This function assigns the given value to the Floating Point Status/Control register.
\param [in] fpscr Floating Point Status/Control value to set
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __set_FPSCR(uint32_t fpscr)
{
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
__ASM volatile ("VMSR fpscr, %0" : : "r" (fpscr) );
#endif
}
#endif /* (__CORTEX_M == 0x04) */
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all instrinsics,
* Including the CMSIS ones.
*/
#endif
/*@} end of CMSIS_Core_RegAccFunctions */
#endif /* __CORE_CMFUNC_H */

View File

@ -0,0 +1,618 @@
/**************************************************************************//**
* @file core_cmInstr.h
* @brief CMSIS Cortex-M Core Instruction Access Header File
* @version V3.01
* @date 06. March 2012
*
* @note
* Copyright (C) 2009-2012 ARM Limited. All rights reserved.
*
* @par
* ARM Limited (ARM) is supplying this software for use with Cortex-M
* processor based microcontrollers. This file can be freely distributed
* within development tools that are supporting such ARM based processors.
*
* @par
* THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
* OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
* ARM SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR
* CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
*
******************************************************************************/
#ifndef __CORE_CMINSTR_H
#define __CORE_CMINSTR_H
/* ########################## Core Instruction Access ######################### */
/** \defgroup CMSIS_Core_InstructionInterface CMSIS Core Instruction Interface
Access to dedicated instructions
@{
*/
#if defined ( __CC_ARM ) /*------------------RealView Compiler -----------------*/
/* ARM armcc specific functions */
#if (__ARMCC_VERSION < 400677)
#error "Please use ARM Compiler Toolchain V4.0.677 or later!"
#endif
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
#define __NOP __nop
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
#define __WFI __wfi
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
#define __WFE __wfe
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
#define __SEV __sev
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
#define __ISB() __isb(0xF)
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
#define __DSB() __dsb(0xF)
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
#define __DMB() __dmb(0xF)
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __REV __rev
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__((section(".rev16_text"))) __STATIC_INLINE __ASM uint32_t __REV16(uint32_t value)
{
rev16 r0, r0
bx lr
}
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__((section(".revsh_text"))) __STATIC_INLINE __ASM int32_t __REVSH(int32_t value)
{
revsh r0, r0
bx lr
}
/** \brief Rotate Right in unsigned value (32 bit)
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] value Value to rotate
\param [in] value Number of Bits to rotate
\return Rotated value
*/
#define __ROR __ror
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
#define __RBIT __rbit
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
#define __LDREXB(ptr) ((uint8_t ) __ldrex(ptr))
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
#define __LDREXH(ptr) ((uint16_t) __ldrex(ptr))
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
#define __LDREXW(ptr) ((uint32_t ) __ldrex(ptr))
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXB(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXH(value, ptr) __strex(value, ptr)
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
#define __STREXW(value, ptr) __strex(value, ptr)
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
#define __CLREX __clrex
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT __ssat
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT __usat
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
#define __CLZ __clz
#endif /* (__CORTEX_M >= 0x03) */
#elif defined ( __ICCARM__ ) /*------------------ ICC Compiler -------------------*/
/* IAR iccarm specific functions */
#include <cmsis_iar.h>
#elif defined ( __TMS470__ ) /*---------------- TI CCS Compiler ------------------*/
/* TI CCS specific functions */
#include <cmsis_ccs.h>
#elif defined ( __GNUC__ ) /*------------------ GNU Compiler ---------------------*/
/* GNU gcc specific functions */
/** \brief No Operation
No Operation does nothing. This instruction can be used for code alignment purposes.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __NOP(void)
{
__ASM volatile ("nop");
}
/** \brief Wait For Interrupt
Wait For Interrupt is a hint instruction that suspends execution
until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFI(void)
{
__ASM volatile ("wfi");
}
/** \brief Wait For Event
Wait For Event is a hint instruction that permits the processor to enter
a low-power state until one of a number of events occurs.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __WFE(void)
{
__ASM volatile ("wfe");
}
/** \brief Send Event
Send Event is a hint instruction. It causes an event to be signaled to the CPU.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __SEV(void)
{
__ASM volatile ("sev");
}
/** \brief Instruction Synchronization Barrier
Instruction Synchronization Barrier flushes the pipeline in the processor,
so that all instructions following the ISB are fetched from cache or
memory, after the instruction has been completed.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __ISB(void)
{
__ASM volatile ("isb");
}
/** \brief Data Synchronization Barrier
This function acts as a special kind of Data Memory Barrier.
It completes when all explicit memory accesses before this instruction complete.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DSB(void)
{
__ASM volatile ("dsb");
}
/** \brief Data Memory Barrier
This function ensures the apparent order of the explicit memory operations before
and after the instruction, without ensuring their completion.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __DMB(void)
{
__ASM volatile ("dmb");
}
/** \brief Reverse byte order (32 bit)
This function reverses the byte order in integer value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Reverse byte order (16 bit)
This function reverses the byte order in two unsigned short values.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __REV16(uint32_t value)
{
uint32_t result;
__ASM volatile ("rev16 %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Reverse byte order in signed short value
This function reverses the byte order in a signed short value with sign extension to integer.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE int32_t __REVSH(int32_t value)
{
uint32_t result;
__ASM volatile ("revsh %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief Rotate Right in unsigned value (32 bit)
This function Rotate Right (immediate) provides the value of the contents of a register rotated by a variable number of bits.
\param [in] value Value to rotate
\param [in] value Number of Bits to rotate
\return Rotated value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __ROR(uint32_t op1, uint32_t op2)
{
__ASM volatile ("ror %0, %0, %1" : "+r" (op1) : "r" (op2) );
return(op1);
}
#if (__CORTEX_M >= 0x03)
/** \brief Reverse bit order of value
This function reverses the bit order of the given value.
\param [in] value Value to reverse
\return Reversed value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __RBIT(uint32_t value)
{
uint32_t result;
__ASM volatile ("rbit %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
/** \brief LDR Exclusive (8 bit)
This function performs a exclusive LDR command for 8 bit value.
\param [in] ptr Pointer to data
\return value of type uint8_t at (*ptr)
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __LDREXB(volatile uint8_t *addr)
{
uint8_t result;
__ASM volatile ("ldrexb %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief LDR Exclusive (16 bit)
This function performs a exclusive LDR command for 16 bit values.
\param [in] ptr Pointer to data
\return value of type uint16_t at (*ptr)
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint16_t __LDREXH(volatile uint16_t *addr)
{
uint16_t result;
__ASM volatile ("ldrexh %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief LDR Exclusive (32 bit)
This function performs a exclusive LDR command for 32 bit values.
\param [in] ptr Pointer to data
\return value of type uint32_t at (*ptr)
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __LDREXW(volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("ldrex %0, [%1]" : "=r" (result) : "r" (addr) );
return(result);
}
/** \brief STR Exclusive (8 bit)
This function performs a exclusive STR command for 8 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXB(uint8_t value, volatile uint8_t *addr)
{
uint32_t result;
__ASM volatile ("strexb %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief STR Exclusive (16 bit)
This function performs a exclusive STR command for 16 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXH(uint16_t value, volatile uint16_t *addr)
{
uint32_t result;
__ASM volatile ("strexh %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief STR Exclusive (32 bit)
This function performs a exclusive STR command for 32 bit values.
\param [in] value Value to store
\param [in] ptr Pointer to location
\return 0 Function succeeded
\return 1 Function failed
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint32_t __STREXW(uint32_t value, volatile uint32_t *addr)
{
uint32_t result;
__ASM volatile ("strex %0, %2, [%1]" : "=&r" (result) : "r" (addr), "r" (value) );
return(result);
}
/** \brief Remove the exclusive lock
This function removes the exclusive lock which is created by LDREX.
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE void __CLREX(void)
{
__ASM volatile ("clrex");
}
/** \brief Signed Saturate
This function saturates a signed value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (1..32)
\return Saturated value
*/
#define __SSAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("ssat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Unsigned Saturate
This function saturates an unsigned value.
\param [in] value Value to be saturated
\param [in] sat Bit position to saturate to (0..31)
\return Saturated value
*/
#define __USAT(ARG1,ARG2) \
({ \
uint32_t __RES, __ARG1 = (ARG1); \
__ASM ("usat %0, %1, %2" : "=r" (__RES) : "I" (ARG2), "r" (__ARG1) ); \
__RES; \
})
/** \brief Count leading zeros
This function counts the number of leading zeros of a data value.
\param [in] value Value to count the leading zeros
\return number of leading zeros in value
*/
__attribute__( ( always_inline ) ) __STATIC_INLINE uint8_t __CLZ(uint32_t value)
{
uint8_t result;
__ASM volatile ("clz %0, %1" : "=r" (result) : "r" (value) );
return(result);
}
#endif /* (__CORTEX_M >= 0x03) */
#elif defined ( __TASKING__ ) /*------------------ TASKING Compiler --------------*/
/* TASKING carm specific functions */
/*
* The CMSIS functions have been implemented as intrinsics in the compiler.
* Please use "carm -?i" to get an up to date list of all intrinsics,
* Including the CMSIS ones.
*/
#endif
/*@}*/ /* end of group CMSIS_Core_InstructionInterface */
#endif /* __CORE_CMINSTR_H */

View File

@ -0,0 +1,371 @@
/*!
\file gd32f30x_adc.h
\brief definitions for the ADC
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_ADC_H
#define GD32F30X_ADC_H
#include "gd32f30x.h"
/* ADC definitions */
#define ADC0 ADC_BASE
#define ADC1 (ADC_BASE + 0x400U)
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
#define ADC2 (ADC_BASE + 0x1800U)
#endif
/* registers definitions */
#define ADC_STAT(adcx) REG32((adcx) + 0x00U) /*!< ADC status register */
#define ADC_CTL0(adcx) REG32((adcx) + 0x04U) /*!< ADC control register 0 */
#define ADC_CTL1(adcx) REG32((adcx) + 0x08U) /*!< ADC control register 1 */
#define ADC_SAMPT0(adcx) REG32((adcx) + 0x0CU) /*!< ADC sampling time register 0 */
#define ADC_SAMPT1(adcx) REG32((adcx) + 0x10U) /*!< ADC sampling time register 1 */
#define ADC_IOFF0(adcx) REG32((adcx) + 0x14U) /*!< ADC inserted channel data offset register 0 */
#define ADC_IOFF1(adcx) REG32((adcx) + 0x18U) /*!< ADC inserted channel data offset register 1 */
#define ADC_IOFF2(adcx) REG32((adcx) + 0x1CU) /*!< ADC inserted channel data offset register 2 */
#define ADC_IOFF3(adcx) REG32((adcx) + 0x20U) /*!< ADC inserted channel data offset register 3 */
#define ADC_WDHT(adcx) REG32((adcx) + 0x24U) /*!< ADC watchdog high threshold register */
#define ADC_WDLT(adcx) REG32((adcx) + 0x28U) /*!< ADC watchdog low threshold register */
#define ADC_RSQ0(adcx) REG32((adcx) + 0x2CU) /*!< ADC regular sequence register 0 */
#define ADC_RSQ1(adcx) REG32((adcx) + 0x30U) /*!< ADC regular sequence register 1 */
#define ADC_RSQ2(adcx) REG32((adcx) + 0x34U) /*!< ADC regular sequence register 2 */
#define ADC_ISQ(adcx) REG32((adcx) + 0x38U) /*!< ADC inserted sequence register */
#define ADC_IDATA0(adcx) REG32((adcx) + 0x3CU) /*!< ADC inserted data register 0 */
#define ADC_IDATA1(adcx) REG32((adcx) + 0x40U) /*!< ADC inserted data register 1 */
#define ADC_IDATA2(adcx) REG32((adcx) + 0x44U) /*!< ADC inserted data register 2 */
#define ADC_IDATA3(adcx) REG32((adcx) + 0x48U) /*!< ADC inserted data register 3 */
#define ADC_RDATA(adcx) REG32((adcx) + 0x4CU) /*!< ADC regular data register */
#define ADC_OVSAMPCTL(adcx) REG32((adcx) + 0x80U) /*!< ADC oversampling control register */
/* bits definitions */
/* ADC_STAT */
#define ADC_STAT_WDE BIT(0) /*!< analog watchdog event flag */
#define ADC_STAT_EOC BIT(1) /*!< end of conversion */
#define ADC_STAT_EOIC BIT(2) /*!< inserted channel end of conversion */
#define ADC_STAT_STIC BIT(3) /*!< inserted channel start flag */
#define ADC_STAT_STRC BIT(4) /*!< regular channel start flag */
/* ADC_CTL0 */
#define ADC_CTL0_WDCHSEL BITS(0,4) /*!< analog watchdog channel select bits */
#define ADC_CTL0_EOCIE BIT(5) /*!< interrupt enable for EOC */
#define ADC_CTL0_WDEIE BIT(6) /*!< analog watchdog interrupt enable */
#define ADC_CTL0_EOICIE BIT(7) /*!< interrupt enable for inserted channels */
#define ADC_CTL0_SM BIT(8) /*!< scan mode */
#define ADC_CTL0_WDSC BIT(9) /*!< when in scan mode, analog watchdog is effective on a single channel */
#define ADC_CTL0_ICA BIT(10) /*!< automatic inserted group conversion */
#define ADC_CTL0_DISRC BIT(11) /*!< discontinuous mode on regular channels */
#define ADC_CTL0_DISIC BIT(12) /*!< discontinuous mode on inserted channels */
#define ADC_CTL0_DISNUM BITS(13,15) /*!< discontinuous mode channel count */
#define ADC_CTL0_SYNCM BITS(16,19) /*!< sync mode selection */
#define ADC_CTL0_IWDEN BIT(22) /*!< analog watchdog enable on inserted channels */
#define ADC_CTL0_RWDEN BIT(23) /*!< analog watchdog enable on regular channels */
#define ADC_CTL0_DRES BITS(24,25) /*!< ADC data resolution */
/* ADC_CTL1 */
#define ADC_CTL1_ADCON BIT(0) /*!< ADC converter on */
#define ADC_CTL1_CTN BIT(1) /*!< continuous conversion */
#define ADC_CTL1_CLB BIT(2) /*!< ADC calibration */
#define ADC_CTL1_RSTCLB BIT(3) /*!< reset calibration */
#define ADC_CTL1_DMA BIT(8) /*!< direct memory access mode */
#define ADC_CTL1_DAL BIT(11) /*!< data alignment */
#define ADC_CTL1_ETSIC BITS(12,14) /*!< external trigger select for inserted channel */
#define ADC_CTL1_ETEIC BIT(15) /*!< external trigger enable for inserted channel */
#define ADC_CTL1_ETSRC BITS(17,19) /*!< external trigger select for regular channel */
#define ADC_CTL1_ETERC BIT(20) /*!< external trigger conversion mode for inserted channels */
#define ADC_CTL1_SWICST BIT(21) /*!< start on inserted channel */
#define ADC_CTL1_SWRCST BIT(22) /*!< start on regular channel */
#define ADC_CTL1_TSVREN BIT(23) /*!< channel 16 and 17 enable of ADC0 */
/* ADC_SAMPTx x=0..1 */
#define ADC_SAMPTX_SPTN BITS(0,2) /*!< channel x sample time selection */
/* ADC_IOFFx x=0..3 */
#define ADC_IOFFX_IOFF BITS(0,11) /*!< data offset for inserted channel x */
/* ADC_WDHT */
#define ADC_WDHT_WDHT BITS(0,11) /*!< analog watchdog high threshold */
/* ADC_WDLT */
#define ADC_WDLT_WDLT BITS(0,11) /*!< analog watchdog low threshold */
/* ADC_RSQx */
#define ADC_RSQX_RSQN BITS(0,4) /*!< x conversion in regular sequence */
#define ADC_RSQ0_RL BITS(20,23) /*!< regular channel sequence length */
/* ADC_ISQ */
#define ADC_ISQ_ISQN BITS(0,4) /*!< x conversion in regular sequence */
#define ADC_ISQ_IL BITS(20,21) /*!< inserted sequence length */
/* ADC_IDATAx x=0..3*/
#define ADC_IDATAX_IDATAN BITS(0,15) /*!< inserted data x */
/* ADC_RDATA */
#define ADC_RDATA_RDATA BITS(0,15) /*!< regular data */
#define ADC_RDATA_ADC1RDTR BITS(16,31) /*!< ADC1 regular channel data */
/* ADC_OVSAMPCTL */
#define ADC_OVSAMPCTL_OVSEN BIT(0) /*!< oversampling enable */
#define ADC_OVSAMPCTL_OVSR BITS(2,4) /*!< oversampling ratio */
#define ADC_OVSAMPCTL_OVSS BITS(5,8) /*!< oversampling shift */
#define ADC_OVSAMPCTL_TOVS BIT(9) /*!< triggered oversampling */
#define ADC_OVSAMPCTL_DRES BITS(12,13) /*!< oversampling shift */
/* constants definitions */
/* adc_stat register value */
#define ADC_FLAG_WDE ADC_STAT_WDE /*!< analog watchdog event flag */
#define ADC_FLAG_EOC ADC_STAT_EOC /*!< end of conversion */
#define ADC_FLAG_EOIC ADC_STAT_EOIC /*!< inserted channel end of conversion */
#define ADC_FLAG_STIC ADC_STAT_STIC /*!< inserted channel start flag */
#define ADC_FLAG_STRC ADC_STAT_STRC /*!< regular channel start flag */
/* adc_ctl0 register value */
#define CTL0_DISNUM(regval) (BITS(13,15) & ((uint32_t)(regval) << 13)) /*!< write value to ADC_CTL0_DISNUM bit field */
#define ADC_SCAN_MODE ADC_CTL0_SM /*!< scan mode */
#define ADC_INSERTED_CHANNEL_AUTO ADC_CTL0_ICA /*!< inserted channel group convert automatically */
#define CTL0_SYNCM(regval) (BITS(16,19) & ((uint32_t)(regval) << 16)) /*!< write value to ADC_CTL0_SYNCM bit field */
#define ADC_MODE_FREE CTL0_SYNCM(0) /*!< all the ADCs work independently */
#define ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL CTL0_SYNCM(1) /*!< ADC0 and ADC1 work in combined regular parallel + inserted parallel mode */
#define ADC_DAUL_REGULAL_PARALLEL_INSERTED_ROTATION CTL0_SYNCM(2) /*!< ADC0 and ADC1 work in combined regular parallel + trigger rotation mode */
#define ADC_DAUL_INSERTED_PARALLEL_REGULAL_FOLLOWUP_FAST CTL0_SYNCM(3) /*!< ADC0 and ADC1 work in combined inserted parallel + follow-up fast mode */
#define ADC_DAUL_INSERTED_PARALLEL_REGULAL_FOLLOWUP_SLOW CTL0_SYNCM(4) /*!< ADC0 and ADC1 work in combined inserted parallel + follow-up slow mode */
#define ADC_DAUL_INSERTED_PARALLEL CTL0_SYNCM(5) /*!< ADC0 and ADC1 work in inserted parallel mode only */
#define ADC_DAUL_REGULAL_PARALLEL CTL0_SYNCM(6) /*!< ADC0 and ADC1 work in regular parallel mode only */
#define ADC_DAUL_REGULAL_FOLLOWUP_FAST CTL0_SYNCM(7) /*!< ADC0 and ADC1 work in follow-up fast mode only */
#define ADC_DAUL_REGULAL_FOLLOWUP_SLOW CTL0_SYNCM(8) /*!< ADC0 and ADC1 work in follow-up slow mode only */
#define ADC_DAUL_INSERTED_TRRIGGER_ROTATION CTL0_SYNCM(9) /*!< ADC0 and ADC1 work in trigger rotation mode only */
/* adc_ctl1 register value */
#define ADC_DATAALIGN_RIGHT ((uint32_t)0x00000000U) /*!< LSB alignment */
#define ADC_DATAALIGN_LEFT ADC_CTL1_DAL /*!< MSB alignment */
#define ADC_CONTINUOUS_MODE ADC_CTL1_CTN /*!< continuous mode */
#define CTL1_ETSRC(regval) (BITS(17,19) & ((uint32_t)(regval) << 17)) /*!< write value to ADC_CTL1_ETSRC bit field */
#define ADC0_1_EXTTRIG_REGULAR_T0_CH0 CTL1_ETSRC(0) /*!< timer 0 CC0 event select */
#define ADC0_1_EXTTRIG_REGULAR_T0_CH1 CTL1_ETSRC(1) /*!< timer 0 CC1 event select */
#define ADC0_1_EXTTRIG_REGULAR_T0_CH2 CTL1_ETSRC(2) /*!< timer 0 CC2 event select */
#define ADC0_1_EXTTRIG_REGULAR_T1_CH1 CTL1_ETSRC(3) /*!< timer 1 CC1 event select */
#define ADC0_1_EXTTRIG_REGULAR_T2_TRGO CTL1_ETSRC(4) /*!< timer 2 TRGO event select */
#define ADC0_1_EXTTRIG_REGULAR_T3_CH3 CTL1_ETSRC(5) /*!< timer 3 CC3 event select */
#define ADC0_1_EXTTRIG_REGULAR_T7_TRGO CTL1_ETSRC(6) /*!< timer 7 TRGO event select */
#define ADC0_1_EXTTRIG_REGULAR_EXTI_11 CTL1_ETSRC(6) /*!< external interrupt line 11 */
#define ADC0_1_2_EXTTRIG_REGULAR_NONE CTL1_ETSRC(7) /*!< software trigger */
#define ADC2_EXTTRIG_REGULAR_T2_CH0 CTL1_ETSRC(0) /*!< timer 2 CC0 event select */
#define ADC2_EXTTRIG_REGULAR_T1_CH2 CTL1_ETSRC(1) /*!< timer 1 CC2 event select */
#define ADC2_EXTTRIG_REGULAR_T0_CH2 CTL1_ETSRC(2) /*!< timer 0 CC2 event select */
#define ADC2_EXTTRIG_REGULAR_T7_CH0 CTL1_ETSRC(3) /*!< timer 7 CC0 event select */
#define ADC2_EXTTRIG_REGULAR_T7_TRGO CTL1_ETSRC(4) /*!< timer 7 TRGO event select */
#define ADC2_EXTTRIG_REGULAR_T4_CH0 CTL1_ETSRC(5) /*!< timer 4 CC0 event select */
#define ADC2_EXTTRIG_REGULAR_T4_CH2 CTL1_ETSRC(6) /*!< timer 4 CC2 event select */
#define CTL1_ETSIC(regval) (BITS(12,14) & ((uint32_t)(regval) << 12)) /*!< write value to ADC_CTL1_ETSIC bit field */
#define ADC0_1_EXTTRIG_INSERTED_T0_TRGO CTL1_ETSIC(0) /*!< timer 0 TRGO event select */
#define ADC0_1_EXTTRIG_INSERTED_T0_CH3 CTL1_ETSIC(1) /*!< timer 0 CC3 event select */
#define ADC0_1_EXTTRIG_INSERTED_T1_TRGO CTL1_ETSIC(2) /*!< timer 1 TRGO event select */
#define ADC0_1_EXTTRIG_INSERTED_T1_CH0 CTL1_ETSIC(3) /*!< timer 1 CC0 event select */
#define ADC0_1_EXTTRIG_INSERTED_T2_CH3 CTL1_ETSIC(4) /*!< timer 2 CC3 event select */
#define ADC0_1_EXTTRIG_INSERTED_T3_TRGO CTL1_ETSIC(5) /*!< timer 3 TRGO event select */
#define ADC0_1_EXTTRIG_INSERTED_EXTI_15 CTL1_ETSIC(6) /*!< external interrupt line 15 */
#define ADC0_1_EXTTRIG_INSERTED_T7_CH3 CTL1_ETSIC(6) /*!< timer 7 CC3 event select */
#define ADC0_1_2_EXTTRIG_INSERTED_NONE CTL1_ETSIC(7) /*!< software trigger */
#define ADC2_EXTTRIG_INSERTED_T0_TRGO CTL1_ETSIC(0) /*!< timer 0 TRGO event select */
#define ADC2_EXTTRIG_INSERTED_T0_CH3 CTL1_ETSIC(1) /*!< timer 0 CC3 event select */
#define ADC2_EXTTRIG_INSERTED_T3_CH2 CTL1_ETSIC(2) /*!< timer 3 CC2 event select */
#define ADC2_EXTTRIG_INSERTED_T7_CH1 CTL1_ETSIC(3) /*!< timer 7 CC1 event select */
#define ADC2_EXTTRIG_INSERTED_T7_CH3 CTL1_ETSIC(4) /*!< timer 7 CC3 event select */
#define ADC2_EXTTRIG_INSERTED_T4_TRGO CTL1_ETSIC(5) /*!< timer 4 TRGO event select */
#define ADC2_EXTTRIG_INSERTED_T4_CH3 CTL1_ETSIC(6) /*!< timer 4 CC3 event select */
/* adc_samptx register value */
#define SAMPTX_SPT(regval) (BITS(0,2) & ((uint32_t)(regval) << 0)) /*!< write value to ADC_SAMPTX_SPT bit field */
#define ADC_SAMPLETIME_1POINT5 SAMPTX_SPT(0) /*!< 1.5 sampling cycles */
#define ADC_SAMPLETIME_7POINT5 SAMPTX_SPT(1) /*!< 7.5 sampling cycles */
#define ADC_SAMPLETIME_13POINT5 SAMPTX_SPT(2) /*!< 13.5 sampling cycles */
#define ADC_SAMPLETIME_28POINT5 SAMPTX_SPT(3) /*!< 28.5 sampling cycles */
#define ADC_SAMPLETIME_41POINT5 SAMPTX_SPT(4) /*!< 41.5 sampling cycles */
#define ADC_SAMPLETIME_55POINT5 SAMPTX_SPT(5) /*!< 55.5 sampling cycles */
#define ADC_SAMPLETIME_71POINT5 SAMPTX_SPT(6) /*!< 71.5 sampling cycles */
#define ADC_SAMPLETIME_239POINT5 SAMPTX_SPT(7) /*!< 239.5 sampling cycles */
/* adc_ioffx register value */
#define IOFFX_IOFF(regval) (BITS(0,11) & ((uint32_t)(regval) << 0)) /*!< write value to ADC_IOFFX_IOFF bit field */
/* adc_wdht register value */
#define WDHT_WDHT(regval) (BITS(0,11) & ((uint32_t)(regval) << 0)) /*!< write value to ADC_WDHT_WDHT bit field */
/* adc_wdlt register value */
#define WDLT_WDLT(regval) (BITS(0,11) & ((uint32_t)(regval) << 0)) /*!< write value to ADC_WDLT_WDLT bit field */
/* adc_rsqx register value */
#define RSQ0_RL(regval) (BITS(20,23) & ((uint32_t)(regval) << 20)) /*!< write value to ADC_RSQ0_RL bit field */
/* adc_isq register value */
#define ISQ_IL(regval) (BITS(20,21) & ((uint32_t)(regval) << 20)) /*!< write value to ADC_ISQ_IL bit field */
/* adc_ovsampctl register value */
#define OVSAMPCTL_DRES(regval) (BITS(12,13) & ((uint32_t)(regval) << 12)) /*!< write value to ADC_OVSAMPCTL_DRES bit field */
#define ADC_RESOLUTION_12B OVSAMPCTL_DRES(0) /*!< 12-bit ADC resolution */
#define ADC_RESOLUTION_10B OVSAMPCTL_DRES(1) /*!< 10-bit ADC resolution */
#define ADC_RESOLUTION_8B OVSAMPCTL_DRES(2) /*!< 8-bit ADC resolution */
#define ADC_RESOLUTION_6B OVSAMPCTL_DRES(3) /*!< 6-bit ADC resolution */
#define OVSAMPCTL_OVSS(regval) (BITS(5,8) & ((uint32_t)(regval) << 5)) /*!< write value to ADC_OVSAMPCTL_OVSS bit field */
#define ADC_OVERSAMPLING_SHIFT_NONE OVSAMPCTL_OVSS(0) /*!< no oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_1B OVSAMPCTL_OVSS(1) /*!< 1-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_2B OVSAMPCTL_OVSS(2) /*!< 2-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_3B OVSAMPCTL_OVSS(3) /*!< 3-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_4B OVSAMPCTL_OVSS(4) /*!< 4-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_5B OVSAMPCTL_OVSS(5) /*!< 5-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_6B OVSAMPCTL_OVSS(6) /*!< 6-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_7B OVSAMPCTL_OVSS(7) /*!< 7-bit oversampling shift */
#define ADC_OVERSAMPLING_SHIFT_8B OVSAMPCTL_OVSS(8) /*!< 8-bit oversampling shift */
#define OVSAMPCTL_OVSR(regval) (BITS(2,4) & ((uint32_t)(regval) << 2)) /*!< write value to ADC_OVSAMPCTL_OVSR bit field */
#define ADC_OVERSAMPLING_RATIO_MUL2 OVSAMPCTL_OVSR(0) /*!< oversampling ratio multiple 2 */
#define ADC_OVERSAMPLING_RATIO_MUL4 OVSAMPCTL_OVSR(1) /*!< oversampling ratio multiple 4 */
#define ADC_OVERSAMPLING_RATIO_MUL8 OVSAMPCTL_OVSR(2) /*!< oversampling ratio multiple 8 */
#define ADC_OVERSAMPLING_RATIO_MUL16 OVSAMPCTL_OVSR(3) /*!< oversampling ratio multiple 16 */
#define ADC_OVERSAMPLING_RATIO_MUL32 OVSAMPCTL_OVSR(4) /*!< oversampling ratio multiple 32 */
#define ADC_OVERSAMPLING_RATIO_MUL64 OVSAMPCTL_OVSR(5) /*!< oversampling ratio multiple 64 */
#define ADC_OVERSAMPLING_RATIO_MUL128 OVSAMPCTL_OVSR(6) /*!< oversampling ratio multiple 128 */
#define ADC_OVERSAMPLING_RATIO_MUL256 OVSAMPCTL_OVSR(7) /*!< oversampling ratio multiple 256 */
#define ADC_OVERSAMPLING_ALL_CONVERT 0U /*!< all oversampled conversions for a channel are done consecutively after a trigger */
#define ADC_OVERSAMPLING_ONE_CONVERT 1U /*!< each oversampled conversion for a channel needs a trigger */
/* ADC channel group definitions */
#define ADC_REGULAR_CHANNEL ((uint8_t)0x01U) /*!< adc regular channel group */
#define ADC_INSERTED_CHANNEL ((uint8_t)0x02U) /*!< adc inserted channel group */
#define ADC_REGULAR_INSERTED_CHANNEL ((uint8_t)0x03U) /*!< both regular and inserted channel group */
#define ADC_CHANNEL_DISCON_DISABLE ((uint8_t)0x04U) /*!< disable discontinuous mode of regular & inserted channel */
/* ADC inserted channel definitions */
#define ADC_INSERTED_CHANNEL_0 ((uint8_t)0x00U) /*!< adc inserted channel 0 */
#define ADC_INSERTED_CHANNEL_1 ((uint8_t)0x01U) /*!< adc inserted channel 1 */
#define ADC_INSERTED_CHANNEL_2 ((uint8_t)0x02U) /*!< adc inserted channel 2 */
#define ADC_INSERTED_CHANNEL_3 ((uint8_t)0x03U) /*!< adc inserted channel 3 */
/* ADC channel definitions */
#define ADC_CHANNEL_0 ((uint8_t)0x00U) /*!< ADC channel 0 */
#define ADC_CHANNEL_1 ((uint8_t)0x01U) /*!< ADC channel 1 */
#define ADC_CHANNEL_2 ((uint8_t)0x02U) /*!< ADC channel 2 */
#define ADC_CHANNEL_3 ((uint8_t)0x03U) /*!< ADC channel 3 */
#define ADC_CHANNEL_4 ((uint8_t)0x04U) /*!< ADC channel 4 */
#define ADC_CHANNEL_5 ((uint8_t)0x05U) /*!< ADC channel 5 */
#define ADC_CHANNEL_6 ((uint8_t)0x06U) /*!< ADC channel 6 */
#define ADC_CHANNEL_7 ((uint8_t)0x07U) /*!< ADC channel 7 */
#define ADC_CHANNEL_8 ((uint8_t)0x08U) /*!< ADC channel 8 */
#define ADC_CHANNEL_9 ((uint8_t)0x09U) /*!< ADC channel 9 */
#define ADC_CHANNEL_10 ((uint8_t)0x0AU) /*!< ADC channel 10 */
#define ADC_CHANNEL_11 ((uint8_t)0x0BU) /*!< ADC channel 11 */
#define ADC_CHANNEL_12 ((uint8_t)0x0CU) /*!< ADC channel 12 */
#define ADC_CHANNEL_13 ((uint8_t)0x0DU) /*!< ADC channel 13 */
#define ADC_CHANNEL_14 ((uint8_t)0x0EU) /*!< ADC channel 14 */
#define ADC_CHANNEL_15 ((uint8_t)0x0FU) /*!< ADC channel 15 */
#define ADC_CHANNEL_16 ((uint8_t)0x10U) /*!< ADC channel 16 */
#define ADC_CHANNEL_17 ((uint8_t)0x11U) /*!< ADC channel 17 */
/* ADC interrupt */
#define ADC_INT_WDE ADC_STAT_WDE /*!< analog watchdog event interrupt */
#define ADC_INT_EOC ADC_STAT_EOC /*!< end of group conversion interrupt */
#define ADC_INT_EOIC ADC_STAT_EOIC /*!< end of inserted group conversion interrupt */
/* ADC interrupt flag */
#define ADC_INT_FLAG_WDE ADC_STAT_WDE /*!< analog watchdog event interrupt flag */
#define ADC_INT_FLAG_EOC ADC_STAT_EOC /*!< end of group conversion interrupt flag */
#define ADC_INT_FLAG_EOIC ADC_STAT_EOIC /*!< end of inserted group conversion interrupt flag */
/* function declarations */
/* reset ADC */
void adc_deinit(uint32_t adc_periph);
/* enable ADC interface */
void adc_enable(uint32_t adc_periph);
/* disable ADC interface */
void adc_disable(uint32_t adc_periph);
/* ADC calibration and reset calibration */
void adc_calibration_enable(uint32_t adc_periph);
/* enable DMA request */
void adc_dma_mode_enable(uint32_t adc_periph);
/* disable DMA request */
void adc_dma_mode_disable(uint32_t adc_periph);
/* enable the temperature sensor and Vrefint channel */
void adc_tempsensor_vrefint_enable(void);
/* disable the temperature sensor and Vrefint channel */
void adc_tempsensor_vrefint_disable(void);
/* configure ADC resolution */
void adc_resolution_config(uint32_t adc_periph , uint32_t resolution);
/* configure ADC discontinuous mode */
void adc_discontinuous_mode_config(uint32_t adc_periph , uint8_t adc_channel_group , uint8_t length);
/* configure the ADC mode */
void adc_mode_config(uint32_t mode);
/* enable or disable ADC special function */
void adc_special_function_config(uint32_t adc_periph , uint32_t function , ControlStatus newvalue);
/* configure ADC data alignment */
void adc_data_alignment_config(uint32_t adc_periph , uint32_t data_alignment);
/* configure the length of regular channel group or inserted channel group */
void adc_channel_length_config(uint32_t adc_periph , uint8_t adc_channel_group , uint32_t length);
/* configure ADC regular channel */
void adc_regular_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint32_t sample_time);
/* configure ADC inserted channel */
void adc_inserted_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint32_t sample_time);
/* configure ADC inserted channel offset */
void adc_inserted_channel_offset_config(uint32_t adc_periph , uint8_t inserted_channel , uint16_t offset);
/* enable ADC external trigger */
void adc_external_trigger_config(uint32_t adc_periph, uint8_t adc_channel_group, ControlStatus newvalue);
/* configure ADC external trigger source */
void adc_external_trigger_source_config(uint32_t adc_periph, uint8_t adc_channel_group, uint32_t external_trigger_source);
/* enable ADC software trigger */
void adc_software_trigger_enable(uint32_t adc_periph , uint8_t adc_channel_group);
/* read ADC regular group data register */
uint16_t adc_regular_data_read(uint32_t adc_periph);
/* read ADC inserted group data register */
uint16_t adc_inserted_data_read(uint32_t adc_periph , uint8_t inserted_channel);
/* read the last ADC0 and ADC1 conversion result data in sync mode */
uint32_t adc_sync_mode_convert_value_read(void);
/* get the ADC flag bits */
FlagStatus adc_flag_get(uint32_t adc_periph , uint32_t adc_flag);
/* clear the ADC flag bits */
void adc_flag_clear(uint32_t adc_periph , uint32_t adc_flag);
/* get the ADC interrupt bits */
FlagStatus adc_interrupt_flag_get(uint32_t adc_periph , uint32_t adc_interrupt);
/* clear the ADC flag */
void adc_interrupt_flag_clear(uint32_t adc_periph , uint32_t adc_interrupt);
/* enable ADC interrupt */
void adc_interrupt_enable(uint32_t adc_periph , uint32_t adc_interrupt);
/* disable ADC interrupt */
void adc_interrupt_disable(uint32_t adc_periph , uint32_t adc_interrupt);
/* configure ADC analog watchdog single channel */
void adc_watchdog_single_channel_enable(uint32_t adc_periph, uint8_t adc_channel);
/* configure ADC analog watchdog group channel */
void adc_watchdog_group_channel_enable(uint32_t adc_periph, uint8_t adc_channel_group);
/* disable ADC analog watchdog */
void adc_watchdog_disable(uint32_t adc_periph);
/* configure ADC analog watchdog threshold */
void adc_watchdog_threshold_config(uint32_t adc_periph , uint16_t low_threshold , uint16_t high_threshold);
/* configure ADC oversample mode */
void adc_oversample_mode_config(uint32_t adc_periph , uint8_t mode , uint16_t shift , uint8_t ratio);
/* enable ADC oversample mode */
void adc_oversample_mode_enable(uint32_t adc_periph);
/* disable ADC oversample mode */
void adc_oversample_mode_disable(uint32_t adc_periph);
#endif /* GD32F30X_ADC_H */

View File

@ -0,0 +1,218 @@
/*!
\file gd32f30x_bkp.h
\brief definitions for the BKP
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.2, firmware for GD32F30x
*/
#ifndef GD32F30X_BKP_H
#define GD32F30X_BKP_H
#include "gd32f30x.h"
/* BKP definitions */
#define BKP BKP_BASE /*!< BKP base address */
/* registers definitions */
#define BKP_DATA0 REG16((BKP) + 0x04U) /*!< BKP data register 0 */
#define BKP_DATA1 REG16((BKP) + 0x08U) /*!< BKP data register 1 */
#define BKP_DATA2 REG16((BKP) + 0x0CU) /*!< BKP data register 2 */
#define BKP_DATA3 REG16((BKP) + 0x10U) /*!< BKP data register 3 */
#define BKP_DATA4 REG16((BKP) + 0x14U) /*!< BKP data register 4 */
#define BKP_DATA5 REG16((BKP) + 0x18U) /*!< BKP data register 5 */
#define BKP_DATA6 REG16((BKP) + 0x1CU) /*!< BKP data register 6 */
#define BKP_DATA7 REG16((BKP) + 0x20U) /*!< BKP data register 7 */
#define BKP_DATA8 REG16((BKP) + 0x24U) /*!< BKP data register 8 */
#define BKP_DATA9 REG16((BKP) + 0x28U) /*!< BKP data register 9 */
#define BKP_DATA10 REG16((BKP) + 0x40U) /*!< BKP data register 10 */
#define BKP_DATA11 REG16((BKP) + 0x44U) /*!< BKP data register 11 */
#define BKP_DATA12 REG16((BKP) + 0x48U) /*!< BKP data register 12 */
#define BKP_DATA13 REG16((BKP) + 0x4CU) /*!< BKP data register 13 */
#define BKP_DATA14 REG16((BKP) + 0x50U) /*!< BKP data register 14 */
#define BKP_DATA15 REG16((BKP) + 0x54U) /*!< BKP data register 15 */
#define BKP_DATA16 REG16((BKP) + 0x58U) /*!< BKP data register 16 */
#define BKP_DATA17 REG16((BKP) + 0x5CU) /*!< BKP data register 17 */
#define BKP_DATA18 REG16((BKP) + 0x60U) /*!< BKP data register 18 */
#define BKP_DATA19 REG16((BKP) + 0x64U) /*!< BKP data register 19 */
#define BKP_DATA20 REG16((BKP) + 0x68U) /*!< BKP data register 20 */
#define BKP_DATA21 REG16((BKP) + 0x6CU) /*!< BKP data register 21 */
#define BKP_DATA22 REG16((BKP) + 0x70U) /*!< BKP data register 22 */
#define BKP_DATA23 REG16((BKP) + 0x74U) /*!< BKP data register 23 */
#define BKP_DATA24 REG16((BKP) + 0x78U) /*!< BKP data register 24 */
#define BKP_DATA25 REG16((BKP) + 0x7CU) /*!< BKP data register 25 */
#define BKP_DATA26 REG16((BKP) + 0x80U) /*!< BKP data register 26 */
#define BKP_DATA27 REG16((BKP) + 0x84U) /*!< BKP data register 27 */
#define BKP_DATA28 REG16((BKP) + 0x88U) /*!< BKP data register 28 */
#define BKP_DATA29 REG16((BKP) + 0x8CU) /*!< BKP data register 29 */
#define BKP_DATA30 REG16((BKP) + 0x90U) /*!< BKP data register 30 */
#define BKP_DATA31 REG16((BKP) + 0x94U) /*!< BKP data register 31 */
#define BKP_DATA32 REG16((BKP) + 0x98U) /*!< BKP data register 32 */
#define BKP_DATA33 REG16((BKP) + 0x9CU) /*!< BKP data register 33 */
#define BKP_DATA34 REG16((BKP) + 0xA0U) /*!< BKP data register 34 */
#define BKP_DATA35 REG16((BKP) + 0xA4U) /*!< BKP data register 35 */
#define BKP_DATA36 REG16((BKP) + 0xA8U) /*!< BKP data register 36 */
#define BKP_DATA37 REG16((BKP) + 0xACU) /*!< BKP data register 37 */
#define BKP_DATA38 REG16((BKP) + 0xB0U) /*!< BKP data register 38 */
#define BKP_DATA39 REG16((BKP) + 0xB4U) /*!< BKP data register 39 */
#define BKP_DATA40 REG16((BKP) + 0xB8U) /*!< BKP data register 40 */
#define BKP_DATA41 REG16((BKP) + 0xBCU) /*!< BKP data register 41 */
#define BKP_OCTL REG16((BKP) + 0x2CU) /*!< RTC signal output control register */
#define BKP_TPCTL REG16((BKP) + 0x30U) /*!< tamper pin control register */
#define BKP_TPCS REG16((BKP) + 0x34U) /*!< tamper control and status register */
/* bits definitions */
/* BKP_DATA */
#define BKP_DATA BITS(0,15) /*!< backup data */
/* BKP_OCTL */
#define BKP_OCTL_RCCV BITS(0,6) /*!< RTC clock calibration value */
#define BKP_OCTL_COEN BIT(7) /*!< RTC clock calibration output enable */
#define BKP_OCTL_ASOEN BIT(8) /*!< RTC alarm or second signal output enable */
#define BKP_OCTL_ROSEL BIT(9) /*!< RTC output selection */
#define BKP_OCTL_CCOSEL BIT(14) /*!< RTC clock output selection */
#define BKP_OCTL_CALDIR BIT(15) /*!< RTC clock calibration direction */
/* BKP_TPCTL */
#define BKP_TPCTL_TPEN BIT(0) /*!< tamper detection enable */
#define BKP_TPCTL_TPAL BIT(1) /*!< tamper pin active level */
/* BKP_TPCS */
#define BKP_TPCS_TER BIT(0) /*!< tamper event reset */
#define BKP_TPCS_TIR BIT(1) /*!< tamper interrupt reset */
#define BKP_TPCS_TPIE BIT(2) /*!< tamper interrupt enable */
#define BKP_TPCS_TEF BIT(8) /*!< tamper event flag */
#define BKP_TPCS_TIF BIT(9) /*!< tamper interrupt flag */
/* constants definitions */
/* BKP register */
#define BKP_DATA0_9(number) REG16((BKP) + 0x04U + (number) * 0x04U)
#define BKP_DATA10_41(number) REG16((BKP) + 0x40U + ((number)-10U) * 0x04U)
/* get data of BKP data register */
#define BKP_DATA_GET(regval) GET_BITS((uint32_t)(regval), 0, 15)
/* RTC clock calibration value */
#define OCTL_RCCV(regval) (BITS(0,6) & ((uint32_t)(regval) << 0))
/* RTC output selection */
#define RTC_OUTPUT_ALARM_PULSE ((uint16_t)0x0000U) /*!< RTC alarm pulse is selected as the RTC output */
#define RTC_OUTPUT_SECOND_PULSE ((uint16_t)0x0200U) /*!< RTC second pulse is selected as the RTC output */
/* RTC clock output selection */
#define RTC_CLOCK_DIV_64 ((uint16_t)0x0000U) /*!< RTC clock div 64 */
#define RTC_CLOCK_DIV_1 ((uint16_t)0x4000U) /*!< RTC clock div 1 */
/* RTC clock calibration direction */
#define RTC_CLOCK_SLOWED_DOWN ((uint16_t)0x0000U) /*!< RTC clock slow down */
#define RTC_CLOCK_SPEED_UP ((uint16_t)0x8000U) /*!< RTC clock speed up */
/* tamper pin active level */
#define TAMPER_PIN_ACTIVE_HIGH ((uint16_t)0x0000U) /*!< the tamper pin is active high */
#define TAMPER_PIN_ACTIVE_LOW ((uint16_t)0x0002U) /*!< the tamper pin is active low */
/* tamper flag */
#define BKP_FLAG_TAMPER BKP_TPCS_TEF /*!< tamper event flag */
/* tamper interrupt flag */
#define BKP_INT_FLAG_TAMPER BKP_TPCS_TIF /*!< tamper interrupt flag */
/* BKP data register number */
typedef enum
{
BKP_DATA_0 = 1, /*!< BKP data register 0 */
BKP_DATA_1, /*!< BKP data register 1 */
BKP_DATA_2, /*!< BKP data register 2 */
BKP_DATA_3, /*!< BKP data register 3 */
BKP_DATA_4, /*!< BKP data register 4 */
BKP_DATA_5, /*!< BKP data register 5 */
BKP_DATA_6, /*!< BKP data register 6 */
BKP_DATA_7, /*!< BKP data register 7 */
BKP_DATA_8, /*!< BKP data register 8 */
BKP_DATA_9, /*!< BKP data register 9 */
BKP_DATA_10, /*!< BKP data register 10 */
BKP_DATA_11, /*!< BKP data register 11 */
BKP_DATA_12, /*!< BKP data register 12 */
BKP_DATA_13, /*!< BKP data register 13 */
BKP_DATA_14, /*!< BKP data register 14 */
BKP_DATA_15, /*!< BKP data register 15 */
BKP_DATA_16, /*!< BKP data register 16 */
BKP_DATA_17, /*!< BKP data register 17 */
BKP_DATA_18, /*!< BKP data register 18 */
BKP_DATA_19, /*!< BKP data register 19 */
BKP_DATA_20, /*!< BKP data register 20 */
BKP_DATA_21, /*!< BKP data register 21 */
BKP_DATA_22, /*!< BKP data register 22 */
BKP_DATA_23, /*!< BKP data register 23 */
BKP_DATA_24, /*!< BKP data register 24 */
BKP_DATA_25, /*!< BKP data register 25 */
BKP_DATA_26, /*!< BKP data register 26 */
BKP_DATA_27, /*!< BKP data register 27 */
BKP_DATA_28, /*!< BKP data register 28 */
BKP_DATA_29, /*!< BKP data register 29 */
BKP_DATA_30, /*!< BKP data register 30 */
BKP_DATA_31, /*!< BKP data register 31 */
BKP_DATA_32, /*!< BKP data register 32 */
BKP_DATA_33, /*!< BKP data register 33 */
BKP_DATA_34, /*!< BKP data register 34 */
BKP_DATA_35, /*!< BKP data register 35 */
BKP_DATA_36, /*!< BKP data register 36 */
BKP_DATA_37, /*!< BKP data register 37 */
BKP_DATA_38, /*!< BKP data register 38 */
BKP_DATA_39, /*!< BKP data register 39 */
BKP_DATA_40, /*!< BKP data register 40 */
BKP_DATA_41, /*!< BKP data register 41 */
}bkp_data_register_enum;
/* function declarations */
/* reset BKP registers */
void bkp_deinit(void);
/* write BKP data register */
void bkp_write_data(bkp_data_register_enum register_number, uint16_t data);
/* read BKP data register */
uint16_t bkp_read_data(bkp_data_register_enum register_number);
/* RTC related functions */
/* enable RTC clock calibration output */
void bkp_rtc_calibration_output_enable(void);
/* disable RTC clock calibration output */
void bkp_rtc_calibration_output_disable(void);
/* enable RTC alarm or second signal output */
void bkp_rtc_signal_output_enable(void);
/* disable RTC alarm or second signal output */
void bkp_rtc_signal_output_disable(void);
/* RTC output selection */
void bkp_rtc_output_select(uint16_t outputsel);
/* RTC clock output selection */
void bkp_rtc_clock_output_select(uint16_t clocksel);
/* RTC clock calibration direction */
void bkp_rtc_clock_calibration_direction(uint16_t direction);
/* set RTC clock calibration value */
void bkp_rtc_calibration_value_set(uint8_t value);
/* tamper pin related functions */
/* enable tamper pin detection */
void bkp_tamper_detection_enable(void);
/* disable tamper pin detection */
void bkp_tamper_detection_disable(void);
/* set tamper pin active level */
void bkp_tamper_active_level_set(uint16_t level);
/* enable tamper pin interrupt */
void bkp_tamper_interrupt_enable(void);
/* disable tamper pin interrupt */
void bkp_tamper_interrupt_disable(void);
/* flag functions */
/* get BKP flag state */
FlagStatus bkp_flag_get(uint16_t flag);
/* clear BKP flag state */
void bkp_flag_clear(uint16_t flag);
/* get BKP interrupt flag state */
FlagStatus bkp_interrupt_flag_get(uint16_t flag);
/* clear BKP interrupt flag state */
void bkp_interrupt_flag_clear(uint16_t flag);
#endif /* GD32F30X_BKP_H */

View File

@ -0,0 +1,680 @@
/*!
\file gd32f30x_can.h
\brief definitions for the CAN
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_CAN_H
#define GD32F30X_CAN_H
#include "gd32f30x.h"
/* CAN definitions */
#define CAN0 CAN_BASE /*!< CAN0 base address */
#define CAN1 (CAN0 + 0x00000400U) /*!< CAN1 base address */
/* registers definitions */
#define CAN_CTL(canx) REG32((canx) + 0x00U) /*!< CAN control register */
#define CAN_STAT(canx) REG32((canx) + 0x04U) /*!< CAN status register */
#define CAN_TSTAT(canx) REG32((canx) + 0x08U) /*!< CAN transmit status register*/
#define CAN_RFIFO0(canx) REG32((canx) + 0x0CU) /*!< CAN receive FIFO0 register */
#define CAN_RFIFO1(canx) REG32((canx) + 0x10U) /*!< CAN receive FIFO1 register */
#define CAN_INTEN(canx) REG32((canx) + 0x14U) /*!< CAN interrupt enable register */
#define CAN_ERR(canx) REG32((canx) + 0x18U) /*!< CAN error register */
#define CAN_BT(canx) REG32((canx) + 0x1CU) /*!< CAN bit timing register */
#define CAN_TMI0(canx) REG32((canx) + 0x180U) /*!< CAN transmit mailbox0 identifier register */
#define CAN_TMP0(canx) REG32((canx) + 0x184U) /*!< CAN transmit mailbox0 property register */
#define CAN_TMDATA00(canx) REG32((canx) + 0x188U) /*!< CAN transmit mailbox0 data0 register */
#define CAN_TMDATA10(canx) REG32((canx) + 0x18CU) /*!< CAN transmit mailbox0 data1 register */
#define CAN_TMI1(canx) REG32((canx) + 0x190U) /*!< CAN transmit mailbox1 identifier register */
#define CAN_TMP1(canx) REG32((canx) + 0x194U) /*!< CAN transmit mailbox1 property register */
#define CAN_TMDATA01(canx) REG32((canx) + 0x198U) /*!< CAN transmit mailbox1 data0 register */
#define CAN_TMDATA11(canx) REG32((canx) + 0x19CU) /*!< CAN transmit mailbox1 data1 register */
#define CAN_TMI2(canx) REG32((canx) + 0x1A0U) /*!< CAN transmit mailbox2 identifier register */
#define CAN_TMP2(canx) REG32((canx) + 0x1A4U) /*!< CAN transmit mailbox2 property register */
#define CAN_TMDATA02(canx) REG32((canx) + 0x1A8U) /*!< CAN transmit mailbox2 data0 register */
#define CAN_TMDATA12(canx) REG32((canx) + 0x1ACU) /*!< CAN transmit mailbox2 data1 register */
#define CAN_RFIFOMI0(canx) REG32((canx) + 0x1B0U) /*!< CAN receive FIFO0 mailbox identifier register */
#define CAN_RFIFOMP0(canx) REG32((canx) + 0x1B4U) /*!< CAN receive FIFO0 mailbox property register */
#define CAN_RFIFOMDATA00(canx) REG32((canx) + 0x1B8U) /*!< CAN receive FIFO0 mailbox data0 register */
#define CAN_RFIFOMDATA10(canx) REG32((canx) + 0x1CCU) /*!< CAN receive FIFO0 mailbox data1 register */
#define CAN_RFIFOMI1(canx) REG32((canx) + 0x1C0U) /*!< CAN receive FIFO1 mailbox identifier register */
#define CAN_RFIFOMP1(canx) REG32((canx) + 0x1C4U) /*!< CAN receive FIFO1 mailbox property register */
#define CAN_RFIFOMDATA01(canx) REG32((canx) + 0x1C8U) /*!< CAN receive FIFO1 mailbox data0 register */
#define CAN_RFIFOMDATA11(canx) REG32((canx) + 0x1CCU) /*!< CAN receive FIFO1 mailbox data1 register */
#define CAN_FCTL(canx) REG32((canx) + 0x200U) /*!< CAN filter control register */
#define CAN_FMCFG(canx) REG32((canx) + 0x204U) /*!< CAN filter mode register */
#define CAN_FSCFG(canx) REG32((canx) + 0x20CU) /*!< CAN filter scale register */
#define CAN_FAFIFO(canx) REG32((canx) + 0x214U) /*!< CAN filter associated FIFO register */
#define CAN_FW(canx) REG32((canx) + 0x21CU) /*!< CAN filter working register */
#define CAN_F0DATA0(canx) REG32((canx) + 0x240U) /*!< CAN filter 0 data 0 register */
#define CAN_F1DATA0(canx) REG32((canx) + 0x248U) /*!< CAN filter 1 data 0 register */
#define CAN_F2DATA0(canx) REG32((canx) + 0x250U) /*!< CAN filter 2 data 0 register */
#define CAN_F3DATA0(canx) REG32((canx) + 0x258U) /*!< CAN filter 3 data 0 register */
#define CAN_F4DATA0(canx) REG32((canx) + 0x260U) /*!< CAN filter 4 data 0 register */
#define CAN_F5DATA0(canx) REG32((canx) + 0x268U) /*!< CAN filter 5 data 0 register */
#define CAN_F6DATA0(canx) REG32((canx) + 0x270U) /*!< CAN filter 6 data 0 register */
#define CAN_F7DATA0(canx) REG32((canx) + 0x278U) /*!< CAN filter 7 data 0 register */
#define CAN_F8DATA0(canx) REG32((canx) + 0x280U) /*!< CAN filter 8 data 0 register */
#define CAN_F9DATA0(canx) REG32((canx) + 0x288U) /*!< CAN filter 9 data 0 register */
#define CAN_F10DATA0(canx) REG32((canx) + 0x290U) /*!< CAN filter 10 data 0 register */
#define CAN_F11DATA0(canx) REG32((canx) + 0x298U) /*!< CAN filter 11 data 0 register */
#define CAN_F12DATA0(canx) REG32((canx) + 0x2A0U) /*!< CAN filter 12 data 0 register */
#define CAN_F13DATA0(canx) REG32((canx) + 0x2A8U) /*!< CAN filter 13 data 0 register */
#define CAN_F14DATA0(canx) REG32((canx) + 0x2B0U) /*!< CAN filter 14 data 0 register */
#define CAN_F15DATA0(canx) REG32((canx) + 0x2B8U) /*!< CAN filter 15 data 0 register */
#define CAN_F16DATA0(canx) REG32((canx) + 0x2C0U) /*!< CAN filter 16 data 0 register */
#define CAN_F17DATA0(canx) REG32((canx) + 0x2C8U) /*!< CAN filter 17 data 0 register */
#define CAN_F18DATA0(canx) REG32((canx) + 0x2D0U) /*!< CAN filter 18 data 0 register */
#define CAN_F19DATA0(canx) REG32((canx) + 0x2D8U) /*!< CAN filter 19 data 0 register */
#define CAN_F20DATA0(canx) REG32((canx) + 0x2E0U) /*!< CAN filter 20 data 0 register */
#define CAN_F21DATA0(canx) REG32((canx) + 0x2E8U) /*!< CAN filter 21 data 0 register */
#define CAN_F22DATA0(canx) REG32((canx) + 0x2F0U) /*!< CAN filter 22 data 0 register */
#define CAN_F23DATA0(canx) REG32((canx) + 0x3F8U) /*!< CAN filter 23 data 0 register */
#define CAN_F24DATA0(canx) REG32((canx) + 0x300U) /*!< CAN filter 24 data 0 register */
#define CAN_F25DATA0(canx) REG32((canx) + 0x308U) /*!< CAN filter 25 data 0 register */
#define CAN_F26DATA0(canx) REG32((canx) + 0x310U) /*!< CAN filter 26 data 0 register */
#define CAN_F27DATA0(canx) REG32((canx) + 0x318U) /*!< CAN filter 27 data 0 register */
#define CAN_F0DATA1(canx) REG32((canx) + 0x244U) /*!< CAN filter 0 data 1 register */
#define CAN_F1DATA1(canx) REG32((canx) + 0x24CU) /*!< CAN filter 1 data 1 register */
#define CAN_F2DATA1(canx) REG32((canx) + 0x254U) /*!< CAN filter 2 data 1 register */
#define CAN_F3DATA1(canx) REG32((canx) + 0x25CU) /*!< CAN filter 3 data 1 register */
#define CAN_F4DATA1(canx) REG32((canx) + 0x264U) /*!< CAN filter 4 data 1 register */
#define CAN_F5DATA1(canx) REG32((canx) + 0x26CU) /*!< CAN filter 5 data 1 register */
#define CAN_F6DATA1(canx) REG32((canx) + 0x274U) /*!< CAN filter 6 data 1 register */
#define CAN_F7DATA1(canx) REG32((canx) + 0x27CU) /*!< CAN filter 7 data 1 register */
#define CAN_F8DATA1(canx) REG32((canx) + 0x284U) /*!< CAN filter 8 data 1 register */
#define CAN_F9DATA1(canx) REG32((canx) + 0x28CU) /*!< CAN filter 9 data 1 register */
#define CAN_F10DATA1(canx) REG32((canx) + 0x294U) /*!< CAN filter 10 data 1 register */
#define CAN_F11DATA1(canx) REG32((canx) + 0x29CU) /*!< CAN filter 11 data 1 register */
#define CAN_F12DATA1(canx) REG32((canx) + 0x2A4U) /*!< CAN filter 12 data 1 register */
#define CAN_F13DATA1(canx) REG32((canx) + 0x2ACU) /*!< CAN filter 13 data 1 register */
#define CAN_F14DATA1(canx) REG32((canx) + 0x2B4U) /*!< CAN filter 14 data 1 register */
#define CAN_F15DATA1(canx) REG32((canx) + 0x2BCU) /*!< CAN filter 15 data 1 register */
#define CAN_F16DATA1(canx) REG32((canx) + 0x2C4U) /*!< CAN filter 16 data 1 register */
#define CAN_F17DATA1(canx) REG32((canx) + 0x24CU) /*!< CAN filter 17 data 1 register */
#define CAN_F18DATA1(canx) REG32((canx) + 0x2D4U) /*!< CAN filter 18 data 1 register */
#define CAN_F19DATA1(canx) REG32((canx) + 0x2DCU) /*!< CAN filter 19 data 1 register */
#define CAN_F20DATA1(canx) REG32((canx) + 0x2E4U) /*!< CAN filter 20 data 1 register */
#define CAN_F21DATA1(canx) REG32((canx) + 0x2ECU) /*!< CAN filter 21 data 1 register */
#define CAN_F22DATA1(canx) REG32((canx) + 0x2F4U) /*!< CAN filter 22 data 1 register */
#define CAN_F23DATA1(canx) REG32((canx) + 0x2FCU) /*!< CAN filter 23 data 1 register */
#define CAN_F24DATA1(canx) REG32((canx) + 0x304U) /*!< CAN filter 24 data 1 register */
#define CAN_F25DATA1(canx) REG32((canx) + 0x30CU) /*!< CAN filter 25 data 1 register */
#define CAN_F26DATA1(canx) REG32((canx) + 0x314U) /*!< CAN filter 26 data 1 register */
#define CAN_F27DATA1(canx) REG32((canx) + 0x31CU) /*!< CAN filter 27 data 1 register */
/* CAN transmit mailbox bank */
#define CAN_TMI(canx, bank) REG32((canx) + 0x180U + ((bank) * 0x10U)) /*!< CAN transmit mailbox identifier register */
#define CAN_TMP(canx, bank) REG32((canx) + 0x184U + ((bank) * 0x10U)) /*!< CAN transmit mailbox property register */
#define CAN_TMDATA0(canx, bank) REG32((canx) + 0x188U + ((bank) * 0x10U)) /*!< CAN transmit mailbox data0 register */
#define CAN_TMDATA1(canx, bank) REG32((canx) + 0x18CU + ((bank) * 0x10U)) /*!< CAN transmit mailbox data1 register */
/* CAN filter bank */
#define CAN_FDATA0(canx, bank) REG32((canx) + 0x240U + ((bank) * 0x8U) + 0x0U) /*!< CAN filter data 0 register */
#define CAN_FDATA1(canx, bank) REG32((canx) + 0x240U + ((bank) * 0x8U) + 0x4U) /*!< CAN filter data 1 register */
/* CAN receive fifo mailbox bank */
#define CAN_RFIFOMI(canx, bank) REG32((canx) + 0x1B0U + ((bank) * 0x10U)) /*!< CAN receive FIFO mailbox identifier register */
#define CAN_RFIFOMP(canx, bank) REG32((canx) + 0x1B4U + ((bank) * 0x10U)) /*!< CAN receive FIFO mailbox property register */
#define CAN_RFIFOMDATA0(canx, bank) REG32((canx) + 0x1B8U + ((bank) * 0x10U)) /*!< CAN receive FIFO mailbox data0 register */
#define CAN_RFIFOMDATA1(canx, bank) REG32((canx) + 0x1BCU + ((bank) * 0x10U)) /*!< CAN receive FIFO mailbox data1 register */
/* bits definitions */
/* CAN_CTL */
#define CAN_CTL_IWMOD BIT(0) /*!< initial working mode */
#define CAN_CTL_SLPWMOD BIT(1) /*!< sleep working mode */
#define CAN_CTL_TFO BIT(2) /*!< transmit FIFO order */
#define CAN_CTL_RFOD BIT(3) /*!< receive FIFO overwrite disable */
#define CAN_CTL_ARD BIT(4) /*!< automatic retransmission disable */
#define CAN_CTL_AWU BIT(5) /*!< automatic wakeup */
#define CAN_CTL_ABOR BIT(6) /*!< automatic bus-off recovery */
#define CAN_CTL_TTC BIT(7) /*!< time triggered communication */
#define CAN_CTL_SWRST BIT(15) /*!< CAN software reset */
#define CAN_CTL_DFZ BIT(16) /*!< CAN debug freeze */
/* CAN_STAT */
#define CAN_STAT_IWS BIT(0) /*!< initial working state */
#define CAN_STAT_SLPWS BIT(1) /*!< sleep working state */
#define CAN_STAT_ERRIF BIT(2) /*!< error interrupt flag*/
#define CAN_STAT_WUIF BIT(3) /*!< status change interrupt flag of wakeup from sleep working mode */
#define CAN_STAT_SLPIF BIT(4) /*!< status change interrupt flag of sleep working mode entering */
#define CAN_STAT_TS BIT(8) /*!< transmitting state */
#define CAN_STAT_RS BIT(9) /*!< receiving state */
#define CAN_STAT_LASTRX BIT(10) /*!< last sample value of rx pin */
#define CAN_STAT_RXL BIT(11) /*!< CAN rx signal */
/* CAN_TSTAT */
#define CAN_TSTAT_MTF0 BIT(0) /*!< mailbox0 transmit finished */
#define CAN_TSTAT_MTFNERR0 BIT(1) /*!< mailbox0 transmit finished and no error */
#define CAN_TSTAT_MAL0 BIT(2) /*!< mailbox0 arbitration lost */
#define CAN_TSTAT_MTE0 BIT(3) /*!< mailbox0 transmit error */
#define CAN_TSTAT_MST0 BIT(7) /*!< mailbox0 stop transmitting */
#define CAN_TSTAT_MTF1 BIT(8) /*!< mailbox1 transmit finished */
#define CAN_TSTAT_MTFNERR1 BIT(9) /*!< mailbox1 transmit finished and no error */
#define CAN_TSTAT_MAL1 BIT(10) /*!< mailbox1 arbitration lost */
#define CAN_TSTAT_MTE1 BIT(11) /*!< mailbox1 transmit error */
#define CAN_TSTAT_MST1 BIT(15) /*!< mailbox1 stop transmitting */
#define CAN_TSTAT_MTF2 BIT(16) /*!< mailbox2 transmit finished */
#define CAN_TSTAT_MTFNERR2 BIT(17) /*!< mailbox2 transmit finished and no error */
#define CAN_TSTAT_MAL2 BIT(18) /*!< mailbox2 arbitration lost */
#define CAN_TSTAT_MTE2 BIT(19) /*!< mailbox2 transmit error */
#define CAN_TSTAT_MST2 BIT(23) /*!< mailbox2 stop transmitting */
#define CAN_TSTAT_NUM BITS(24,25) /*!< mailbox number */
#define CAN_TSTAT_TME0 BIT(26) /*!< transmit mailbox0 empty */
#define CAN_TSTAT_TME1 BIT(27) /*!< transmit mailbox1 empty */
#define CAN_TSTAT_TME2 BIT(28) /*!< transmit mailbox2 empty */
#define CAN_TSTAT_TMLS0 BIT(29) /*!< last sending priority flag for mailbox0 */
#define CAN_TSTAT_TMLS1 BIT(30) /*!< last sending priority flag for mailbox1 */
#define CAN_TSTAT_TMLS2 BIT(31) /*!< last sending priority flag for mailbox2 */
/* CAN_RFIFO0 */
#define CAN_RFIFO0_RFL0 BITS(0,1) /*!< receive FIFO0 length */
#define CAN_RFIFO0_RFF0 BIT(3) /*!< receive FIFO0 full */
#define CAN_RFIFO0_RFO0 BIT(4) /*!< receive FIFO0 overfull */
#define CAN_RFIFO0_RFD0 BIT(5) /*!< receive FIFO0 dequeue */
/* CAN_RFIFO1 */
#define CAN_RFIFO1_RFL1 BITS(0,1) /*!< receive FIFO1 length */
#define CAN_RFIFO1_RFF1 BIT(3) /*!< receive FIFO1 full */
#define CAN_RFIFO1_RFO1 BIT(4) /*!< receive FIFO1 overfull */
#define CAN_RFIFO1_RFD1 BIT(5) /*!< receive FIFO1 dequeue */
/* CAN_INTEN */
#define CAN_INTEN_TMEIE BIT(0) /*!< transmit mailbox empty interrupt enable */
#define CAN_INTEN_RFNEIE0 BIT(1) /*!< receive FIFO0 not empty interrupt enable */
#define CAN_INTEN_RFFIE0 BIT(2) /*!< receive FIFO0 full interrupt enable */
#define CAN_INTEN_RFOIE0 BIT(3) /*!< receive FIFO0 overfull interrupt enable */
#define CAN_INTEN_RFNEIE1 BIT(4) /*!< receive FIFO1 not empty interrupt enable */
#define CAN_INTEN_RFFIE1 BIT(5) /*!< receive FIFO1 full interrupt enable */
#define CAN_INTEN_RFOIE1 BIT(6) /*!< receive FIFO1 overfull interrupt enable */
#define CAN_INTEN_WERRIE BIT(8) /*!< warning error interrupt enable */
#define CAN_INTEN_PERRIE BIT(9) /*!< passive error interrupt enable */
#define CAN_INTEN_BOIE BIT(10) /*!< bus-off interrupt enable */
#define CAN_INTEN_ERRNIE BIT(11) /*!< error number interrupt enable */
#define CAN_INTEN_ERRIE BIT(15) /*!< error interrupt enable */
#define CAN_INTEN_WIE BIT(16) /*!< wakeup interrupt enable */
#define CAN_INTEN_SLPWIE BIT(17) /*!< sleep working interrupt enable */
/* CAN_ERR */
#define CAN_ERR_WERR BIT(0) /*!< warning error */
#define CAN_ERR_PERR BIT(1) /*!< passive error */
#define CAN_ERR_BOERR BIT(2) /*!< bus-off error */
#define CAN_ERR_ERRN BITS(4,6) /*!< error number */
#define CAN_ERR_TECNT BITS(16,23) /*!< transmit error count */
#define CAN_ERR_RECNT BITS(24,31) /*!< receive error count */
/* CAN_BT */
#define CAN_BT_BAUDPSC BITS(0,9) /*!< baudrate prescaler */
#define CAN_BT_BS1 BITS(16,19) /*!< bit segment 1 */
#define CAN_BT_BS2 BITS(20,22) /*!< bit segment 2 */
#define CAN_BT_SJW BITS(24,25) /*!< resynchronization jump width */
#define CAN_BT_LCMOD BIT(30) /*!< loopback communication mode */
#define CAN_BT_SCMOD BIT(31) /*!< silent communication mode */
/* CAN_TMIx */
#define CAN_TMI_TEN BIT(0) /*!< transmit enable */
#define CAN_TMI_FT BIT(1) /*!< frame type */
#define CAN_TMI_FF BIT(2) /*!< frame format */
#define CAN_TMI_EFID BITS(3,31) /*!< the frame identifier */
#define CAN_TMI_SFID BITS(21,31) /*!< the frame identifier */
/* CAN_TMPx */
#define CAN_TMP_DLENC BITS(0,3) /*!< data length code */
#define CAN_TMP_TSEN BIT(8) /*!< time stamp enable */
#define CAN_TMP_TS BITS(16,31) /*!< time stamp */
/* CAN_TMDATA0x */
#define CAN_TMDATA0_DB0 BITS(0,7) /*!< transmit data byte 0 */
#define CAN_TMDATA0_DB1 BITS(8,15) /*!< transmit data byte 1 */
#define CAN_TMDATA0_DB2 BITS(16,23) /*!< transmit data byte 2 */
#define CAN_TMDATA0_DB3 BITS(24,31) /*!< transmit data byte 3 */
/* CAN_TMDATA1x */
#define CAN_TMDATA1_DB4 BITS(0,7) /*!< transmit data byte 4 */
#define CAN_TMDATA1_DB5 BITS(8,15) /*!< transmit data byte 5 */
#define CAN_TMDATA1_DB6 BITS(16,23) /*!< transmit data byte 6 */
#define CAN_TMDATA1_DB7 BITS(24,31) /*!< transmit data byte 7 */
/* CAN_RFIFOMIx */
#define CAN_RFIFOMI_FT BIT(1) /*!< frame type */
#define CAN_RFIFOMI_FF BIT(2) /*!< frame format */
#define CAN_RFIFOMI_EFID BITS(3,31) /*!< the frame identifier */
#define CAN_RFIFOMI_SFID BITS(21,31) /*!< the frame identifier */
/* CAN_RFIFOMPx */
#define CAN_RFIFOMP_DLENC BITS(0,3) /*!< receive data length code */
#define CAN_RFIFOMP_FI BITS(8,15) /*!< filter index */
#define CAN_RFIFOMP_TS BITS(16,31) /*!< time stamp */
/* CAN_RFIFOMDATA0x */
#define CAN_RFIFOMDATA0_DB0 BITS(0,7) /*!< receive data byte 0 */
#define CAN_RFIFOMDATA0_DB1 BITS(8,15) /*!< receive data byte 1 */
#define CAN_RFIFOMDATA0_DB2 BITS(16,23) /*!< receive data byte 2 */
#define CAN_RFIFOMDATA0_DB3 BITS(24,31) /*!< receive data byte 3 */
/* CAN_RFIFOMDATA1x */
#define CAN_RFIFOMDATA1_DB4 BITS(0,7) /*!< receive data byte 4 */
#define CAN_RFIFOMDATA1_DB5 BITS(8,15) /*!< receive data byte 5 */
#define CAN_RFIFOMDATA1_DB6 BITS(16,23) /*!< receive data byte 6 */
#define CAN_RFIFOMDATA1_DB7 BITS(24,31) /*!< receive data byte 7 */
/* CAN_FCTL */
#define CAN_FCTL_FLD BIT(0) /*!< filter lock disable */
#define CAN_FCTL_HBC1F BITS(8,13) /*!< header bank of CAN1 filter */
/* CAN_FMCFG */
#define CAN_FMCFG_FMOD(regval) BIT(regval) /*!< filter mode, list or mask*/
/* CAN_FSCFG */
#define CAN_FSCFG_FS(regval) BIT(regval) /*!< filter scale, 32 bits or 16 bits*/
/* CAN_FAFIFO */
#define CAN_FAFIFOR_FAF(regval) BIT(regval) /*!< filter associated with FIFO */
/* CAN_FW */
#define CAN_FW_FW(regval) BIT(regval) /*!< filter working */
/* CAN_FxDATAy */
#define CAN_FD BITS(0,31) /*!< filter data */
/* consts definitions */
/* define the CAN bit position and its register index offset */
#define CAN_REGIDX_BIT(regidx, bitpos) (((uint32_t)(regidx) << 6) | (uint32_t)(bitpos))
#define CAN_REG_VAL(canx, offset) (REG32((canx) + ((uint32_t)(offset) >> 6)))
#define CAN_BIT_POS(val) ((uint32_t)(val) & 0x1FU)
#define CAN_REGIDX_BITS(regidx, bitpos0, bitpos1) (((uint32_t)(regidx) << 12) | ((uint32_t)(bitpos0) << 6) | (uint32_t)(bitpos1))
#define CAN_REG_VALS(canx, offset) (REG32((canx) + ((uint32_t)(offset) >> 12)))
#define CAN_BIT_POS0(val) (((uint32_t)(val) >> 6) & 0x1FU)
#define CAN_BIT_POS1(val) ((uint32_t)(val) & 0x1FU)
/* register offset */
#define STAT_REG_OFFSET ((uint8_t)0x04U) /*!< STAT register offset */
#define TSTAT_REG_OFFSET ((uint8_t)0x08U) /*!< TSTAT register offset */
#define RFIFO0_REG_OFFSET ((uint8_t)0x0CU) /*!< RFIFO0 register offset */
#define RFIFO1_REG_OFFSET ((uint8_t)0x10U) /*!< RFIFO1 register offset */
#define ERR_REG_OFFSET ((uint8_t)0x18U) /*!< ERR register offset */
/* CAN flags */
typedef enum
{
/* flags in TSTAT register */
CAN_FLAG_MTE2 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 19U), /*!< mailbox 2 transmit error */
CAN_FLAG_MTE1 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 11U), /*!< mailbox 1 transmit error */
CAN_FLAG_MTE0 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 3U), /*!< mailbox 0 transmit error */
CAN_FLAG_MTF2 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 16U), /*!< mailbox 2 transmit finished */
CAN_FLAG_MTF1 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 8U), /*!< mailbox 1 transmit finished */
CAN_FLAG_MTF0 = CAN_REGIDX_BIT(TSTAT_REG_OFFSET, 0U), /*!< mailbox 0 transmit finished */
/* flags in RFIFO0 register */
CAN_FLAG_RFO0 = CAN_REGIDX_BIT(RFIFO0_REG_OFFSET, 4U), /*!< receive FIFO0 overfull */
CAN_FLAG_RFF0 = CAN_REGIDX_BIT(RFIFO0_REG_OFFSET, 3U), /*!< receive FIFO0 full */
/* flags in RFIFO1 register */
CAN_FLAG_RFO1 = CAN_REGIDX_BIT(RFIFO1_REG_OFFSET, 4U), /*!< receive FIFO1 overfull */
CAN_FLAG_RFF1 = CAN_REGIDX_BIT(RFIFO1_REG_OFFSET, 3U), /*!< receive FIFO1 full */
/* flags in ERR register */
CAN_FLAG_BOERR = CAN_REGIDX_BIT(ERR_REG_OFFSET, 2U), /*!< bus-off error */
CAN_FLAG_PERR = CAN_REGIDX_BIT(ERR_REG_OFFSET, 1U), /*!< passive error */
CAN_FLAG_WERR = CAN_REGIDX_BIT(ERR_REG_OFFSET, 0U), /*!< warning error */
}can_flag_enum;
/* CAN interrupt flags */
typedef enum
{
/* interrupt flags in STAT register */
CAN_INT_FLAG_SLPIF = CAN_REGIDX_BITS(STAT_REG_OFFSET, 4U, 17U), /*!< status change interrupt flag of sleep working mode entering */
CAN_INT_FLAG_WUIF = CAN_REGIDX_BITS(STAT_REG_OFFSET, 3U, 16), /*!< status change interrupt flag of wakeup from sleep working mode */
CAN_INT_FLAG_ERRIF = CAN_REGIDX_BITS(STAT_REG_OFFSET, 2U, 15), /*!< error interrupt flag */
/* interrupt flags in TSTAT register */
CAN_INT_FLAG_MTF2 = CAN_REGIDX_BITS(TSTAT_REG_OFFSET, 16U, 0U), /*!< mailbox 2 transmit finished interrupt flag */
CAN_INT_FLAG_MTF1 = CAN_REGIDX_BITS(TSTAT_REG_OFFSET, 8U, 0U), /*!< mailbox 1 transmit finished interrupt flag */
CAN_INT_FLAG_MTF0 = CAN_REGIDX_BITS(TSTAT_REG_OFFSET, 0U, 0U), /*!< mailbox 0 transmit finished interrupt flag */
/* interrupt flags in RFIFO0 register */
CAN_INT_FLAG_RFO0 = CAN_REGIDX_BITS(RFIFO0_REG_OFFSET, 4U, 3U), /*!< receive FIFO0 overfull interrupt flag */
CAN_INT_FLAG_RFF0 = CAN_REGIDX_BITS(RFIFO0_REG_OFFSET, 3U, 2U), /*!< receive FIFO0 full interrupt flag */
/* interrupt flags in RFIFO0 register */
CAN_INT_FLAG_RFO1 = CAN_REGIDX_BITS(RFIFO1_REG_OFFSET, 4U, 6U), /*!< receive FIFO1 overfull interrupt flag */
CAN_INT_FLAG_RFF1 = CAN_REGIDX_BITS(RFIFO1_REG_OFFSET, 3U, 5U), /*!< receive FIFO1 full interrupt flag */
}can_interrupt_flag_enum;
/* CAN initiliaze parameters struct */
typedef struct
{
uint8_t working_mode; /*!< CAN working mode */
uint8_t resync_jump_width; /*!< CAN resynchronization jump width */
uint8_t time_segment_1; /*!< time segment 1 */
uint8_t time_segment_2; /*!< time segment 2 */
ControlStatus time_triggered; /*!< time triggered communication mode */
ControlStatus auto_bus_off_recovery; /*!< automatic bus-off recovery */
ControlStatus auto_wake_up; /*!< automatic wake-up mode */
ControlStatus auto_retrans; /*!< automatic retransmission mode */
ControlStatus rec_fifo_overwrite; /*!< receive FIFO overwrite mode */
ControlStatus trans_fifo_order; /*!< transmit FIFO order */
uint16_t prescaler; /*!< baudrate prescaler */
}can_parameter_struct;
/* CAN transmit message struct */
typedef struct
{
uint32_t tx_sfid; /*!< standard format frame identifier */
uint32_t tx_efid; /*!< extended format frame identifier */
uint8_t tx_ff; /*!< format of frame, standard or extended format */
uint8_t tx_ft; /*!< type of frame, data or remote */
uint8_t tx_dlen; /*!< data length */
uint8_t tx_data[8]; /*!< transmit data */
}can_trasnmit_message_struct;
/* CAN receive message struct */
typedef struct
{
uint32_t rx_sfid; /*!< standard format frame identifier */
uint32_t rx_efid; /*!< extended format frame identifier */
uint8_t rx_ff; /*!< format of frame, standard or extended format */
uint8_t rx_ft; /*!< type of frame, data or remote */
uint8_t rx_dlen; /*!< data length */
uint8_t rx_data[8]; /*!< receive data */
uint8_t rx_fi; /*!< filtering index */
} can_receive_message_struct;
/* CAN filter parameters struct */
typedef struct
{
uint16_t filter_list_high; /*!< filter list number high bits*/
uint16_t filter_list_low; /*!< filter list number low bits */
uint16_t filter_mask_high; /*!< filter mask number high bits */
uint16_t filter_mask_low; /*!< filter mask number low bits */
uint16_t filter_fifo_number; /*!< receive FIFO associated with the filter */
uint16_t filter_number; /*!< filter number */
uint16_t filter_mode; /*!< filter mode, list or mask */
uint16_t filter_bits; /*!< filter scale */
ControlStatus filter_enable; /*!< filter work or not */
}can_filter_parameter_struct;
/* CAN errors */
typedef enum
{
CAN_ERROR_NONE = 0, /*!< no error */
CAN_ERROR_FILL, /*!< fill error */
CAN_ERROR_FORMATE, /*!< format error */
CAN_ERROR_ACK, /*!< ACK error */
CAN_ERROR_BITRECESSIVE, /*!< bit recessive error */
CAN_ERROR_BITDOMINANTER, /*!< bit dominant error */
CAN_ERROR_CRC, /*!< CRC error */
CAN_ERROR_SOFTWARECFG, /*!< software configure */
}can_error_enum;
/* transmit states */
typedef enum
{
CAN_TRANSMIT_FAILED = 0, /*!< CAN transmitted failure */
CAN_TRANSMIT_OK = 1, /*!< CAN transmitted success */
CAN_TRANSMIT_PENDING = 2, /*!< CAN transmitted pending */
CAN_TRANSMIT_NOMAILBOX = 4, /*!< no empty mailbox to be used for CAN */
}can_transmit_state_enum;
/* CAN baudrate prescaler*/
#define BT_BAUDPSC(regval) (BITS(0,9) & ((uint32_t)(regval) << 0))
/* CAN bit segment 1*/
#define BT_BS1(regval) (BITS(16,19) & ((uint32_t)(regval) << 16))
/* CAN bit segment 2*/
#define BT_BS2(regval) (BITS(20,22) & ((uint32_t)(regval) << 20))
/* CAN resynchronization jump width*/
#define BT_SJW(regval) (BITS(24,25) & ((uint32_t)(regval) << 24))
/* CAN communication mode*/
#define BT_MODE(regval) (BITS(30,31) & ((uint32_t)(regval) << 30))
/* CAN FDATA high 16 bits */
#define FDATA_MASK_HIGH(regval) (BITS(16,31) & ((uint32_t)(regval) << 16))
/* CAN FDATA low 16 bits */
#define FDATA_MASK_LOW(regval) (BITS(0,15) & ((uint32_t)(regval) << 0))
/* CAN1 filter start bank_number*/
#define FCTL_HBC1F(regval) (BITS(8,13) & ((uint32_t)(regval) << 8))
/* CAN transmit mailbox extended identifier*/
#define TMI_EFID(regval) (BITS(3,31) & ((uint32_t)(regval) << 3))
/* CAN transmit mailbox standard identifier*/
#define TMI_SFID(regval) (BITS(21,31) & ((uint32_t)(regval) << 21))
/* transmit data byte 0 */
#define TMDATA0_DB0(regval) (BITS(0,7) & ((uint32_t)(regval) << 0))
/* transmit data byte 1 */
#define TMDATA0_DB1(regval) (BITS(8,15) & ((uint32_t)(regval) << 8))
/* transmit data byte 2 */
#define TMDATA0_DB2(regval) (BITS(16,23) & ((uint32_t)(regval) << 16))
/* transmit data byte 3 */
#define TMDATA0_DB3(regval) (BITS(24,31) & ((uint32_t)(regval) << 24))
/* transmit data byte 4 */
#define TMDATA1_DB4(regval) (BITS(0,7) & ((uint32_t)(regval) << 0))
/* transmit data byte 5 */
#define TMDATA1_DB5(regval) (BITS(8,15) & ((uint32_t)(regval) << 8))
/* transmit data byte 6 */
#define TMDATA1_DB6(regval) (BITS(16,23) & ((uint32_t)(regval) << 16))
/* transmit data byte 7 */
#define TMDATA1_DB7(regval) (BITS(24,31) & ((uint32_t)(regval) << 24))
/* receive mailbox extended identifier*/
#define RFIFOMI_EFID(regval) GET_BITS((uint32_t)(regval), 3, 31)
/* receive mailbox standrad identifier*/
#define RFIFOMI_SFID(regval) GET_BITS((uint32_t)(regval), 21, 31)
/* receive data length */
#define RFIFOMP_DLENC(regval) GET_BITS((uint32_t)(regval), 0, 3)
/* the index of the filter by which the frame is passed */
#define RFIFOMP_FI(regval) GET_BITS((uint32_t)(regval), 8, 15)
/* receive data byte 0 */
#define RFIFOMDATA0_DB0(regval) GET_BITS((uint32_t)(regval), 0, 7)
/* receive data byte 1 */
#define RFIFOMDATA0_DB1(regval) GET_BITS((uint32_t)(regval), 8, 15)
/* receive data byte 2 */
#define RFIFOMDATA0_DB2(regval) GET_BITS((uint32_t)(regval), 16, 23)
/* receive data byte 3 */
#define RFIFOMDATA0_DB3(regval) GET_BITS((uint32_t)(regval), 24, 31)
/* receive data byte 4 */
#define RFIFOMDATA1_DB4(regval) GET_BITS((uint32_t)(regval), 0, 7)
/* receive data byte 5 */
#define RFIFOMDATA1_DB5(regval) GET_BITS((uint32_t)(regval), 8, 15)
/* receive data byte 6 */
#define RFIFOMDATA1_DB6(regval) GET_BITS((uint32_t)(regval), 16, 23)
/* receive data byte 7 */
#define RFIFOMDATA1_DB7(regval) GET_BITS((uint32_t)(regval), 24, 31)
/* CAN errors */
#define ERR_ERRN(regval) (BITS(4,6) & ((uint32_t)(regval) << 4))
#define CAN_ERRN_0 ERR_ERRN(0) /* no error */
#define CAN_ERRN_1 ERR_ERRN(1) /*!< fill error */
#define CAN_ERRN_2 ERR_ERRN(2) /*!< format error */
#define CAN_ERRN_3 ERR_ERRN(3) /*!< ACK error */
#define CAN_ERRN_4 ERR_ERRN(4) /*!< bit recessive error */
#define CAN_ERRN_5 ERR_ERRN(5) /*!< bit dominant error */
#define CAN_ERRN_6 ERR_ERRN(6) /*!< CRC error */
#define CAN_ERRN_7 ERR_ERRN(7) /*!< software error */
#define CAN_STATE_PENDING ((uint32_t)0x00000000U) /*!< CAN pending */
/* CAN communication mode */
#define CAN_NORMAL_MODE ((uint8_t)0x00U) /*!< normal communication mode */
#define CAN_LOOPBACK_MODE ((uint8_t)0x01U) /*!< loopback communication mode */
#define CAN_SILENT_MODE ((uint8_t)0x02U) /*!< silent communication mode */
#define CAN_SILENT_LOOPBACK_MODE ((uint8_t)0x03U) /*!< loopback and silent communication mode */
/* CAN resynchronisation jump width */
#define CAN_BT_SJW_1TQ ((uint8_t)0x00U) /*!< 1 time quanta */
#define CAN_BT_SJW_2TQ ((uint8_t)0x01U) /*!< 2 time quanta */
#define CAN_BT_SJW_3TQ ((uint8_t)0x02U) /*!< 3 time quanta */
#define CAN_BT_SJW_4TQ ((uint8_t)0x03U) /*!< 4 time quanta */
/* CAN time segment 1 */
#define CAN_BT_BS1_1TQ ((uint8_t)0x00U) /*!< 1 time quanta */
#define CAN_BT_BS1_2TQ ((uint8_t)0x01U) /*!< 2 time quanta */
#define CAN_BT_BS1_3TQ ((uint8_t)0x02U) /*!< 3 time quanta */
#define CAN_BT_BS1_4TQ ((uint8_t)0x03U) /*!< 4 time quanta */
#define CAN_BT_BS1_5TQ ((uint8_t)0x04U) /*!< 5 time quanta */
#define CAN_BT_BS1_6TQ ((uint8_t)0x05U) /*!< 6 time quanta */
#define CAN_BT_BS1_7TQ ((uint8_t)0x06U) /*!< 7 time quanta */
#define CAN_BT_BS1_8TQ ((uint8_t)0x07U) /*!< 8 time quanta */
#define CAN_BT_BS1_9TQ ((uint8_t)0x08U) /*!< 9 time quanta */
#define CAN_BT_BS1_10TQ ((uint8_t)0x09U) /*!< 10 time quanta */
#define CAN_BT_BS1_11TQ ((uint8_t)0x0AU) /*!< 11 time quanta */
#define CAN_BT_BS1_12TQ ((uint8_t)0x0BU) /*!< 12 time quanta */
#define CAN_BT_BS1_13TQ ((uint8_t)0x0CU) /*!< 13 time quanta */
#define CAN_BT_BS1_14TQ ((uint8_t)0x0DU) /*!< 14 time quanta */
#define CAN_BT_BS1_15TQ ((uint8_t)0x0EU) /*!< 15 time quanta */
#define CAN_BT_BS1_16TQ ((uint8_t)0x0FU) /*!< 16 time quanta */
/* CAN time segment 2 */
#define CAN_BT_BS2_1TQ ((uint8_t)0x00U) /*!< 1 time quanta */
#define CAN_BT_BS2_2TQ ((uint8_t)0x01U) /*!< 2 time quanta */
#define CAN_BT_BS2_3TQ ((uint8_t)0x02U) /*!< 3 time quanta */
#define CAN_BT_BS2_4TQ ((uint8_t)0x03U) /*!< 4 time quanta */
#define CAN_BT_BS2_5TQ ((uint8_t)0x04U) /*!< 5 time quanta */
#define CAN_BT_BS2_6TQ ((uint8_t)0x05U) /*!< 6 time quanta */
#define CAN_BT_BS2_7TQ ((uint8_t)0x06U) /*!< 7 time quanta */
#define CAN_BT_BS2_8TQ ((uint8_t)0x07U) /*!< 8 time quanta */
/* CAN mailbox number */
#define CAN_MAILBOX0 ((uint8_t)0x00U) /*!< mailbox0 */
#define CAN_MAILBOX1 ((uint8_t)0x01U) /*!< mailbox1 */
#define CAN_MAILBOX2 ((uint8_t)0x02U) /*!< mailbox2 */
#define CAN_NOMAILBOX ((uint8_t)0x03U) /*!< no mailbox empty */
/* CAN frame format */
#define CAN_FF_STANDARD ((uint32_t)0x00000000U) /*!< standard frame */
#define CAN_FF_EXTENDED ((uint32_t)0x00000004U) /*!< extended frame */
/* CAN receive fifo */
#define CAN_FIFO0 ((uint8_t)0x00U) /*!< receive FIFO0 */
#define CAN_FIFO1 ((uint8_t)0x01U) /*!< receive FIFO1 */
/* frame number of receive fifo */
#define CAN_RFIF_RFL_MASK ((uint32_t)0x00000003U) /*!< mask for frame number in receive FIFOx */
#define CAN_SFID_MASK ((uint32_t)0x000007FFU) /*!< mask of standard identifier */
#define CAN_EFID_MASK ((uint32_t)0x1FFFFFFFU) /*!< mask of extended identifier */
/* CAN working mode */
#define CAN_MODE_INITIALIZE ((uint8_t)0x01U) /*!< CAN initialize mode */
#define CAN_MODE_NORMAL ((uint8_t)0x02U) /*!< CAN normal mode */
#define CAN_MODE_SLEEP ((uint8_t)0x04U) /*!< CAN sleep mode */
/* filter bits */
#define CAN_FILTERBITS_16BIT ((uint8_t)0x00U) /*!< CAN filter 16 bits */
#define CAN_FILTERBITS_32BIT ((uint8_t)0x01U) /*!< CAN filter 32 bits */
/* filter mode */
#define CAN_FILTERMODE_MASK ((uint8_t)0x00U) /*!< mask mode */
#define CAN_FILTERMODE_LIST ((uint8_t)0x01U) /*!< list mode */
/* filter 16 bits mask */
#define CAN_FILTER_MASK_16BITS ((uint32_t)0x0000FFFFU)
/* frame type */
#define CAN_FT_DATA ((uint32_t)0x00000000U) /*!< data frame */
#define CAN_FT_REMOTE ((uint32_t)0x00000002U) /*!< remote frame */
/* CAN timeout */
#define CAN_TIMEOUT ((uint32_t)0x0000FFFFU) /*!< timeout value */
/* interrupt enable bits */
#define CAN_INT_TME CAN_INTEN_TMEIE /*!< transmit mailbox empty interrupt enable */
#define CAN_INT_RFNE0 CAN_INTEN_RFNEIE0 /*!< receive FIFO0 not empty interrupt enable */
#define CAN_INT_RFF0 CAN_INTEN_RFFIE0 /*!< receive FIFO0 full interrupt enable */
#define CAN_INT_RFO0 CAN_INTEN_RFOIE0 /*!< receive FIFO0 overfull interrupt enable */
#define CAN_INT_RFNE1 CAN_INTEN_RFNEIE1 /*!< receive FIFO1 not empty interrupt enable */
#define CAN_INT_RFF1 CAN_INTEN_RFFIE1 /*!< receive FIFO1 full interrupt enable */
#define CAN_INT_RFO1 CAN_INTEN_RFOIE1 /*!< receive FIFO1 overfull interrupt enable */
#define CAN_INT_WERR CAN_INTEN_WERRIE /*!< warning error interrupt enable */
#define CAN_INT_PERR CAN_INTEN_PERRIE /*!< passive error interrupt enable */
#define CAN_INT_BO CAN_INTEN_BOIE /*!< bus-off interrupt enable */
#define CAN_INT_ERRN CAN_INTEN_ERRNIE /*!< error number interrupt enable */
#define CAN_INT_ERR CAN_INTEN_ERRIE /*!< error interrupt enable */
#define CAN_INT_WAKEUP CAN_INTEN_WIE /*!< wakeup interrupt enable */
#define CAN_INT_SLPW CAN_INTEN_SLPWIE /*!< sleep working interrupt enable */
/* function declarations */
/* deinitialize CAN */
void can_deinit(uint32_t can_periph);
/* initialize CAN */
ErrStatus can_init(uint32_t can_periph, can_parameter_struct* can_parameter_init);
/* CAN filter init */
void can_filter_init(can_filter_parameter_struct* can_filter_parameter_init);
/* set can1 fliter start bank number */
void can1_filter_start_bank(uint8_t start_bank);
/* enable functions */
/* CAN debug freeze enable */
void can_debug_freeze_enable(uint32_t can_periph);
/* CAN debug freeze disable */
void can_debug_freeze_disable(uint32_t can_periph);
/* CAN time triggle mode enable */
void can_time_trigger_mode_enable(uint32_t can_periph);
/* CAN time triggle mode disable */
void can_time_trigger_mode_disable(uint32_t can_periph);
/* transmit functions */
/* transmit CAN message */
uint8_t can_message_transmit(uint32_t can_periph, can_trasnmit_message_struct* transmit_message);
/* get CAN transmit state */
can_transmit_state_enum can_transmit_states(uint32_t can_periph, uint8_t mailbox_number);
/* stop CAN transmission */
void can_transmission_stop(uint32_t can_periph, uint8_t mailbox_number);
/* CAN receive message */
void can_message_receive(uint32_t can_periph, uint8_t fifo_number, can_receive_message_struct* receive_message);
/* CAN release fifo */
void can_fifo_release(uint32_t can_periph, uint8_t fifo_number);
/* CAN receive message length */
uint8_t can_receive_message_length_get(uint32_t can_periph, uint8_t fifo_number);
/* CAN working mode */
ErrStatus can_working_mode_set(uint32_t can_periph, uint8_t working_mode);
/* CAN wakeup from sleep mode */
ErrStatus can_wakeup(uint32_t can_periph);
/* CAN get error */
can_error_enum can_error_get(uint32_t can_periph);
/* get CAN receive error number */
uint8_t can_receive_error_number_get(uint32_t can_periph);
/* get CAN transmit error number */
uint8_t can_transmit_error_number_get(uint32_t can_periph);
/* CAN interrupt enable */
void can_interrupt_enable(uint32_t can_periph, uint32_t interrupt);
/* CAN interrupt disable */
void can_interrupt_disable(uint32_t can_periph, uint32_t interrupt);
/* CAN get flag state */
FlagStatus can_flag_get(uint32_t can_periph, can_flag_enum flag);
/* CAN clear flag state */
void can_flag_clear(uint32_t can_periph, can_flag_enum flag);
/* CAN get interrupt flag state */
FlagStatus can_interrupt_flag_get(uint32_t can_periph, can_interrupt_flag_enum flag);
/* CAN clear interrupt flag state */
void can_interrupt_flag_clear(uint32_t can_periph, can_interrupt_flag_enum flag);
#endif /* GD32F30X_CAN_H */

View File

@ -0,0 +1,55 @@
/*!
\file gd32f30x_crc.h
\brief definitions for the CRC
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef GD32F30X_CRC_H
#define GD32F30X_CRC_H
#include "gd32f30x.h"
/* CRC definitions */
#define CRC CRC_BASE
/* registers definitions */
#define CRC_DATA REG32(CRC + 0x00U) /*!< CRC data register */
#define CRC_FDATA REG32(CRC + 0x04U) /*!< CRC free data register */
#define CRC_CTL REG32(CRC + 0x08U) /*!< CRC control register */
/* bits definitions */
/* CRC_DATA */
#define CRC_DATA_DATA BITS(0,31) /*!< CRC calculation result bits */
/* CRC_FDATA */
#define CRC_FDATA_FDATA BITS(0,7) /*!< CRC free data bits */
/* CRC_CTL */
#define CRC_CTL_RST BIT(0) /*!< CRC reset CRC_DATA register bit */
/* function declarations */
/* deinit CRC calculation unit */
void crc_deinit(void);
/* reset data register to the value of initializaiton data register */
void crc_data_register_reset(void);
/* read the data register */
uint32_t crc_data_register_read(void);
/* read the free data register */
uint8_t crc_free_data_register_read(void);
/* write the free data register */
void crc_free_data_register_write(uint8_t free_data);
/* CRC calculate a 32-bit data */
uint32_t crc_single_data_calculate(uint32_t sdata);
/* CRC calculate a 32-bit data array */
uint32_t crc_block_data_calculate(uint32_t array[], uint32_t size);
#endif /* GD32F30X_CRC_H */

View File

@ -0,0 +1,161 @@
/*!
\file gd32f30x_ctc.h
\brief definitions for the CTC
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_CTC_H
#define GD32F30X_CTC_H
#include "gd32f30x.h"
/* CTC definitions */
#define CTC CTC_BASE
/* registers definitions */
#define CTC_CTL0 REG32((CTC) + 0x00U) /*!< CTC control register 0 */
#define CTC_CTL1 REG32((CTC) + 0x04U) /*!< CTC control register 1 */
#define CTC_STAT REG32((CTC) + 0x08U) /*!< CTC status register */
#define CTC_INTC REG32((CTC) + 0x0CU) /*!< CTC interrupt clear register */
/* bits definitions */
/* CTC_CTL0 */
#define CTC_CTL0_CKOKIE BIT(0) /*!< clock trim OK(CKOKIF) interrupt enable */
#define CTC_CTL0_CKWARNIE BIT(1) /*!< clock trim warning(CKWARNIF) interrupt enable */
#define CTC_CTL0_ERRIE BIT(2) /*!< error(ERRIF) interrupt enable */
#define CTC_CTL0_EREFIE BIT(3) /*!< EREFIF interrupt enable */
#define CTC_CTL0_CNTEN BIT(5) /*!< CTC counter enable */
#define CTC_CTL0_AUTOTRIM BIT(6) /*!< hardware automatically trim mode */
#define CTC_CTL0_SWREFPUL BIT(7) /*!< software reference source sync pulse */
#define CTC_CTL0_TRIMVALUE BITS(8,13) /*!< IRC48M trim value */
/* CTC_CTL1 */
#define CTC_CTL1_RLVALUE BITS(0,15) /*!< CTC counter reload value */
#define CTC_CTL1_CKLIM BITS(16,23) /*!< clock trim base limit value */
#define CTC_CTL1_REFPSC BITS(24,26) /*!< reference signal source prescaler */
#define CTC_CTL1_REFSEL BITS(28,29) /*!< reference signal source selection */
#define CTC_CTL1_REFPOL BIT(31) /*!< reference signal source polarity */
/* CTC_STAT */
#define CTC_STAT_CKOKIF BIT(0) /*!< clock trim OK interrupt flag */
#define CTC_STAT_CKWARNIF BIT(1) /*!< clock trim warning interrupt flag */
#define CTC_STAT_ERRIF BIT(2) /*!< error interrupt flag */
#define CTC_STAT_EREFIF BIT(3) /*!< expect reference interrupt flag */
#define CTC_STAT_CKERR BIT(8) /*!< clock trim error bit */
#define CTC_STAT_REFMISS BIT(9) /*!< reference sync pulse miss */
#define CTC_STAT_TRIMERR BIT(10) /*!< trim value error bit */
#define CTC_STAT_REFDIR BIT(15) /*!< CTC trim counter direction when reference sync pulse occurred */
#define CTC_STAT_REFCAP BITS(16,31) /*!< CTC counter capture when reference sync pulse occurred */
/* CTC_INTC */
#define CTC_INTC_CKOKIC BIT(0) /*!< CKOKIF interrupt clear bit */
#define CTC_INTC_CKWARNIC BIT(1) /*!< CKWARNIF interrupt clear bit */
#define CTC_INTC_ERRIC BIT(2) /*!< ERRIF interrupt clear bit */
#define CTC_INTC_EREFIC BIT(3) /*!< EREFIF interrupt clear bit */
/* constants definitions */
/* hardware automatically trim mode definitions */
#define CTC_HARDWARE_TRIM_MODE_ENABLE CTC_CTL0_AUTOTRIM /*!< hardware automatically trim mode enable*/
#define CTC_HARDWARE_TRIM_MODE_DISABLE ((uint32_t)0x00000000U) /*!< hardware automatically trim mode disable*/
/* reference signal source polarity definitions */
#define CTC_REFSOURCE_POLARITY_FALLING CTC_CTL1_REFPOL /*!< reference signal source polarity is falling edge*/
#define CTC_REFSOURCE_POLARITY_RISING ((uint32_t)0x00000000U) /*!< reference signal source polarity is rising edge*/
/* reference signal source selection definitions */
#define CTL1_REFSEL(regval) (BITS(28,29) & ((uint32_t)(regval) << 28))
#define CTC_REFSOURCE_GPIO CTL1_REFSEL(0) /*!< GPIO is selected */
#define CTC_REFSOURCE_LXTAL CTL1_REFSEL(1) /*!< LXTAL is clock selected */
#define CTC_REFSOURCE_USBSOF CTL1_REFSEL(2) /*!< USBDSOF or USBFSSOF selected */
/* reference signal source prescaler definitions */
#define CTL1_REFPSC(regval) (BITS(24,26) & ((uint32_t)(regval) << 24))
#define CTC_REFSOURCE_PSC_OFF CTL1_REFPSC(0) /*!< reference signal not divided */
#define CTC_REFSOURCE_PSC_DIV2 CTL1_REFPSC(1) /*!< reference signal divided by 2 */
#define CTC_REFSOURCE_PSC_DIV4 CTL1_REFPSC(2) /*!< reference signal divided by 4 */
#define CTC_REFSOURCE_PSC_DIV8 CTL1_REFPSC(3) /*!< reference signal divided by 8 */
#define CTC_REFSOURCE_PSC_DIV16 CTL1_REFPSC(4) /*!< reference signal divided by 16 */
#define CTC_REFSOURCE_PSC_DIV32 CTL1_REFPSC(5) /*!< reference signal divided by 32 */
#define CTC_REFSOURCE_PSC_DIV64 CTL1_REFPSC(6) /*!< reference signal divided by 64 */
#define CTC_REFSOURCE_PSC_DIV128 CTL1_REFPSC(7) /*!< reference signal divided by 128 */
/* CTC interrupt enable definitions */
#define CTC_INT_CKOK CTC_CTL0_CKOKIE /*!< clock trim OK interrupt enable */
#define CTC_INT_CKWARN CTC_CTL0_CKWARNIE /*!< clock trim warning interrupt enable */
#define CTC_INT_ERR CTC_CTL0_ERRIE /*!< error interrupt enable */
#define CTC_INT_EREF CTC_CTL0_EREFIE /*!< expect reference interrupt enable */
/* CTC interrupt source definitions */
#define CTC_INT_FLAG_CKOK CTC_STAT_CKOKIF /*!< clock trim OK interrupt flag */
#define CTC_INT_FLAG_CKWARN CTC_STAT_CKWARNIF /*!< clock trim warning interrupt flag */
#define CTC_INT_FLAG_ERR CTC_STAT_ERRIF /*!< error interrupt flag */
#define CTC_INT_FLAG_EREF CTC_STAT_EREFIF /*!< expect reference interrupt flag */
#define CTC_INT_FLAG_CKERR CTC_STAT_CKERR /*!< clock trim error bit */
#define CTC_INT_FLAG_REFMISS CTC_STAT_REFMISS /*!< reference sync pulse miss */
#define CTC_INT_FLAG_TRIMERR CTC_STAT_TRIMERR /*!< trim value error */
/* CTC flag definitions */
#define CTC_FLAG_CKOK CTC_STAT_CKOKIF /*!< clock trim OK flag */
#define CTC_FLAG_CKWARN CTC_STAT_CKWARNIF /*!< clock trim warning flag */
#define CTC_FLAG_ERR CTC_STAT_ERRIF /*!< error flag */
#define CTC_FLAG_EREF CTC_STAT_EREFIF /*!< expect reference flag */
#define CTC_FLAG_CKERR CTC_STAT_CKERR /*!< clock trim error bit */
#define CTC_FLAG_REFMISS CTC_STAT_REFMISS /*!< reference sync pulse miss */
#define CTC_FLAG_TRIMERR CTC_STAT_TRIMERR /*!< trim value error bit */
/* function declarations */
/* reset ctc clock trim controller */
void ctc_deinit(void);
/* enable the CTC interrupt */
void ctc_interrupt_enable(uint32_t ctc_interrupt);
/* disable the CTC interrupt */
void ctc_interrupt_disable(uint32_t ctc_interrupt);
/* get CTC interrupt flag */
FlagStatus ctc_interrupt_flag_get(uint32_t ctc_interrupt);
/* clear CTC interrupt flag */
void ctc_interrupt_flag_clear(uint32_t ctc_interrupt);
/* get CTC flag */
FlagStatus ctc_flag_get(uint32_t ctc_flag);
/* clear CTC flag */
void ctc_flag_clear(uint32_t ctc_flag);
/* configure the IRC48M trim value */
void ctc_irc48m_trim_value_config(uint8_t ctc_trim_value);
/* generate software reference source sync pulse */
void ctc_software_refsource_pulse_generate(void);
/* configure hardware automatically trim mode */
void ctc_hardware_trim_mode_config(uint32_t ctc_hardmode);
/* enable CTC trim counter */
void ctc_counter_enable(void);
/* disable CTC trim counter */
void ctc_counter_disable(void);
/* configure reference signal source polarity */
void ctc_refsource_polarity_config(uint32_t ctc_polarity);
/* select reference signal source */
void ctc_refsource_signal_select(uint32_t ctc_refs);
/* configure reference signal source prescaler */
void ctc_refsource_prescaler_config(uint32_t ctc_prescaler);
/* configure clock trim base limit value */
void ctc_clock_limit_value_config(uint8_t ctc_limit_value);
/* configure CTC counter reload value */
void ctc_counter_reload_value_config(uint16_t ctc_reload_value);
/* read CTC counter capture value when reference sync pulse occurred */
uint16_t ctc_counter_capture_value_read(void);
/* read CTC trim counter direction when reference sync pulse occurred */
FlagStatus ctc_counter_direction_read(void);
/* read CTC counter reload value */
uint16_t ctc_counter_reload_value_read(void);
/* read the IRC48M trim value */
uint8_t ctc_irc48m_trim_value_read(void);
#endif /* GD32F30X_CTC_H */

View File

@ -0,0 +1,220 @@
/*!
\file gd32f30x_dac.h
\brief definitions for the DAC
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_DAC_H
#define GD32F30X_DAC_H
#include "gd32f30x.h"
/* DACx(x=0,1) definitions */
#define DAC DAC_BASE
#define DAC0 0U
#define DAC1 1U
/* registers definitions */
#define DAC_CTL REG32(DAC + 0x00U) /*!< DAC control register */
#define DAC_SWT REG32(DAC + 0x04U) /*!< DAC software trigger register */
#define DAC0_R12DH REG32(DAC + 0x08U) /*!< DAC0 12-bit right-aligned data holding register */
#define DAC0_L12DH REG32(DAC + 0x0CU) /*!< DAC0 12-bit left-aligned data holding register */
#define DAC0_R8DH REG32(DAC + 0x10U) /*!< DAC0 8-bit right-aligned data holding register */
#define DAC1_R12DH REG32(DAC + 0x14U) /*!< DAC1 12-bit right-aligned data holding register */
#define DAC1_L12DH REG32(DAC + 0x18U) /*!< DAC1 12-bit left-aligned data holding register */
#define DAC1_R8DH REG32(DAC + 0x1CU) /*!< DAC1 8-bit right-aligned data holding register */
#define DACC_R12DH REG32(DAC + 0x20U) /*!< DAC concurrent mode 12-bit right-aligned data holding register */
#define DACC_L12DH REG32(DAC + 0x24U) /*!< DAC concurrent mode 12-bit left-aligned data holding register */
#define DACC_R8DH REG32(DAC + 0x28U) /*!< DAC concurrent mode 8-bit right-aligned data holding register */
#define DAC0_DO REG32(DAC + 0x2CU) /*!< DAC0 data output register */
#define DAC1_DO REG32(DAC + 0x30U) /*!< DAC1 data output register */
/* bits definitions */
/* DAC_CTL */
#define DAC_CTL_DEN0 BIT(0) /*!< DAC0 enable/disable bit */
#define DAC_CTL_DBOFF0 BIT(1) /*!< DAC0 output buffer turn on/turn off bit */
#define DAC_CTL_DTEN0 BIT(2) /*!< DAC0 trigger enable/disable bit */
#define DAC_CTL_DTSEL0 BITS(3,5) /*!< DAC0 trigger source selection enable/disable bits */
#define DAC_CTL_DWM0 BITS(6,7) /*!< DAC0 noise wave mode */
#define DAC_CTL_DWBW0 BITS(8,11) /*!< DAC0 noise wave bit width */
#define DAC_CTL_DDMAEN0 BIT(12) /*!< DAC0 DMA enable/disable bit */
#define DAC_CTL_DEN1 BIT(16) /*!< DAC1 enable/disable bit */
#define DAC_CTL_DBOFF1 BIT(17) /*!< DAC1 output buffer turn on/turn off bit */
#define DAC_CTL_DTEN1 BIT(18) /*!< DAC1 trigger enable/disable bit */
#define DAC_CTL_DTSEL1 BITS(19,21) /*!< DAC1 trigger source selection enable/disable bits */
#define DAC_CTL_DWM1 BITS(22,23) /*!< DAC1 noise wave mode */
#define DAC_CTL_DWBW1 BITS(24,27) /*!< DAC1 noise wave bit width */
#define DAC_CTL_DDMAEN1 BIT(28) /*!< DAC1 DMA enable/disable bit */
/* DAC_SWT */
#define DAC_SWT_SWTR0 BIT(0) /*!< DAC0 software trigger bit, cleared by hardware */
#define DAC_SWT_SWTR1 BIT(1) /*!< DAC1 software trigger bit, cleared by hardware */
/* DAC0_R12DH */
#define DAC0_R12DH_DAC0_DH BITS(0,11) /*!< DAC0 12-bit right-aligned data bits */
/* DAC0_L12DH */
#define DAC0_L12DH_DAC0_DH BITS(4,15) /*!< DAC0 12-bit left-aligned data bits */
/* DAC0_R8DH */
#define DAC0_R8DH_DAC0_DH BITS(0,7) /*!< DAC0 8-bit right-aligned data bits */
/* DAC1_R12DH */
#define DAC1_R12DH_DAC1_DH BITS(0,11) /*!< DAC1 12-bit right-aligned data bits */
/* DAC1_L12DH */
#define DAC1_L12DH_DAC1_DH BITS(4,15) /*!< DAC1 12-bit left-aligned data bits */
/* DAC1_R8DH */
#define DAC1_R8DH_DAC1_DH BITS(0,7) /*!< DAC1 8-bit right-aligned data bits */
/* DACC_R12DH */
#define DACC_R12DH_DAC0_DH BITS(0,11) /*!< DAC concurrent mode DAC0 12-bit right-aligned data bits */
#define DACC_R12DH_DAC1_DH BITS(16,27) /*!< DAC concurrent mode DAC1 12-bit right-aligned data bits */
/* DACC_L12DH */
#define DACC_L12DH_DAC0_DH BITS(4,15) /*!< DAC concurrent mode DAC0 12-bit left-aligned data bits */
#define DACC_L12DH_DAC1_DH BITS(20,31) /*!< DAC concurrent mode DAC1 12-bit left-aligned data bits */
/* DACC_R8DH */
#define DACC_R8DH_DAC0_DH BITS(0,7) /*!< DAC concurrent mode DAC0 8-bit right-aligned data bits */
#define DACC_R8DH_DAC1_DH BITS(8,15) /*!< DAC concurrent mode DAC1 8-bit right-aligned data bits */
/* DAC0_DO */
#define DAC0_DO_DAC0_DO BITS(0,11) /*!< DAC0 12-bit output data bits */
/* DAC1_DO */
#define DAC1_DO_DAC1_DO BITS(0,11) /*!< DAC1 12-bit output data bits */
/* constants definitions */
/* DAC trigger source */
#define CTL_DTSEL(regval) (BITS(3,5) & ((uint32_t)(regval) << 3))
#define DAC_TRIGGER_T5_TRGO CTL_DTSEL(0) /*!< TIMER5 TRGO */
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
#define DAC_TRIGGER_T7_TRGO CTL_DTSEL(1) /*!< TIMER7 TRGO */
#elif defined(GD32F30X_CL)
#define DAC_TRIGGER_T2_TRGO CTL_DTSEL(1) /*!< TIMER2 TRGO */
#endif /* GD32F30X_HD and GD32F30X_XD */
#define DAC_TRIGGER_T6_TRGO CTL_DTSEL(2) /*!< TIMER6 TRGO */
#define DAC_TRIGGER_T4_TRGO CTL_DTSEL(3) /*!< TIMER4 TRGO */
#define DAC_TRIGGER_T1_TRGO CTL_DTSEL(4) /*!< TIMER1 TRGO */
#define DAC_TRIGGER_T3_TRGO CTL_DTSEL(5) /*!< TIMER3 TRGO */
#define DAC_TRIGGER_EXTI_9 CTL_DTSEL(6) /*!< EXTI interrupt line9 event */
#define DAC_TRIGGER_SOFTWARE CTL_DTSEL(7) /*!< software trigger */
/* DAC noise wave mode */
#define CTL_DWM(regval) (BITS(6,7) & ((uint32_t)(regval) << 6))
#define DAC_WAVE_DISABLE CTL_DWM(0) /*!< wave disable */
#define DAC_WAVE_MODE_LFSR CTL_DWM(1) /*!< LFSR noise mode */
#define DAC_WAVE_MODE_TRIANGLE CTL_DWM(2) /*!< triangle noise mode */
/* DAC noise wave bit width */
#define DWBW(regval) (BITS(8,11) & ((uint32_t)(regval) << 8))
#define DAC_WAVE_BIT_WIDTH_1 DWBW(0) /*!< bit width of the wave signal is 1 */
#define DAC_WAVE_BIT_WIDTH_2 DWBW(1) /*!< bit width of the wave signal is 2 */
#define DAC_WAVE_BIT_WIDTH_3 DWBW(2) /*!< bit width of the wave signal is 3 */
#define DAC_WAVE_BIT_WIDTH_4 DWBW(3) /*!< bit width of the wave signal is 4 */
#define DAC_WAVE_BIT_WIDTH_5 DWBW(4) /*!< bit width of the wave signal is 5 */
#define DAC_WAVE_BIT_WIDTH_6 DWBW(5) /*!< bit width of the wave signal is 6 */
#define DAC_WAVE_BIT_WIDTH_7 DWBW(6) /*!< bit width of the wave signal is 7 */
#define DAC_WAVE_BIT_WIDTH_8 DWBW(7) /*!< bit width of the wave signal is 8 */
#define DAC_WAVE_BIT_WIDTH_9 DWBW(8) /*!< bit width of the wave signal is 9 */
#define DAC_WAVE_BIT_WIDTH_10 DWBW(9) /*!< bit width of the wave signal is 10 */
#define DAC_WAVE_BIT_WIDTH_11 DWBW(10) /*!< bit width of the wave signal is 11 */
#define DAC_WAVE_BIT_WIDTH_12 DWBW(11) /*!< bit width of the wave signal is 12 */
/* unmask LFSR bits in DAC LFSR noise mode */
#define DAC_LFSR_BIT0 DAC_WAVE_BIT_WIDTH_1 /*!< unmask the LFSR bit0 */
#define DAC_LFSR_BITS1_0 DAC_WAVE_BIT_WIDTH_2 /*!< unmask the LFSR bits[1:0] */
#define DAC_LFSR_BITS2_0 DAC_WAVE_BIT_WIDTH_3 /*!< unmask the LFSR bits[2:0] */
#define DAC_LFSR_BITS3_0 DAC_WAVE_BIT_WIDTH_4 /*!< unmask the LFSR bits[3:0] */
#define DAC_LFSR_BITS4_0 DAC_WAVE_BIT_WIDTH_5 /*!< unmask the LFSR bits[4:0] */
#define DAC_LFSR_BITS5_0 DAC_WAVE_BIT_WIDTH_6 /*!< unmask the LFSR bits[5:0] */
#define DAC_LFSR_BITS6_0 DAC_WAVE_BIT_WIDTH_7 /*!< unmask the LFSR bits[6:0] */
#define DAC_LFSR_BITS7_0 DAC_WAVE_BIT_WIDTH_8 /*!< unmask the LFSR bits[7:0] */
#define DAC_LFSR_BITS8_0 DAC_WAVE_BIT_WIDTH_9 /*!< unmask the LFSR bits[8:0] */
#define DAC_LFSR_BITS9_0 DAC_WAVE_BIT_WIDTH_10 /*!< unmask the LFSR bits[9:0] */
#define DAC_LFSR_BITS10_0 DAC_WAVE_BIT_WIDTH_11 /*!< unmask the LFSR bits[10:0] */
#define DAC_LFSR_BITS11_0 DAC_WAVE_BIT_WIDTH_12 /*!< unmask the LFSR bits[11:0] */
/* triangle amplitude in DAC triangle noise mode */
#define DAC_TRIANGLE_AMPLITUDE_1 DAC_WAVE_BIT_WIDTH_1 /*!< triangle amplitude is 1 */
#define DAC_TRIANGLE_AMPLITUDE_3 DAC_WAVE_BIT_WIDTH_2 /*!< triangle amplitude is 3 */
#define DAC_TRIANGLE_AMPLITUDE_7 DAC_WAVE_BIT_WIDTH_3 /*!< triangle amplitude is 7 */
#define DAC_TRIANGLE_AMPLITUDE_15 DAC_WAVE_BIT_WIDTH_4 /*!< triangle amplitude is 15 */
#define DAC_TRIANGLE_AMPLITUDE_31 DAC_WAVE_BIT_WIDTH_5 /*!< triangle amplitude is 31 */
#define DAC_TRIANGLE_AMPLITUDE_63 DAC_WAVE_BIT_WIDTH_6 /*!< triangle amplitude is 63 */
#define DAC_TRIANGLE_AMPLITUDE_127 DAC_WAVE_BIT_WIDTH_7 /*!< triangle amplitude is 127 */
#define DAC_TRIANGLE_AMPLITUDE_255 DAC_WAVE_BIT_WIDTH_8 /*!< triangle amplitude is 255 */
#define DAC_TRIANGLE_AMPLITUDE_511 DAC_WAVE_BIT_WIDTH_9 /*!< triangle amplitude is 511 */
#define DAC_TRIANGLE_AMPLITUDE_1023 DAC_WAVE_BIT_WIDTH_10 /*!< triangle amplitude is 1023 */
#define DAC_TRIANGLE_AMPLITUDE_2047 DAC_WAVE_BIT_WIDTH_11 /*!< triangle amplitude is 2047 */
#define DAC_TRIANGLE_AMPLITUDE_4095 DAC_WAVE_BIT_WIDTH_12 /*!< triangle amplitude is 4095 */
/* DAC data alignment */
#define DATA_ALIGN(regval) (BITS(0,1) & ((uint32_t)(regval) << 0))
#define DAC_ALIGN_12B_R DATA_ALIGN(0) /*!< data right 12b alignment */
#define DAC_ALIGN_12B_L DATA_ALIGN(1) /*!< data left 12b alignment */
#define DAC_ALIGN_8B_R DATA_ALIGN(2) /*!< data right 8b alignment */
/* function declarations */
/* deinitialize DAC */
void dac_deinit(void);
/* enable DAC */
void dac_enable(uint32_t dac_periph);
/* disable DAC */
void dac_disable(uint32_t dac_periph);
/* enable DAC DMA */
void dac_dma_enable(uint32_t dac_periph);
/* disable DAC DMA */
void dac_dma_disable(uint32_t dac_periph);
/* enable DAC output buffer */
void dac_output_buffer_enable(uint32_t dac_periph);
/* disable DAC output buffer */
void dac_output_buffer_disable(uint32_t dac_periph);
/* enable DAC trigger */
void dac_trigger_enable(uint32_t dac_periph);
/* disable DAC trigger */
void dac_trigger_disable(uint32_t dac_periph);
/* enable DAC software trigger */
void dac_software_trigger_enable(uint32_t dac_periph);
/* disable DAC software trigger */
void dac_software_trigger_disable(uint32_t dac_periph);
/* configure DAC trigger source */
void dac_trigger_source_config(uint32_t dac_periph, uint32_t triggersource);
/* configure DAC wave mode */
void dac_wave_mode_config(uint32_t dac_periph, uint32_t wave_mode);
/* configure DAC wave bit width */
void dac_wave_bit_width_config(uint32_t dac_periph, uint32_t bit_width);
/* configure DAC LFSR noise mode */
void dac_lfsr_noise_config(uint32_t dac_periph, uint32_t unmask_bits);
/* configure DAC triangle noise mode */
void dac_triangle_noise_config(uint32_t dac_periph, uint32_t amplitude);
/* get the last data output value */
uint16_t dac_output_value_get(uint32_t dac_periph);
/* set DAC data holding register value */
void dac_data_set(uint32_t dac_periph, uint32_t dac_align, uint16_t data);
/* set DAC concurrent mode data holding register value */
void dac_concurrent_data_set(uint32_t dac_align, uint16_t data0, uint16_t data1);
/* enable DAC concurrent mode */
void dac_concurrent_enable(void);
/* disable DAC concurrent mode */
void dac_concurrent_disable(void);
/* enable DAC concurrent software trigger */
void dac_concurrent_software_trigger_enable(void);
/* disable DAC concurrent software trigger */
void dac_concurrent_software_trigger_disable(void);
/* enable DAC concurrent buffer function */
void dac_concurrent_output_buffer_enable(void);
/* disable DAC concurrent buffer function */
void dac_concurrent_output_buffer_disable(void);
#endif /* GD32F30X_DAC_H */

View File

@ -0,0 +1,119 @@
/*!
\file gd32f30x_dbg.h
\brief definitions for the DBG
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef GD32F30X_DBG_H
#define GD32F30X_DBG_H
#include "gd32f30x.h"
/* DBG definitions */
#define DBG DBG_BASE
/* registers definitions */
#define DBG_ID REG32(DBG + 0x00U) /*!< DBG_ID code register */
#define DBG_CTL0 REG32(DBG + 0x04U) /*!< DBG control register 0 */
/* bits definitions */
/* DBG_ID */
#define DBG_ID_ID_CODE BITS(0,31) /*!< DBG ID code values */
/* DBG_CTL0 */
#define DBG_CTL0_SLP_HOLD BIT(0) /*!< keep debugger connection during sleep mode */
#define DBG_CTL0_DSLP_HOLD BIT(1) /*!< keep debugger connection during deepsleep mode */
#define DBG_CTL0_STB_HOLD BIT(2) /*!< keep debugger connection during standby mode */
#define DBG_CTL0_TRACE_IOEN BIT(5) /*!< enable trace pin assignment */
#define DBG_CTL0_TRACE_MODE BITS(6,7) /*!< trace pin mode selection */
#define DBG_CTL0_FWDGT_HOLD BIT(8) /*!< debug FWDGT kept when core is halted */
#define DBG_CTL0_WWDGT_HOLD BIT(9) /*!< debug WWDGT kept when core is halted */
#define DBG_CTL0_TIMER0_HOLD BIT(10) /*!< hold TIMER0 counter when core is halted */
#define DBG_CTL0_TIMER1_HOLD BIT(11) /*!< hold TIMER1 counter when core is halted */
#define DBG_CTL0_TIMER2_HOLD BIT(12) /*!< hold TIMER2 counter when core is halted */
#define DBG_CTL0_TIMER3_HOLD BIT(13) /*!< hold TIMER3 counter when core is halted */
#define DBG_CTL0_CAN0_HOLD BIT(14) /*!< debug CAN0 kept when core is halted */
#define DBG_CTL0_I2C0_HOLD BIT(15) /*!< hold I2C0 smbus when core is halted */
#define DBG_CTL0_I2C1_HOLD BIT(16) /*!< hold I2C1 smbus when core is halted */
#define DBG_CTL0_TIMER4_HOLD BIT(17) /*!< hold TIMER4 counter when core is halted */
#define DBG_CTL0_TIMER5_HOLD BIT(18) /*!< hold TIMER5 counter when core is halted */
#define DBG_CTL0_TIMER6_HOLD BIT(19) /*!< hold TIMER6 counter when core is halted */
#define DBG_CTL0_TIMER7_HOLD BIT(20) /*!< hold TIMER7 counter when core is halted */
#ifdef GD32F30X_CL
#define DBG_CTL0_CAN1_HOLD BIT(21) /*!< debug CAN1 kept when core is halted */
#endif /* GD32F30X_CL */
#ifndef GD32F30X_HD
#define DBG_CTL0_TIMER11_HOLD BIT(25) /*!< hold TIMER11 counter when core is halted */
#define DBG_CTL0_TIMER12_HOLD BIT(26) /*!< hold TIMER12 counter when core is halted */
#define DBG_CTL0_TIMER13_HOLD BIT(27) /*!< hold TIMER13 counter when core is halted */
#define DBG_CTL0_TIMER8_HOLD BIT(28) /*!< hold TIMER8 counter when core is halted */
#define DBG_CTL0_TIMER9_HOLD BIT(29) /*!< hold TIMER9 counter when core is halted */
#define DBG_CTL0_TIMER10_HOLD BIT(30) /*!< hold TIMER10 counter when core is halted */
#endif /* GD32F30X_HD */
/* constants definitions */
#define DBG_LOW_POWER_SLEEP DBG_CTL0_SLP_HOLD /*!< keep debugger connection during sleep mode */
#define DBG_LOW_POWER_DEEPSLEEP DBG_CTL0_DSLP_HOLD /*!< keep debugger connection during deepsleep mode */
#define DBG_LOW_POWER_STANDBY DBG_CTL0_STB_HOLD /*!< keep debugger connection during standby mode */
typedef enum
{
DBG_FWDGT_HOLD = BIT(8), /*!< debug FWDGT kept when core is halted */
DBG_WWDGT_HOLD = BIT(9), /*!< debug WWDGT kept when core is halted */
DBG_TIMER0_HOLD = BIT(10), /*!< hold TIMER0 counter when core is halted */
DBG_TIMER1_HOLD = BIT(11), /*!< hold TIMER1 counter when core is halted */
DBG_TIMER2_HOLD = BIT(12), /*!< hold TIMER2 counter when core is halted */
DBG_TIMER3_HOLD = BIT(13), /*!< hold TIMER3 counter when core is halted */
DBG_CAN0_HOLD = BIT(14), /*!< debug CAN0 kept when core is halted */
DBG_I2C0_HOLD = BIT(15), /*!< hold I2C0 smbus when core is halted */
DBG_I2C1_HOLD = BIT(16), /*!< hold I2C1 smbus when core is halted */
DBG_TIMER4_HOLD = BIT(17), /*!< hold TIMER4 counter when core is halted */
DBG_TIMER5_HOLD = BIT(18), /*!< hold TIMER5 counter when core is halted */
DBG_TIMER6_HOLD = BIT(19), /*!< hold TIMER6 counter when core is halted */
DBG_TIMER7_HOLD = BIT(20), /*!< hold TIMER7 counter when core is halted */
#ifdef GD32F30X_CL
DBG_CAN1_HOLD = BIT(21), /*!< debug CAN1 kept when core is halted */
#endif /* GD32F30X_CL */
#ifndef GD32F30X_HD
DBG_TIMER11_HOLD = BIT(25), /*!< hold TIMER11 counter when core is halted */
DBG_TIMER12_HOLD = BIT(26), /*!< hold TIMER12 counter when core is halted */
DBG_TIMER13_HOLD = BIT(27), /*!< hold TIMER13 counter when core is halted */
DBG_TIMER8_HOLD = BIT(28), /*!< hold TIMER8 counter when core is halted */
DBG_TIMER9_HOLD = BIT(29), /*!< hold TIMER9 counter when core is halted */
DBG_TIMER10_HOLD = BIT(30), /*!< hold TIMER10 counter when core is halted */
#endif /* GD32F30X_HD */
}dbg_periph_enum;
#define CTL0_TRACE_MODE(regval) (BITS(6,7)&((uint32_t)(regval)<<6))
#define TRACE_MODE_ASYNC CTL0_TRACE_MODE(0) /*!< trace pin used for async mode */
#define TRACE_MODE_SYNC_DATASIZE_1 CTL0_TRACE_MODE(1) /*!< trace pin used for sync mode and data size is 1 */
#define TRACE_MODE_SYNC_DATASIZE_2 CTL0_TRACE_MODE(2) /*!< trace pin used for sync mode and data size is 2 */
#define TRACE_MODE_SYNC_DATASIZE_4 CTL0_TRACE_MODE(3) /*!< trace pin used for sync mode and data size is 4 */
/* function declarations */
/* read DBG_ID code register */
uint32_t dbg_id_get(void);
/* enable low power behavior when the MCU is in debug mode */
void dbg_low_power_enable(uint32_t dbg_low_power);
/* disable low power behavior when the MCU is in debug mode */
void dbg_low_power_disable(uint32_t dbg_low_power);
/* enable peripheral behavior when the MCU is in debug mode */
void dbg_periph_enable(dbg_periph_enum dbg_periph);
/* disable peripheral behavior when the MCU is in debug mode */
void dbg_periph_disable(dbg_periph_enum dbg_periph);
/* enable trace pin assignment */
void dbg_trace_pin_enable(void);
/* disable trace pin assignment */
void dbg_trace_pin_disable(void);
/* set trace pin mode */
void dbg_trace_pin_mode_set(uint32_t trace_mode);
#endif /* GD32F30X_DBG_H */

View File

@ -0,0 +1,259 @@
/*!
\file gd32f30x_dma.h
\brief definitions for the DMA
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_DMA_H
#define GD32F30X_DMA_H
#include "gd32f30x.h"
/* DMA definitions */
#define DMA0 (DMA_BASE) /*!< DMA0 base address */
#define DMA1 (DMA_BASE + 0x0400U) /*!< DMA1 base address */
/* registers definitions */
#define DMA_INTF(dmax) REG32((dmax) + 0x00U) /*!< DMA interrupt flag register */
#define DMA_INTC(dmax) REG32((dmax) + 0x04U) /*!< DMA interrupt flag clear register */
#define DMA_CH0CTL(dmax) REG32((dmax) + 0x08U) /*!< DMA channel 0 control register */
#define DMA_CH0CNT(dmax) REG32((dmax) + 0x0CU) /*!< DMA channel 0 counter register */
#define DMA_CH0PADDR(dmax) REG32((dmax) + 0x10U) /*!< DMA channel 0 peripheral base address register */
#define DMA_CH0MADDR(dmax) REG32((dmax) + 0x14U) /*!< DMA channel 0 memory base address register */
#define DMA_CH1CTL(dmax) REG32((dmax) + 0x1CU) /*!< DMA channel 1 control register */
#define DMA_CH1CNT(dmax) REG32((dmax) + 0x20U) /*!< DMA channel 1 counter register */
#define DMA_CH1PADDR(dmax) REG32((dmax) + 0x24U) /*!< DMA channel 1 peripheral base address register */
#define DMA_CH1MADDR(dmax) REG32((dmax) + 0x28U) /*!< DMA channel 1 memory base address register */
#define DMA_CH2CTL(dmax) REG32((dmax) + 0x30U) /*!< DMA channel 2 control register */
#define DMA_CH2CNT(dmax) REG32((dmax) + 0x34U) /*!< DMA channel 2 counter register */
#define DMA_CH2PADDR(dmax) REG32((dmax) + 0x38U) /*!< DMA channel 2 peripheral base address register */
#define DMA_CH2MADDR(dmax) REG32((dmax) + 0x3CU) /*!< DMA channel 2 memory base address register */
#define DMA_CH3CTL(dmax) REG32((dmax) + 0x44U) /*!< DMA channel 3 control register */
#define DMA_CH3CNT(dmax) REG32((dmax) + 0x48U) /*!< DMA channel 3 counter register */
#define DMA_CH3PADDR(dmax) REG32((dmax) + 0x4CU) /*!< DMA channel 3 peripheral base address register */
#define DMA_CH3MADDR(dmax) REG32((dmax) + 0x50U) /*!< DMA channel 3 memory base address register */
#define DMA_CH4CTL(dmax) REG32((dmax) + 0x58U) /*!< DMA channel 4 control register */
#define DMA_CH4CNT(dmax) REG32((dmax) + 0x5CU) /*!< DMA channel 4 counter register */
#define DMA_CH4PADDR(dmax) REG32((dmax) + 0x60U) /*!< DMA channel 4 peripheral base address register */
#define DMA_CH4MADDR(dmax) REG32((dmax) + 0x64U) /*!< DMA channel 4 memory base address register */
#define DMA_CH5CTL(dmax) REG32((dmax) + 0x6CU) /*!< DMA channel 5 control register */
#define DMA_CH5CNT(dmax) REG32((dmax) + 0x70U) /*!< DMA channel 5 counter register */
#define DMA_CH5PADDR(dmax) REG32((dmax) + 0x74U) /*!< DMA channel 5 peripheral base address register */
#define DMA_CH5MADDR(dmax) REG32((dmax) + 0x78U) /*!< DMA channel 5 memory base address register */
#define DMA_CH6CTL(dmax) REG32((dmax) + 0x80U) /*!< DMA channel 6 control register */
#define DMA_CH6CNT(dmax) REG32((dmax) + 0x84U) /*!< DMA channel 6 counter register */
#define DMA_CH6PADDR(dmax) REG32((dmax) + 0x88U) /*!< DMA channel 6 peripheral base address register */
#define DMA_CH6MADDR(dmax) REG32((dmax) + 0x8CU) /*!< DMA channel 6 memory base address register */
/* bits definitions */
/* DMA_INTF */
#define DMA_INTF_GIF BIT(0) /*!< global interrupt flag of channel */
#define DMA_INTF_FTFIF BIT(1) /*!< full transfer finish flag of channel */
#define DMA_INTF_HTFIF BIT(2) /*!< half transfer finish flag of channel */
#define DMA_INTF_ERRIF BIT(3) /*!< error flag of channel */
/* DMA_INTC */
#define DMA_INTC_GIFC BIT(0) /*!< clear global interrupt flag of channel */
#define DMA_INTC_FTFIFC BIT(1) /*!< clear transfer finish flag of channel */
#define DMA_INTC_HTFIFC BIT(2) /*!< clear half transfer finish flag of channel */
#define DMA_INTC_ERRIFC BIT(3) /*!< clear error flag of channel */
/* DMA_CHxCTL, x=0..6 */
#define DMA_CHXCTL_CHEN BIT(0) /*!< channel enable */
#define DMA_CHXCTL_FTFIE BIT(1) /*!< enable bit for channel full transfer finish interrupt */
#define DMA_CHXCTL_HTFIE BIT(2) /*!< enable bit for channel half transfer finish interrupt */
#define DMA_CHXCTL_ERRIE BIT(3) /*!< enable bit for channel error interrupt */
#define DMA_CHXCTL_DIR BIT(4) /*!< transfer direction */
#define DMA_CHXCTL_CMEN BIT(5) /*!< circular mode enable */
#define DMA_CHXCTL_PNAGA BIT(6) /*!< next address generation algorithm of peripheral */
#define DMA_CHXCTL_MNAGA BIT(7) /*!< next address generation algorithm of memory */
#define DMA_CHXCTL_PWIDTH BITS(8,9) /*!< transfer data width of peripheral */
#define DMA_CHXCTL_MWIDTH BITS(10,11) /*!< transfer data width of memory */
#define DMA_CHXCTL_PRIO BITS(12,13) /*!< priority level */
#define DMA_CHXCTL_M2M BIT(14) /*!< memory to memory mode */
/* DMA_CHxCNT,x=0..6 */
#define DMA_CHXCNT_CNT BITS(0,15) /*!< transfer counter */
/* DMA_CHxPADDR,x=0..6 */
#define DMA_CHXPADDR_PADDR BITS(0,31) /*!< peripheral base address */
/* DMA_CHxMADDR,x=0..6 */
#define DMA_CHXMADDR_MADDR BITS(0,31) /*!< memory base address */
/* constants definitions */
/* DMA channel select */
typedef enum
{
DMA_CH0 = 0, /*!< DMA Channel0 */
DMA_CH1, /*!< DMA Channel1 */
DMA_CH2, /*!< DMA Channel2 */
DMA_CH3, /*!< DMA Channel3 */
DMA_CH4, /*!< DMA Channel4 */
DMA_CH5, /*!< DMA Channel5 */
DMA_CH6 /*!< DMA Channel6 */
} dma_channel_enum;
/* DMA initialize struct */
typedef struct
{
uint32_t periph_addr; /*!< peripheral base address */
uint32_t periph_width; /*!< transfer data size of peripheral */
uint32_t memory_addr; /*!< memory base address */
uint32_t memory_width; /*!< transfer data size of memory */
uint32_t number; /*!< channel transfer number */
uint32_t priority; /*!< channel priority level */
uint8_t periph_inc; /*!< peripheral increasing mode */
uint8_t memory_inc; /*!< memory increasing mode */
uint8_t direction; /*!< channel data transfer direction */
} dma_parameter_struct;
#define DMA_FLAG_ADD(flag, shift) ((flag) << ((shift) * 4U)) /*!< DMA channel flag shift */
/* DMA_register address */
#define DMA_CHCTL(dma, channel) REG32(((dma) + 0x08U) + 0x14U * (uint32_t)(channel)) /*!< the address of DMA channel CHXCTL register */
#define DMA_CHCNT(dma, channel) REG32(((dma) + 0x0CU) + 0x14U * (uint32_t)(channel)) /*!< the address of DMA channel CHXCNT register */
#define DMA_CHPADDR(dma, channel) REG32(((dma) + 0x10U) + 0x14U * (uint32_t)(channel)) /*!< the address of DMA channel CHXPADDR register */
#define DMA_CHMADDR(dma, channel) REG32(((dma) + 0x14U) + 0x14U * (uint32_t)(channel)) /*!< the address of DMA channel CHXMADDR register */
/* DMA reset value */
#define DMA_CHCTL_RESET_VALUE ((uint32_t)0x00000000U) /*!< the reset value of DMA channel CHXCTL register */
#define DMA_CHCNT_RESET_VALUE ((uint32_t)0x00000000U) /*!< the reset value of DMA channel CHXCNT register */
#define DMA_CHPADDR_RESET_VALUE ((uint32_t)0x00000000U) /*!< the reset value of DMA channel CHXPADDR register */
#define DMA_CHMADDR_RESET_VALUE ((uint32_t)0x00000000U) /*!< the reset value of DMA channel CHXMADDR register */
#define DMA_CHINTF_RESET_VALUE (DMA_INTF_GIF | DMA_INTF_FTFIF | \
DMA_INTF_HTFIF | DMA_INTF_ERRIF) /*!< clear DMA channel DMA_INTF register */
/* DMA_INTF register */
/* interrupt flag bits */
#define DMA_INT_FLAG_G DMA_INTF_GIF /*!< global interrupt flag of channel */
#define DMA_INT_FLAG_FTF DMA_INTF_FTFIF /*!< full transfer finish interrupt flag of channel */
#define DMA_INT_FLAG_HTF DMA_INTF_HTFIF /*!< half transfer finish interrupt flag of channel */
#define DMA_INT_FLAG_ERR DMA_INTF_ERRIF /*!< error interrupt flag of channel */
/* flag bits */
#define DMA_FLAG_G DMA_INTF_GIF /*!< global interrupt flag of channel */
#define DMA_FLAG_FTF DMA_INTF_FTFIF /*!< full transfer finish flag of channel */
#define DMA_FLAG_HTF DMA_INTF_HTFIF /*!< half transfer finish flag of channel */
#define DMA_FLAG_ERR DMA_INTF_ERRIF /*!< error flag of channel */
/* DMA_CHxCTL register */
/* interrupt enable bits */
#define DMA_INT_FTF DMA_CHXCTL_FTFIE /*!< enable bit for channel full transfer finish interrupt */
#define DMA_INT_HTF DMA_CHXCTL_HTFIE /*!< enable bit for channel half transfer finish interrupt */
#define DMA_INT_ERR DMA_CHXCTL_ERRIE /*!< enable bit for channel error interrupt */
/* transfer direction */
#define DMA_PERIPHERAL_TO_MEMORY ((uint32_t)0x00000000U) /*!< read from peripheral and write to memory */
#define DMA_MEMORY_TO_PERIPHERAL ((uint32_t)0x00000001U) /*!< read from memory and write to peripheral */
/* circular mode */
#define DMA_CIRCULAR_MODE_DISABLE ((uint32_t)0x00000000U) /*!< circular mode disable */
#define DMA_CIRCULAR_MODE_ENABLE ((uint32_t)0x00000001U) /*!< circular mode enable */
/* peripheral increasing mode */
#define DMA_PERIPH_INCREASE_DISABLE ((uint32_t)0x00000000U) /*!< next address of peripheral is fixed address mode */
#define DMA_PERIPH_INCREASE_ENABLE ((uint32_t)0x00000001U) /*!< next address of peripheral is increasing address mode */
/* memory increasing mode */
#define DMA_MEMORY_INCREASE_DISABLE ((uint32_t)0x00000000U) /*!< next address of memory is fixed address mode */
#define DMA_MEMORY_INCREASE_ENABLE ((uint32_t)0x00000001U) /*!< next address of memory is increasing address mode */
/* transfer data size of peripheral */
#define CHCTL_PWIDTH(regval) (BITS(8,9) & ((regval) << 8)) /*!< transfer data size of peripheral */
#define DMA_PERIPHERAL_WIDTH_8BIT CHCTL_PWIDTH(0) /*!< transfer data size of peripheral is 8-bit */
#define DMA_PERIPHERAL_WIDTH_16BIT CHCTL_PWIDTH(1) /*!< transfer data size of peripheral is 16-bit */
#define DMA_PERIPHERAL_WIDTH_32BIT CHCTL_PWIDTH(2) /*!< transfer data size of peripheral is 32-bit */
/* transfer data size of memory */
#define CHCTL_MWIDTH(regval) (BITS(10,11) & ((regval) << 10)) /*!< transfer data size of memory */
#define DMA_MEMORY_WIDTH_8BIT CHCTL_MWIDTH(0) /*!< transfer data size of memory is 8-bit */
#define DMA_MEMORY_WIDTH_16BIT CHCTL_MWIDTH(1) /*!< transfer data size of memory is 16-bit */
#define DMA_MEMORY_WIDTH_32BIT CHCTL_MWIDTH(2) /*!< transfer data size of memory is 32-bit */
/* channel priority level */
#define CHCTL_PRIO(regval) (BITS(12,13) & ((regval) << 12)) /*!< DMA channel priority level */
#define DMA_PRIORITY_LOW CHCTL_PRIO(0) /*!< low priority */
#define DMA_PRIORITY_MEDIUM CHCTL_PRIO(1) /*!< medium priority */
#define DMA_PRIORITY_HIGH CHCTL_PRIO(2) /*!< high priority */
#define DMA_PRIORITY_ULTRA_HIGH CHCTL_PRIO(3) /*!< ultra high priority */
/* memory to memory mode */
#define DMA_MEMORY_TO_MEMORY_DISABLE ((uint32_t)0x00000000U)
#define DMA_MEMORY_TO_MEMORY_ENABLE ((uint32_t)0x00000001U)
/* DMA_CHxCNT register */
/* transfer counter */
#define DMA_CHANNEL_CNT_MASK DMA_CHXCNT_CNT /*!< transfer counter mask */
/* function declarations */
/* deinitialize DMA a channel registers */
void dma_deinit(uint32_t dma_periph, dma_channel_enum channelx);
/* initialize DMA channel */
void dma_init(uint32_t dma_periph, dma_channel_enum channelx, dma_parameter_struct init_struct);
/* enable DMA circulation mode */
void dma_circulation_enable(uint32_t dma_periph, dma_channel_enum channelx);
/* disable DMA circulation mode */
void dma_circulation_disable(uint32_t dma_periph, dma_channel_enum channelx);
/* enable memory to memory mode */
void dma_memory_to_memory_enable(uint32_t dma_periph, dma_channel_enum channelx);
/* disable memory to memory mode */
void dma_memory_to_memory_disable(uint32_t dma_periph, dma_channel_enum channelx);
/* enable DMA channel */
void dma_channel_enable(uint32_t dma_periph, dma_channel_enum channelx);
/* disable DMA channel */
void dma_channel_disable(uint32_t dma_periph, dma_channel_enum channelx);
/* set DMA peripheral base address */
void dma_periph_address_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t address);
/* set DMA Memory base address */
void dma_memory_address_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t address);
/* set the number of remaining data to be transferred by the DMA */
void dma_transfer_number_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t number);
/* get the number of remaining data to be transferred by the DMA */
uint32_t dma_transfer_number_get(uint32_t dma_periph, dma_channel_enum channelx);
/* configure priority level of DMA channel */
void dma_priority_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t priority);
/* configure transfer data size of memory */
void dma_memory_width_config (uint32_t dma_periph, dma_channel_enum channelx, uint32_t mwidth);
/* configure transfer data size of peripheral */
void dma_periph_width_config (uint32_t dma_periph, dma_channel_enum channelx, uint32_t pwidth);
/* enable next address increasement algorithm of memory */
void dma_memory_increase_enable(uint32_t dma_periph, dma_channel_enum channelx);
/* disable next address increasement algorithm of memory */
void dma_memory_increase_disable(uint32_t dma_periph, dma_channel_enum channelx);
/* enable next address increasement algorithm of peripheral */
void dma_periph_increase_enable(uint32_t dma_periph, dma_channel_enum channelx);
/* disable next address increasement algorithm of peripheral */
void dma_periph_increase_disable(uint32_t dma_periph, dma_channel_enum channelx);
/* configure the direction of data transfer on the channel */
void dma_transfer_direction_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t direction);
/* check DMA flag is set or not */
FlagStatus dma_flag_get(uint32_t dma_periph, dma_channel_enum channelx, uint32_t flag);
/* clear DMA a channel flag */
void dma_flag_clear(uint32_t dma_periph, dma_channel_enum channelx, uint32_t flag);
/* check DMA flag and interrupt enable bit is set or not */
FlagStatus dma_interrupt_flag_get(uint32_t dma_periph, dma_channel_enum channelx, uint32_t flag);
/* clear DMA a channel flag */
void dma_interrupt_flag_clear(uint32_t dma_periph, dma_channel_enum channelx, uint32_t flag);
/* enable DMA interrupt */
void dma_interrupt_enable(uint32_t dma_periph, dma_channel_enum channelx, uint32_t source);
/* disable DMA interrupt */
void dma_interrupt_disable(uint32_t dma_periph, dma_channel_enum channelx, uint32_t source);
#endif /* GD32F30X_DMA_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,420 @@
/*!
\file gd32f30x_exmc.h
\brief definitions for the EXMC
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.2, firmware for GD32F30x
*/
#ifndef GD32F30X_EXMC_H
#define GD32F30X_EXMC_H
#include "gd32f30x.h"
/* EXMC definitions */
#define EXMC (EXMC_BASE) /*!< EXMC register base address */
/* registers definitions */
/* NOR/PSRAM */
#define EXMC_SNCTL0 REG32(EXMC + 0x00U) /*!< EXMC SRAM/NOR flash control register 0 */
#define EXMC_SNTCFG0 REG32(EXMC + 0x04U) /*!< EXMC SRAM/NOR flash timing configuration register 0 */
#define EXMC_SNWTCFG0 REG32(EXMC + 0x104U) /*!< EXMC SRAM/NOR flash write timing configuration register 0 */
#define EXMC_SNCTL1 REG32(EXMC + 0x08U) /*!< EXMC SRAM/NOR flash control register 1 */
#define EXMC_SNTCFG1 REG32(EXMC + 0x0CU) /*!< EXMC SRAM/NOR flash timing configuration register 1 */
#define EXMC_SNWTCFG1 REG32(EXMC + 0x10CU) /*!< EXMC SRAM/NOR flash write timing configuration register 1 */
#define EXMC_SNCTL2 REG32(EXMC + 0x10U) /*!< EXMC SRAM/NOR flash control register 2 */
#define EXMC_SNTCFG2 REG32(EXMC + 0x14U) /*!< EXMC SRAM/NOR flash timing configuration register 2 */
#define EXMC_SNWTCFG2 REG32(EXMC + 0x114U) /*!< EXMC SRAM/NOR flash write timing configuration register 2 */
#define EXMC_SNCTL3 REG32(EXMC + 0x18U) /*!< EXMC SRAM/NOR flash control register 3 */
#define EXMC_SNTCFG3 REG32(EXMC + 0x1CU) /*!< EXMC SRAM/NOR flash timing configuration register 3 */
#define EXMC_SNWTCFG3 REG32(EXMC + 0x11CU) /*!< EXMC SRAM/NOR flash write timing configuration register 3 */
/* NAND/PC card */
#define EXMC_NPCTL1 REG32(EXMC + 0x60U) /*!< EXMC NAND/PC card control register 1 */
#define EXMC_NPINTEN1 REG32(EXMC + 0x64U) /*!< EXMC NAND/PC card interrupt enable register 1 */
#define EXMC_NPCTCFG1 REG32(EXMC + 0x68U) /*!< EXMC NAND/PC card common space timing configuration register 1 */
#define EXMC_NPATCFG1 REG32(EXMC + 0x6CU) /*!< EXMC NAND/PC card attribute space timing configuration register 1 */
#define EXMC_NECC1 REG32(EXMC + 0x74U) /*!< EXMC NAND ECC register 1 */
#define EXMC_NPCTL2 REG32(EXMC + 0x80U) /*!< EXMC NAND/PC card control register 2 */
#define EXMC_NPINTEN2 REG32(EXMC + 0x84U) /*!< EXMC NAND/PC card interrupt enable register 2 */
#define EXMC_NPCTCFG2 REG32(EXMC + 0x88U) /*!< EXMC NAND/PC card common space timing configuration register 2 */
#define EXMC_NPATCFG2 REG32(EXMC + 0x8CU) /*!< EXMC NAND/PC card attribute space timing configuration register 2 */
#define EXMC_NECC2 REG32(EXMC + 0x94U) /*!< EXMC NAND ECC register 2 */
#define EXMC_NPCTL3 REG32(EXMC + 0xA0U) /*!< EXMC NAND/PC card control register 3 */
#define EXMC_NPINTEN3 REG32(EXMC + 0xA4U) /*!< EXMC NAND/PC card interrupt enable register 3 */
#define EXMC_NPCTCFG3 REG32(EXMC + 0xA8U) /*!< EXMC NAND/PC card common space timing configuration register 3 */
#define EXMC_NPATCFG3 REG32(EXMC + 0xACU) /*!< EXMC NAND/PC card attribute space timing configuration register 3 */
#define EXMC_PIOTCFG3 REG32(EXMC + 0xB0U) /*!< EXMC PC card I/O space timing configuration register */
/* bits definitions */
/* EXMC_SNCTLx,x=0..3 */
#define EXMC_SNCTL_NRBKEN BIT(0) /*!< NOR bank enable */
#define EXMC_SNCTL_NRMUX BIT(1) /*!< NOR bank memory address/data multiplexing */
#define EXMC_SNCTL_NRTP BITS(2,3) /*!< NOR bank memory type */
#define EXMC_SNCTL_NRW BITS(4,5) /*!< NOR bank memory data bus width */
#define EXMC_SNCTL_NREN BIT(6) /*!< NOR flash access enable */
#define EXMC_SNCTL_SBRSTEN BIT(8) /*!< synchronous burst enable */
#define EXMC_SNCTL_NRWTPOL BIT(9) /*!< NWAIT signal polarity */
#define EXMC_SNCTL_WRAPEN BIT(10) /*!< wrapped burst mode enable */
#define EXMC_SNCTL_NRWTCFG BIT(11) /*!< NWAIT signal configuration, only work in synchronous mode */
#define EXMC_SNCTL_WREN BIT(12) /*!< write enable */
#define EXMC_SNCTL_NRWTEN BIT(13) /*!< NWAIT signal enable */
#define EXMC_SNCTL_EXMODEN BIT(14) /*!< extended mode enable */
#define EXMC_SNCTL_ASYNCWAIT BIT(15) /*!< asynchronous wait */
#define EXMC_SNCTL_CPS BITS(16,18) /*!< CRAM page size */
#define EXMC_SNCTL_SYNCWR BIT(19) /*!< synchronous write */
/* EXMC_SNTCFGx,x=0..3 */
#define EXMC_SNTCFG_ASET BITS(0,3) /*!< address setup time */
#define EXMC_SNTCFG_AHLD BITS(4,7) /*!< address hold time */
#define EXMC_SNTCFG_DSET BITS(8,15) /*!< data setup time */
#define EXMC_SNTCFG_BUSLAT BITS(16,19) /*!< bus latency */
#define EXMC_SNTCFG_CKDIV BITS(20,23) /*!< synchronous clock divide ratio */
#define EXMC_SNTCFG_DLAT BITS(24,27) /*!< data latency for NOR flash */
#define EXMC_SNTCFG_ASYNCMOD BITS(28,29) /*!< asynchronous access mode */
/* EXMC_SNWTCFGx,x=0..3 */
#define EXMC_SNWTCFG_WASET BITS(0,3) /*!< address setup time */
#define EXMC_SNWTCFG_WAHLD BITS(4,7) /*!< address hold time */
#define EXMC_SNWTCFG_WDSET BITS(8,15) /*!< data setup time */
#define EXMC_SNWTCFG_WBUSLAT BITS(16,19) /*!< bus latency */
#define EXMC_SNWTCFG_WASYNCMOD BITS(28,29) /*!< asynchronous access mode */
/* EXMC_NPCTLx,x=1..3 */
#define EXMC_NPCTL_NDWTEN BIT(1) /*!< wait feature enable */
#define EXMC_NPCTL_NDBKEN BIT(2) /*!< NAND bank enable */
#define EXMC_NPCTL_NDTP BIT(3) /*!< NAND bank memory type */
#define EXMC_NPCTL_NDW BITS(4,5) /*!< NAND bank memory data bus width */
#define EXMC_NPCTL_ECCEN BIT(6) /*!< ECC enable */
#define EXMC_NPCTL_CTR BITS(9,12) /*!< CLE to RE delay */
#define EXMC_NPCTL_ATR BITS(13,16) /*!< ALE to RE delay */
#define EXMC_NPCTL_ECCSZ BITS(17,19) /*!< ECC size */
/* EXMC_NPINTENx,x=1..3 */
#define EXMC_NPINTEN_INTRS BIT(0) /*!< interrupt rising edge status */
#define EXMC_NPINTEN_INTHS BIT(1) /*!< interrupt high-level status */
#define EXMC_NPINTEN_INTFS BIT(2) /*!< interrupt falling edge status */
#define EXMC_NPINTEN_INTREN BIT(3) /*!< interrupt rising edge detection enable */
#define EXMC_NPINTEN_INTHEN BIT(4) /*!< interrupt high-level detection enable */
#define EXMC_NPINTEN_INTFEN BIT(5) /*!< interrupt falling edge detection enable */
#define EXMC_NPINTEN_FFEPT BIT(6) /*!< FIFO empty flag */
/* EXMC_NPCTCFGx,x=1..3 */
#define EXMC_NPCTCFG_COMSET BITS(0,7) /*!< common memory setup time */
#define EXMC_NPCTCFG_COMWAIT BITS(8,15) /*!< common memory wait time */
#define EXMC_NPCTCFG_COMHLD BITS(16,23) /*!< common memory hold time */
#define EXMC_NPCTCFG_COMHIZ BITS(24,31) /*!< common memory data bus HiZ time */
/* EXMC_NPATCFGx,x=1..3 */
#define EXMC_NPATCFG_ATTSET BITS(0,7) /*!< attribute memory setup time */
#define EXMC_NPATCFG_ATTWAIT BITS(8,15) /*!< attribute memory wait time */
#define EXMC_NPATCFG_ATTHLD BITS(16,23) /*!< attribute memory hold time */
#define EXMC_NPATCFG_ATTHIZ BITS(24,31) /*!< attribute memory data bus HiZ time */
/* EXMC_PIOTCFG3 */
#define EXMC_PIOTCFG3_IOSET BITS(0,7) /*!< IO space setup time */
#define EXMC_PIOTCFG3_IOWAIT BITS(8,15) /*!< IO space wait time */
#define EXMC_PIOTCFG3_IOHLD BITS(16,23) /*!< IO space hold time */
#define EXMC_PIOTCFG3_IOHIZ BITS(24,31) /*!< IO space data bus HiZ time */
/* EXMC_NECCx,x=1,2 */
#define EXMC_NECC_ECC BITS(0,31) /*!< ECC result */
/* constants definitions */
/* EXMC NOR/SRAM timing initialize struct */
typedef struct
{
uint32_t asyn_access_mode; /*!< asynchronous access mode */
uint32_t syn_data_latency; /*!< configure the data latency */
uint32_t syn_clk_division; /*!< configure the clock divide ratio */
uint32_t bus_latency; /*!< configure the bus latency */
uint32_t asyn_data_setuptime; /*!< configure the data setup time,asynchronous access mode valid */
uint32_t asyn_address_holdtime; /*!< configure the address hold time,asynchronous access mode valid */
uint32_t asyn_address_setuptime; /*!< configure the data setup time,asynchronous access mode valid */
}exmc_norsram_timing_parameter_struct;
/* EXMC NOR/SRAM initialize struct */
typedef struct
{
uint32_t norsram_region; /*!< select the region of EXMC NOR/SRAM bank */
uint32_t write_mode; /*!< the write mode, synchronous mode or asynchronous mode */
uint32_t extended_mode; /*!< enable or disable the extended mode */
uint32_t asyn_wait; /*!< enable or disable the asynchronous wait function */
uint32_t nwait_signal; /*!< enable or disable the NWAIT signal while in synchronous bust mode */
uint32_t memory_write; /*!< enable or disable the write operation */
uint32_t nwait_config; /*!< NWAIT signal configuration */
uint32_t wrap_burst_mode; /*!< enable or disable the wrap burst mode */
uint32_t nwait_polarity; /*!< specifies the polarity of NWAIT signal from memory */
uint32_t burst_mode; /*!< enable or disable the burst mode */
uint32_t databus_width; /*!< specifies the databus width of external memory */
uint32_t memory_type; /*!< specifies the type of external memory */
uint32_t address_data_mux; /*!< specifies whether the data bus and address bus are multiplexed */
exmc_norsram_timing_parameter_struct* read_write_timing; /*!< timing parameters for read and write if the extended mode is not used or the timing
parameters for read if the extended mode is used */
exmc_norsram_timing_parameter_struct* write_timing; /*!< timing parameters for write when the extended mode is used */
}exmc_norsram_parameter_struct;
/* EXMC NAND/PC card timing initialize struct */
typedef struct
{
uint32_t databus_hiztime; /*!< configure the dadtabus HiZ time for write operation */
uint32_t holdtime; /*!< configure the address hold time(or the data hold time for write operation) */
uint32_t waittime; /*!< configure the minimum wait time */
uint32_t setuptime; /*!< configure the address setup time */
}exmc_nand_pccard_timing_parameter_struct;
/* EXMC NAND initialize struct */
typedef struct
{
uint32_t nand_bank; /*!< select the bank of NAND */
uint32_t ecc_size; /*!< the page size for the ECC calculation */
uint32_t atr_latency; /*!< configure the latency of ALE low to RB low */
uint32_t ctr_latency; /*!< configure the latency of CLE low to RB low */
uint32_t ecc_logic; /*!< enable or disable the ECC calculation logic */
uint32_t databus_width; /*!< the NAND flash databus width */
uint32_t wait_feature; /*!< enables or disables the wait feature */
exmc_nand_pccard_timing_parameter_struct* common_space_timing; /*!< the timing parameters for NAND flash common space */
exmc_nand_pccard_timing_parameter_struct* attribute_space_timing; /*!< the timing parameters for NAND flash attribute space */
}exmc_nand_parameter_struct;
/* EXMC PC card initialize struct */
typedef struct
{
uint32_t atr_latency; /*!< configure the latency of ALE low to RB low */
uint32_t ctr_latency; /*!< configure the latency of CLE low to RB low */
uint32_t wait_feature; /*!< enables or disables the Wait feature */
exmc_nand_pccard_timing_parameter_struct* common_space_timing; /*!< the timing parameters for NAND flash common space */
exmc_nand_pccard_timing_parameter_struct* attribute_space_timing; /*!< the timing parameters for NAND flash attribute space */
exmc_nand_pccard_timing_parameter_struct* io_space_timing; /*!< the timing parameters for NAND flash IO space */
}exmc_pccard_parameter_struct;;
/* EXMC_register address */
#define EXMC_SNCTL(region) REG32(EXMC + 0x08U * (region)) /*!< EXMC SRAM/NOR flash control register */
#define EXMC_SNTCFG(region) REG32(EXMC + 0x04U + 0x08U * (region)) /*!< EXMC SRAM/NOR flash timing configuration register */
#define EXMC_SNWTCFG(region) REG32(EXMC + 0x104U + 0x08U * (region)) /*!< EXMC SRAM/NOR flash write timing configuration register */
#define EXMC_NPCTL(bank) REG32(EXMC + 0x40U + 0x20U * (bank)) /*!< EXMC NAND/PC card control register */
#define EXMC_NPINTEN(bank) REG32(EXMC + 0x44U + 0x20U * (bank)) /*!< EXMC NAND/PC card interrupt enable register */
#define EXMC_NPCTCFG(bank) REG32(EXMC + 0x48U + 0x20U * (bank)) /*!< EXMC NAND/PC card common space timing configuration register */
#define EXMC_NPATCFG(bank) REG32(EXMC + 0x4CU + 0x20U * (bank)) /*!< EXMC NAND/PC card attribute space timing configuration register */
#define EXMC_NECC(bank) REG32(EXMC + 0x54U + 0x20U * (bank)) /*!< EXMC NAND ECC register */
/* CRAM page size */
#define SNCTL_CPS(regval) (BITS(16,18) & ((uint32_t)(regval) << 16))
#define EXMC_CRAM_AUTO_SPLIT SNCTL_CPS(0) /*!< automatic burst split on page boundary crossing */
#define EXMC_CRAM_PAGE_SIZE_128_BYTES SNCTL_CPS(1) /*!< page size is 128 bytes */
#define EXMC_CRAM_PAGE_SIZE_256_BYTES SNCTL_CPS(2) /*!< page size is 256 bytes */
#define EXMC_CRAM_PAGE_SIZE_512_BYTES SNCTL_CPS(3) /*!< page size is 512 bytes */
#define EXMC_CRAM_PAGE_SIZE_1024_BYTES SNCTL_CPS(4) /*!< page size is 1024 bytes */
/* NOR bank memory data bus width */
#define SNCTL_NRW(regval) (BITS(4,5) & ((uint32_t)(regval) << 4))
#define EXMC_NOR_DATABUS_WIDTH_8B SNCTL_NRW(0) /*!< NOR data width 8 bits */
#define EXMC_NOR_DATABUS_WIDTH_16B SNCTL_NRW(1) /*!< NOR data width 16 bits */
/* NOR bank memory type */
#define SNCTL_NRTP(regval) (BITS(2,3) & ((uint32_t)(regval) << 2))
#define EXMC_MEMORY_TYPE_SRAM SNCTL_NRTP(0) /*!< SRAM,ROM */
#define EXMC_MEMORY_TYPE_PSRAM SNCTL_NRTP(1) /*!< PSRAM,CRAM */
#define EXMC_MEMORY_TYPE_NOR SNCTL_NRTP(2) /*!< NOR flash */
/* asynchronous access mode */
#define SNTCFG_ASYNCMOD(regval) (BITS(28,29) & ((uint32_t)(regval) << 28))
#define EXMC_ACCESS_MODE_A SNTCFG_ASYNCMOD(0) /*!< mode A access */
#define EXMC_ACCESS_MODE_B SNTCFG_ASYNCMOD(1) /*!< mode B access */
#define EXMC_ACCESS_MODE_C SNTCFG_ASYNCMOD(2) /*!< mode C access */
#define EXMC_ACCESS_MODE_D SNTCFG_ASYNCMOD(3) /*!< mode D access */
/* data latency for NOR flash */
#define SNTCFG_DLAT(regval) (BITS(24,27) & ((uint32_t)(regval) << 24))
#define EXMC_DATALAT_2_CLK SNTCFG_DLAT(0) /*!< data latency 2 EXMC_CLK */
#define EXMC_DATALAT_3_CLK SNTCFG_DLAT(1) /*!< data latency 3 EXMC_CLK */
#define EXMC_DATALAT_4_CLK SNTCFG_DLAT(2) /*!< data latency 4 EXMC_CLK */
#define EXMC_DATALAT_5_CLK SNTCFG_DLAT(3) /*!< data latency 5 EXMC_CLK */
#define EXMC_DATALAT_6_CLK SNTCFG_DLAT(4) /*!< data latency 6 EXMC_CLK */
#define EXMC_DATALAT_7_CLK SNTCFG_DLAT(5) /*!< data latency 7 EXMC_CLK */
#define EXMC_DATALAT_8_CLK SNTCFG_DLAT(6) /*!< data latency 8 EXMC_CLK */
#define EXMC_DATALAT_9_CLK SNTCFG_DLAT(7) /*!< data latency 9 EXMC_CLK */
#define EXMC_DATALAT_10_CLK SNTCFG_DLAT(8) /*!< data latency 10 EXMC_CLK */
#define EXMC_DATALAT_11_CLK SNTCFG_DLAT(9) /*!< data latency 11 EXMC_CLK */
#define EXMC_DATALAT_12_CLK SNTCFG_DLAT(10) /*!< data latency 12 EXMC_CLK */
#define EXMC_DATALAT_13_CLK SNTCFG_DLAT(11) /*!< data latency 13 EXMC_CLK */
#define EXMC_DATALAT_14_CLK SNTCFG_DLAT(12) /*!< data latency 14 EXMC_CLK */
#define EXMC_DATALAT_15_CLK SNTCFG_DLAT(13) /*!< data latency 15 EXMC_CLK */
#define EXMC_DATALAT_16_CLK SNTCFG_DLAT(14) /*!< data latency 16 EXMC_CLK */
#define EXMC_DATALAT_17_CLK SNTCFG_DLAT(15) /*!< data latency 17 EXMC_CLK */
/* synchronous clock divide ratio */
#define SNTCFG_CKDIV(regval) (BITS(20,23) & ((uint32_t)(regval) << 20))
#define EXMC_SYN_CLOCK_RATIO_DISABLE SNTCFG_CKDIV(0) /*!< EXMC_CLK disable */
#define EXMC_SYN_CLOCK_RATIO_2_CLK SNTCFG_CKDIV(1) /*!< EXMC_CLK = 2*HCLK */
#define EXMC_SYN_CLOCK_RATIO_3_CLK SNTCFG_CKDIV(2) /*!< EXMC_CLK = 3*HCLK */
#define EXMC_SYN_CLOCK_RATIO_4_CLK SNTCFG_CKDIV(3) /*!< EXMC_CLK = 4*HCLK */
#define EXMC_SYN_CLOCK_RATIO_5_CLK SNTCFG_CKDIV(4) /*!< EXMC_CLK = 5*HCLK */
#define EXMC_SYN_CLOCK_RATIO_6_CLK SNTCFG_CKDIV(5) /*!< EXMC_CLK = 6*HCLK */
#define EXMC_SYN_CLOCK_RATIO_7_CLK SNTCFG_CKDIV(6) /*!< EXMC_CLK = 7*HCLK */
#define EXMC_SYN_CLOCK_RATIO_8_CLK SNTCFG_CKDIV(7) /*!< EXMC_CLK = 8*HCLK */
#define EXMC_SYN_CLOCK_RATIO_9_CLK SNTCFG_CKDIV(8) /*!< EXMC_CLK = 9*HCLK */
#define EXMC_SYN_CLOCK_RATIO_10_CLK SNTCFG_CKDIV(9) /*!< EXMC_CLK = 10*HCLK */
#define EXMC_SYN_CLOCK_RATIO_11_CLK SNTCFG_CKDIV(10) /*!< EXMC_CLK = 11*HCLK */
#define EXMC_SYN_CLOCK_RATIO_12_CLK SNTCFG_CKDIV(11) /*!< EXMC_CLK = 12*HCLK */
#define EXMC_SYN_CLOCK_RATIO_13_CLK SNTCFG_CKDIV(12) /*!< EXMC_CLK = 13*HCLK */
#define EXMC_SYN_CLOCK_RATIO_14_CLK SNTCFG_CKDIV(13) /*!< EXMC_CLK = 14*HCLK */
#define EXMC_SYN_CLOCK_RATIO_15_CLK SNTCFG_CKDIV(14) /*!< EXMC_CLK = 15*HCLK */
#define EXMC_SYN_CLOCK_RATIO_16_CLK SNTCFG_CKDIV(15) /*!< EXMC_CLK = 16*HCLK */
/* ECC size */
#define NPCTL_ECCSZ(regval) (BITS(17,19) & ((uint32_t)(regval) << 17))
#define EXMC_ECC_SIZE_256BYTES NPCTL_ECCSZ(0) /* 256 bytes */
#define EXMC_ECC_SIZE_512BYTES NPCTL_ECCSZ(1) /* 512 bytes */
#define EXMC_ECC_SIZE_1024BYTES NPCTL_ECCSZ(2) /* 1024 bytes */
#define EXMC_ECC_SIZE_2048BYTES NPCTL_ECCSZ(3) /* 2048 bytes */
#define EXMC_ECC_SIZE_4096BYTES NPCTL_ECCSZ(4) /* 4096 bytes */
#define EXMC_ECC_SIZE_8192BYTES NPCTL_ECCSZ(5) /* 8192 bytes */
/* ALE to RE delay */
#define NPCTL_ATR(regval) (BITS(13,16) & ((uint32_t)(regval) << 13))
#define EXMC_ALE_RE_DELAY_1_HCLK NPCTL_ATR(0) /* ALE to RE delay = 1*HCLK */
#define EXMC_ALE_RE_DELAY_2_HCLK NPCTL_ATR(1) /* ALE to RE delay = 2*HCLK */
#define EXMC_ALE_RE_DELAY_3_HCLK NPCTL_ATR(2) /* ALE to RE delay = 3*HCLK */
#define EXMC_ALE_RE_DELAY_4_HCLK NPCTL_ATR(3) /* ALE to RE delay = 4*HCLK */
#define EXMC_ALE_RE_DELAY_5_HCLK NPCTL_ATR(4) /* ALE to RE delay = 5*HCLK */
#define EXMC_ALE_RE_DELAY_6_HCLK NPCTL_ATR(5) /* ALE to RE delay = 6*HCLK */
#define EXMC_ALE_RE_DELAY_7_HCLK NPCTL_ATR(6) /* ALE to RE delay = 7*HCLK */
#define EXMC_ALE_RE_DELAY_8_HCLK NPCTL_ATR(7) /* ALE to RE delay = 8*HCLK */
#define EXMC_ALE_RE_DELAY_9_HCLK NPCTL_ATR(8) /* ALE to RE delay = 9*HCLK */
#define EXMC_ALE_RE_DELAY_10_HCLK NPCTL_ATR(9) /* ALE to RE delay = 10*HCLK */
#define EXMC_ALE_RE_DELAY_11_HCLK NPCTL_ATR(10) /* ALE to RE delay = 11*HCLK */
#define EXMC_ALE_RE_DELAY_12_HCLK NPCTL_ATR(11) /* ALE to RE delay = 12*HCLK */
#define EXMC_ALE_RE_DELAY_13_HCLK NPCTL_ATR(12) /* ALE to RE delay = 13*HCLK */
#define EXMC_ALE_RE_DELAY_14_HCLK NPCTL_ATR(13) /* ALE to RE delay = 14*HCLK */
#define EXMC_ALE_RE_DELAY_15_HCLK NPCTL_ATR(14) /* ALE to RE delay = 15*HCLK */
#define EXMC_ALE_RE_DELAY_16_HCLK NPCTL_ATR(15) /* ALE to RE delay = 16*HCLK */
/* CLE to RE delay */
#define NPCTL_CTR(regval) (BITS(9,12) & ((uint32_t)(regval) << 9))
#define EXMC_CLE_RE_DELAY_1_HCLK NPCTL_CTR(0) /* CLE to RE delay = 1*HCLK */
#define EXMC_CLE_RE_DELAY_2_HCLK NPCTL_CTR(1) /* CLE to RE delay = 2*HCLK */
#define EXMC_CLE_RE_DELAY_3_HCLK NPCTL_CTR(2) /* CLE to RE delay = 3*HCLK */
#define EXMC_CLE_RE_DELAY_4_HCLK NPCTL_CTR(3) /* CLE to RE delay = 4*HCLK */
#define EXMC_CLE_RE_DELAY_5_HCLK NPCTL_CTR(4) /* CLE to RE delay = 5*HCLK */
#define EXMC_CLE_RE_DELAY_6_HCLK NPCTL_CTR(5) /* CLE to RE delay = 6*HCLK */
#define EXMC_CLE_RE_DELAY_7_HCLK NPCTL_CTR(6) /* CLE to RE delay = 7*HCLK */
#define EXMC_CLE_RE_DELAY_8_HCLK NPCTL_CTR(7) /* CLE to RE delay = 8*HCLK */
#define EXMC_CLE_RE_DELAY_9_HCLK NPCTL_CTR(8) /* CLE to RE delay = 9*HCLK */
#define EXMC_CLE_RE_DELAY_10_HCLK NPCTL_CTR(9) /* CLE to RE delay = 10*HCLK */
#define EXMC_CLE_RE_DELAY_11_HCLK NPCTL_CTR(10) /* CLE to RE delay = 11*HCLK */
#define EXMC_CLE_RE_DELAY_12_HCLK NPCTL_CTR(11) /* CLE to RE delay = 12*HCLK */
#define EXMC_CLE_RE_DELAY_13_HCLK NPCTL_CTR(12) /* CLE to RE delay = 13*HCLK */
#define EXMC_CLE_RE_DELAY_14_HCLK NPCTL_CTR(13) /* CLE to RE delay = 14*HCLK */
#define EXMC_CLE_RE_DELAY_15_HCLK NPCTL_CTR(14) /* CLE to RE delay = 15*HCLK */
#define EXMC_CLE_RE_DELAY_16_HCLK NPCTL_CTR(15) /* CLE to RE delay = 16*HCLK */
/* NAND bank memory data bus width */
#define NPCTL_NDW(regval) (BITS(4,5) & ((uint32_t)(regval) << 4))
#define EXMC_NAND_DATABUS_WIDTH_8B NPCTL_NDW(0) /*!< NAND data width 8 bits */
#define EXMC_NAND_DATABUS_WIDTH_16B NPCTL_NDW(1) /*!< NAND data width 16 bits */
/* EXMC NOR/SRAM bank region definition */
#define EXMC_BANK0_NORSRAM_REGION0 ((uint32_t)0x00000000U) /*!< bank0 NOR/SRAM region0 */
#define EXMC_BANK0_NORSRAM_REGION1 ((uint32_t)0x00000001U) /*!< bank0 NOR/SRAM region1 */
#define EXMC_BANK0_NORSRAM_REGION2 ((uint32_t)0x00000002U) /*!< bank0 NOR/SRAM region2 */
#define EXMC_BANK0_NORSRAM_REGION3 ((uint32_t)0x00000003U) /*!< bank0 NOR/SRAM region3 */
/* EXMC NOR/SRAM write mode */
#define EXMC_ASYN_WRITE ((uint32_t)0x00000000U) /*!< asynchronous write mode */
#define EXMC_SYN_WRITE ((uint32_t)0x00080000U) /*!< synchronous write mode */
/* EXMC NWAIT signal configuration */
#define EXMC_NWAIT_CONFIG_BEFORE ((uint32_t)0x00000000U) /*!< NWAIT signal is active one data cycle before wait state */
#define EXMC_NWAIT_CONFIG_DURING ((uint32_t)0x00000800U) /*!< NWAIT signal is active during wait state */
/* EXMC NWAIT signal polarity configuration */
#define EXMC_NWAIT_POLARITY_LOW ((uint32_t)0x00000000U) /*!< low level is active of NWAIT */
#define EXMC_NWAIT_POLARITY_HIGH ((uint32_t)0x00000200U) /*!< high level is active of NWAIT */
/* EXMC NAND/PC card bank definition */
#define EXMC_BANK1_NAND ((uint32_t)0x00000001U) /*!< bank1 NAND flash */
#define EXMC_BANK2_NAND ((uint32_t)0x00000002U) /*!< bank2 NAND flash */
#define EXMC_BANK3_PCCARD ((uint32_t)0x00000003U) /*!< bank3 PC card */
/* EXMC flag bits */
#define EXMC_NAND_PCCARD_FLAG_RISE EXMC_NPINTEN_INTRS /*!< interrupt rising edge status */
#define EXMC_NAND_PCCARD_FLAG_LEVEL EXMC_NPINTEN_INTHS /*!< interrupt high-level status */
#define EXMC_NAND_PCCARD_FLAG_FALL EXMC_NPINTEN_INTFS /*!< interrupt falling edge status */
#define EXMC_NAND_PCCARD_FLAG_FIFOE EXMC_NPINTEN_FFEPT /*!< FIFO empty flag */
/* EXMC interrupt enable bits */
#define EXMC_NAND_PCCARD_INT_RISE EXMC_NPINTEN_INTREN /*!< interrupt rising edge detection enable */
#define EXMC_NAND_PCCARD_INT_LEVEL EXMC_NPINTEN_INTHEN /*!< interrupt high-level detection enable */
#define EXMC_NAND_PCCARD_INT_FALL EXMC_NPINTEN_INTFEN /*!< interrupt falling edge detection enable */
/* EXMC interrupt flag bits */
#define EXMC_NAND_PCCARD_INT_FLAG_RISE EXMC_NPINTEN_INTREN /*!< interrupt rising edge detection enable */
#define EXMC_NAND_PCCARD_INT_FLAG_LEVEL EXMC_NPINTEN_INTHEN /*!< interrupt high-level detection enable */
#define EXMC_NAND_PCCARD_INT_FLAG_FALL EXMC_NPINTEN_INTFEN /*!< interrupt falling edge detection enable */
/* function declarations */
/* deinitialize EXMC NOR/SRAM region */
void exmc_norsram_deinit(uint32_t exmc_norsram_region);
/* initialize EXMC NOR/SRAM region */
void exmc_norsram_init(exmc_norsram_parameter_struct* exmc_norsram_init_struct);
/* exmc_norsram_parameter_struct parameter initialize */
void exmc_norsram_parameter_init(exmc_norsram_parameter_struct* exmc_norsram_init_struct);
/* CRAM page size configure */
void exmc_norsram_page_size_config(uint32_t exmc_norsram_region, uint32_t page_size);
/* EXMC NOR/SRAM bank enable */
void exmc_norsram_enable(uint32_t exmc_norsram_region);
/* EXMC NOR/SRAM bank disable */
void exmc_norsram_disable(uint32_t exmc_norsram_region);
/* deinitialize EXMC NAND bank */
void exmc_nand_deinit(uint32_t exmc_nand_bank);
/* initialize EXMC NAND bank */
void exmc_nand_init(exmc_nand_parameter_struct* exmc_nand_init_struct);
/* exmc_norsram_parameter_struct parameter initialize */
void exmc_nand_parameter_init(exmc_nand_parameter_struct* exmc_nand_init_struct);
/* EXMC NAND bank enable */
void exmc_nand_enable(uint32_t exmc_nand_bank);
/* EXMC NAND bank disable */
void exmc_nand_disable(uint32_t exmc_nand_bank);
/* enable or disable the EXMC NAND ECC function */
void exmc_nand_ecc_config(uint32_t exmc_nand_bank, ControlStatus newvalue);
/* get the EXMC ECC value */
uint32_t exmc_ecc_get(uint32_t exmc_nand_bank);
/* deinitialize EXMC PC card bank */
void exmc_pccard_deinit(void);
/* initialize EXMC PC card bank */
void exmc_pccard_init(exmc_pccard_parameter_struct* exmc_pccard_init_struct);
/* exmc_pccard_parameter_struct parameter initialize */
void exmc_pccard_parameter_init(exmc_pccard_parameter_struct* exmc_pccard_init_struct);
/* EXMC PC card bank enable */
void exmc_pccard_enable(void);
/* EXMC PC card bank disable */
void exmc_pccard_disable(void);
/* check EXMC flag is set or not */
FlagStatus exmc_flag_get(uint32_t exmc_bank,uint32_t flag);
/* clear EXMC flag */
void exmc_flag_clear(uint32_t exmc_bank,uint32_t flag);
/* check EXMC flag is set or not */
FlagStatus exmc_interrupt_flag_get(uint32_t exmc_bank,uint32_t interrupt_source);
/* clear EXMC flag */
void exmc_interrupt_flag_clear(uint32_t exmc_bank,uint32_t interrupt_source);
/* enable EXMC interrupt */
void exmc_interrupt_enable(uint32_t exmc_bank,uint32_t interrupt_source);
/* disable EXMC interrupt */
void exmc_interrupt_disable(uint32_t exmc_bank,uint32_t interrupt_source);
#endif /* GD32F30X_EXMC_H */

View File

@ -0,0 +1,229 @@
/*!
\file gd32f30x_exti.h
\brief definitions for the EXTI
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef GD32F30X_EXTI_H
#define GD32F30X_EXTI_H
#include "gd32f30x.h"
/* EXTI definitions */
#define EXTI EXTI_BASE
/* registers definitions */
#define EXTI_INTEN REG32(EXTI + 0x00U) /*!< interrupt enable register */
#define EXTI_EVEN REG32(EXTI + 0x04U) /*!< event enable register */
#define EXTI_RTEN REG32(EXTI + 0x08U) /*!< rising edge trigger enable register */
#define EXTI_FTEN REG32(EXTI + 0x0CU) /*!< falling trigger enable register */
#define EXTI_SWIEV REG32(EXTI + 0x10U) /*!< software interrupt event register */
#define EXTI_PD REG32(EXTI + 0x14U) /*!< pending register */
/* bits definitions */
/* EXTI_INTEN */
#define EXTI_INTEN_INTEN0 BIT(0) /*!< interrupt from line 0 */
#define EXTI_INTEN_INTEN1 BIT(1) /*!< interrupt from line 1 */
#define EXTI_INTEN_INTEN2 BIT(2) /*!< interrupt from line 2 */
#define EXTI_INTEN_INTEN3 BIT(3) /*!< interrupt from line 3 */
#define EXTI_INTEN_INTEN4 BIT(4) /*!< interrupt from line 4 */
#define EXTI_INTEN_INTEN5 BIT(5) /*!< interrupt from line 5 */
#define EXTI_INTEN_INTEN6 BIT(6) /*!< interrupt from line 6 */
#define EXTI_INTEN_INTEN7 BIT(7) /*!< interrupt from line 7 */
#define EXTI_INTEN_INTEN8 BIT(8) /*!< interrupt from line 8 */
#define EXTI_INTEN_INTEN9 BIT(9) /*!< interrupt from line 9 */
#define EXTI_INTEN_INTEN10 BIT(10) /*!< interrupt from line 10 */
#define EXTI_INTEN_INTEN11 BIT(11) /*!< interrupt from line 11 */
#define EXTI_INTEN_INTEN12 BIT(12) /*!< interrupt from line 12 */
#define EXTI_INTEN_INTEN13 BIT(13) /*!< interrupt from line 13 */
#define EXTI_INTEN_INTEN14 BIT(14) /*!< interrupt from line 14 */
#define EXTI_INTEN_INTEN15 BIT(15) /*!< interrupt from line 15 */
#define EXTI_INTEN_INTEN16 BIT(16) /*!< interrupt from line 16 */
#define EXTI_INTEN_INTEN17 BIT(17) /*!< interrupt from line 17 */
#define EXTI_INTEN_INTEN18 BIT(18) /*!< interrupt from line 18 */
#define EXTI_INTEN_INTEN19 BIT(19) /*!< interrupt from line 19 */
/* EXTI_EVEN */
#define EXTI_EVEN_EVEN0 BIT(0) /*!< event from line 0 */
#define EXTI_EVEN_EVEN1 BIT(1) /*!< event from line 1 */
#define EXTI_EVEN_EVEN2 BIT(2) /*!< event from line 2 */
#define EXTI_EVEN_EVEN3 BIT(3) /*!< event from line 3 */
#define EXTI_EVEN_EVEN4 BIT(4) /*!< event from line 4 */
#define EXTI_EVEN_EVEN5 BIT(5) /*!< event from line 5 */
#define EXTI_EVEN_EVEN6 BIT(6) /*!< event from line 6 */
#define EXTI_EVEN_EVEN7 BIT(7) /*!< event from line 7 */
#define EXTI_EVEN_EVEN8 BIT(8) /*!< event from line 8 */
#define EXTI_EVEN_EVEN9 BIT(9) /*!< event from line 9 */
#define EXTI_EVEN_EVEN10 BIT(10) /*!< event from line 10 */
#define EXTI_EVEN_EVEN11 BIT(11) /*!< event from line 11 */
#define EXTI_EVEN_EVEN12 BIT(12) /*!< event from line 12 */
#define EXTI_EVEN_EVEN13 BIT(13) /*!< event from line 13 */
#define EXTI_EVEN_EVEN14 BIT(14) /*!< event from line 14 */
#define EXTI_EVEN_EVEN15 BIT(15) /*!< event from line 15 */
#define EXTI_EVEN_EVEN16 BIT(16) /*!< event from line 16 */
#define EXTI_EVEN_EVEN17 BIT(17) /*!< event from line 17 */
#define EXTI_EVEN_EVEN18 BIT(18) /*!< event from line 18 */
#define EXTI_EVEN_EVEN19 BIT(19) /*!< event from line 19 */
/* EXTI_RTEN */
#define EXTI_RTEN_RTEN0 BIT(0) /*!< rising edge from line 0 */
#define EXTI_RTEN_RTEN1 BIT(1) /*!< rising edge from line 1 */
#define EXTI_RTEN_RTEN2 BIT(2) /*!< rising edge from line 2 */
#define EXTI_RTEN_RTEN3 BIT(3) /*!< rising edge from line 3 */
#define EXTI_RTEN_RTEN4 BIT(4) /*!< rising edge from line 4 */
#define EXTI_RTEN_RTEN5 BIT(5) /*!< rising edge from line 5 */
#define EXTI_RTEN_RTEN6 BIT(6) /*!< rising edge from line 6 */
#define EXTI_RTEN_RTEN7 BIT(7) /*!< rising edge from line 7 */
#define EXTI_RTEN_RTEN8 BIT(8) /*!< rising edge from line 8 */
#define EXTI_RTEN_RTEN9 BIT(9) /*!< rising edge from line 9 */
#define EXTI_RTEN_RTEN10 BIT(10) /*!< rising edge from line 10 */
#define EXTI_RTEN_RTEN11 BIT(11) /*!< rising edge from line 11 */
#define EXTI_RTEN_RTEN12 BIT(12) /*!< rising edge from line 12 */
#define EXTI_RTEN_RTEN13 BIT(13) /*!< rising edge from line 13 */
#define EXTI_RTEN_RTEN14 BIT(14) /*!< rising edge from line 14 */
#define EXTI_RTEN_RTEN15 BIT(15) /*!< rising edge from line 15 */
#define EXTI_RTEN_RTEN16 BIT(16) /*!< rising edge from line 16 */
#define EXTI_RTEN_RTEN17 BIT(17) /*!< rising edge from line 17 */
#define EXTI_RTEN_RTEN18 BIT(18) /*!< rising edge from line 18 */
#define EXTI_RTEN_RTEN19 BIT(19) /*!< rising edge from line 19 */
/* EXTI_FTEN */
#define EXTI_FTEN_FTEN0 BIT(0) /*!< falling edge from line 0 */
#define EXTI_FTEN_FTEN1 BIT(1) /*!< falling edge from line 1 */
#define EXTI_FTEN_FTEN2 BIT(2) /*!< falling edge from line 2 */
#define EXTI_FTEN_FTEN3 BIT(3) /*!< falling edge from line 3 */
#define EXTI_FTEN_FTEN4 BIT(4) /*!< falling edge from line 4 */
#define EXTI_FTEN_FTEN5 BIT(5) /*!< falling edge from line 5 */
#define EXTI_FTEN_FTEN6 BIT(6) /*!< falling edge from line 6 */
#define EXTI_FTEN_FTEN7 BIT(7) /*!< falling edge from line 7 */
#define EXTI_FTEN_FTEN8 BIT(8) /*!< falling edge from line 8 */
#define EXTI_FTEN_FTEN9 BIT(9) /*!< falling edge from line 9 */
#define EXTI_FTEN_FTEN10 BIT(10) /*!< falling edge from line 10 */
#define EXTI_FTEN_FTEN11 BIT(11) /*!< falling edge from line 11 */
#define EXTI_FTEN_FTEN12 BIT(12) /*!< falling edge from line 12 */
#define EXTI_FTEN_FTEN13 BIT(13) /*!< falling edge from line 13 */
#define EXTI_FTEN_FTEN14 BIT(14) /*!< falling edge from line 14 */
#define EXTI_FTEN_FTEN15 BIT(15) /*!< falling edge from line 15 */
#define EXTI_FTEN_FTEN16 BIT(16) /*!< falling edge from line 16 */
#define EXTI_FTEN_FTEN17 BIT(17) /*!< falling edge from line 17 */
#define EXTI_FTEN_FTEN18 BIT(18) /*!< falling edge from line 18 */
#define EXTI_FTEN_FTEN19 BIT(19) /*!< falling edge from line 19 */
/* EXTI_SWIEV */
#define EXTI_SWIEV_SWIEV0 BIT(0) /*!< software interrupt/event request from line 0 */
#define EXTI_SWIEV_SWIEV1 BIT(1) /*!< software interrupt/event request from line 1 */
#define EXTI_SWIEV_SWIEV2 BIT(2) /*!< software interrupt/event request from line 2 */
#define EXTI_SWIEV_SWIEV3 BIT(3) /*!< software interrupt/event request from line 3 */
#define EXTI_SWIEV_SWIEV4 BIT(4) /*!< software interrupt/event request from line 4 */
#define EXTI_SWIEV_SWIEV5 BIT(5) /*!< software interrupt/event request from line 5 */
#define EXTI_SWIEV_SWIEV6 BIT(6) /*!< software interrupt/event request from line 6 */
#define EXTI_SWIEV_SWIEV7 BIT(7) /*!< software interrupt/event request from line 7 */
#define EXTI_SWIEV_SWIEV8 BIT(8) /*!< software interrupt/event request from line 8 */
#define EXTI_SWIEV_SWIEV9 BIT(9) /*!< software interrupt/event request from line 9 */
#define EXTI_SWIEV_SWIEV10 BIT(10) /*!< software interrupt/event request from line 10 */
#define EXTI_SWIEV_SWIEV11 BIT(11) /*!< software interrupt/event request from line 11 */
#define EXTI_SWIEV_SWIEV12 BIT(12) /*!< software interrupt/event request from line 12 */
#define EXTI_SWIEV_SWIEV13 BIT(13) /*!< software interrupt/event request from line 13 */
#define EXTI_SWIEV_SWIEV14 BIT(14) /*!< software interrupt/event request from line 14 */
#define EXTI_SWIEV_SWIEV15 BIT(15) /*!< software interrupt/event request from line 15 */
#define EXTI_SWIEV_SWIEV16 BIT(16) /*!< software interrupt/event request from line 16 */
#define EXTI_SWIEV_SWIEV17 BIT(17) /*!< software interrupt/event request from line 17 */
#define EXTI_SWIEV_SWIEV18 BIT(18) /*!< software interrupt/event request from line 18 */
#define EXTI_SWIEV_SWIEV19 BIT(19) /*!< software interrupt/event request from line 19 */
/* EXTI_PD */
#define EXTI_PD_PD0 BIT(0) /*!< interrupt/event pending status from line 0 */
#define EXTI_PD_PD1 BIT(1) /*!< interrupt/event pending status from line 1 */
#define EXTI_PD_PD2 BIT(2) /*!< interrupt/event pending status from line 2 */
#define EXTI_PD_PD3 BIT(3) /*!< interrupt/event pending status from line 3 */
#define EXTI_PD_PD4 BIT(4) /*!< interrupt/event pending status from line 4 */
#define EXTI_PD_PD5 BIT(5) /*!< interrupt/event pending status from line 5 */
#define EXTI_PD_PD6 BIT(6) /*!< interrupt/event pending status from line 6 */
#define EXTI_PD_PD7 BIT(7) /*!< interrupt/event pending status from line 7 */
#define EXTI_PD_PD8 BIT(8) /*!< interrupt/event pending status from line 8 */
#define EXTI_PD_PD9 BIT(9) /*!< interrupt/event pending status from line 9 */
#define EXTI_PD_PD10 BIT(10) /*!< interrupt/event pending status from line 10 */
#define EXTI_PD_PD11 BIT(11) /*!< interrupt/event pending status from line 11 */
#define EXTI_PD_PD12 BIT(12) /*!< interrupt/event pending status from line 12 */
#define EXTI_PD_PD13 BIT(13) /*!< interrupt/event pending status from line 13 */
#define EXTI_PD_PD14 BIT(14) /*!< interrupt/event pending status from line 14 */
#define EXTI_PD_PD15 BIT(15) /*!< interrupt/event pending status from line 15 */
#define EXTI_PD_PD16 BIT(16) /*!< interrupt/event pending status from line 16 */
#define EXTI_PD_PD17 BIT(17) /*!< interrupt/event pending status from line 17 */
#define EXTI_PD_PD18 BIT(18) /*!< interrupt/event pending status from line 18 */
#define EXTI_PD_PD19 BIT(19) /*!< interrupt/event pending status from line 19 */
/* constants definitions */
/* EXTI line number */
typedef enum
{
EXTI_0 = BIT(0), /*!< EXTI line 0 */
EXTI_1 = BIT(1), /*!< EXTI line 1 */
EXTI_2 = BIT(2), /*!< EXTI line 2 */
EXTI_3 = BIT(3), /*!< EXTI line 3 */
EXTI_4 = BIT(4), /*!< EXTI line 4 */
EXTI_5 = BIT(5), /*!< EXTI line 5 */
EXTI_6 = BIT(6), /*!< EXTI line 6 */
EXTI_7 = BIT(7), /*!< EXTI line 7 */
EXTI_8 = BIT(8), /*!< EXTI line 8 */
EXTI_9 = BIT(9), /*!< EXTI line 9 */
EXTI_10 = BIT(10), /*!< EXTI line 10 */
EXTI_11 = BIT(11), /*!< EXTI line 11 */
EXTI_12 = BIT(12), /*!< EXTI line 12 */
EXTI_13 = BIT(13), /*!< EXTI line 13 */
EXTI_14 = BIT(14), /*!< EXTI line 14 */
EXTI_15 = BIT(15), /*!< EXTI line 15 */
EXTI_16 = BIT(16), /*!< EXTI line 16 */
EXTI_17 = BIT(17), /*!< EXTI line 17 */
EXTI_18 = BIT(18), /*!< EXTI line 18 */
EXTI_19 = BIT(19), /*!< EXTI line 19 */
}exti_line_enum;
/* external interrupt and event */
typedef enum
{
EXTI_INTERRUPT = 0, /*!< EXTI interrupt mode */
EXTI_EVENT /*!< EXTI event mode */
}exti_mode_enum;
/* interrupt trigger mode */
typedef enum
{
EXTI_TRIG_RISING = 0, /*!< EXTI rising edge trigger */
EXTI_TRIG_FALLING, /*!< EXTI falling edge trigger */
EXTI_TRIG_BOTH /*!< EXTI rising and falling edge trigger */
}exti_trig_type_enum;
/* function declarations */
/* deinitialize the EXTI */
void exti_deinit(void);
/* enable the configuration of EXTI initialize */
void exti_init(exti_line_enum linex, exti_mode_enum mode, exti_trig_type_enum trig_type);
/* enable the interrupts from EXTI line x */
void exti_interrupt_enable(exti_line_enum linex);
/* enable the events from EXTI line x */
void exti_event_enable(exti_line_enum linex);
/* disable the interrupts from EXTI line x */
void exti_interrupt_disable(exti_line_enum linex);
/* disable the events from EXTI line x */
void exti_event_disable(exti_line_enum linex);
/* get EXTI lines pending flag */
FlagStatus exti_flag_get(exti_line_enum linex);
/* clear EXTI lines pending flag */
void exti_flag_clear(exti_line_enum linex);
/* get EXTI lines flag when the interrupt flag is set */
FlagStatus exti_interrupt_flag_get(exti_line_enum linex);
/* clear EXTI lines pending flag */
void exti_interrupt_flag_clear(exti_line_enum linex);
/* enable the EXTI software interrupt event */
void exti_software_interrupt_enable(exti_line_enum linex);
/* disable the EXTI software interrupt event */
void exti_software_interrupt_disable(exti_line_enum linex);
#endif /* GD32F30X_EXTI_H */

View File

@ -0,0 +1,343 @@
/*!
\file gd32f30x_fmc.h
\brief definitions for the FMC
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_FMC_H
#define GD32F30X_FMC_H
#include "gd32f30x.h"
/* FMC and option byte definition */
#define FMC FMC_BASE /*!< FMC register base address */
#define OB OB_BASE /*!< option bytes base address */
/* registers definitions */
#define FMC_WS REG32((FMC) + 0x00U) /*!< FMC wait state register */
#define FMC_KEY0 REG32((FMC) + 0x04U) /*!< FMC unlock key register 0 */
#define FMC_OBKEY REG32((FMC) + 0x08U) /*!< FMC option bytes unlock key register */
#define FMC_STAT0 REG32((FMC) + 0x0CU) /*!< FMC status register 0 */
#define FMC_CTL0 REG32((FMC) + 0x10U) /*!< FMC control register 0 */
#define FMC_ADDR0 REG32((FMC) + 0x14U) /*!< FMC address register 0 */
#define FMC_OBSTAT REG32((FMC) + 0x1CU) /*!< FMC option bytes status register */
#define FMC_WP REG32((FMC) + 0x20U) /*!< FMC erase/program protection register */
#define FMC_KEY1 REG32((FMC) + 0x44U) /*!< FMC unlock key register 1 */
#define FMC_STAT1 REG32((FMC) + 0x4CU) /*!< FMC status register 1 */
#define FMC_CTL1 REG32((FMC) + 0x50U) /*!< FMC control register 1 */
#define FMC_ADDR1 REG32((FMC) + 0x54U) /*!< FMC address register 1 */
#define FMC_WSEN REG32((FMC) + 0xFCU) /*!< FMC wait state enable register */
#define FMC_PID REG32((FMC) + 0x100U) /*!< FMC product ID register */
#define OB_SPC REG16((OB) + 0x00U) /*!< option byte security protection value */
#define OB_USER REG16((OB) + 0x02U) /*!< option byte user value*/
#define OB_WP0 REG16((OB) + 0x08U) /*!< option byte write protection 0 */
#define OB_WP1 REG16((OB) + 0x0AU) /*!< option byte write protection 1 */
#define OB_WP2 REG16((OB) + 0x0CU) /*!< option byte write protection 2 */
#define OB_WP3 REG16((OB) + 0x0EU) /*!< option byte write protection 3 */
/* bits definitions */
/* FMC_WS */
#define FMC_WS_WSCNT BITS(0,2) /*!< wait state counter */
/* FMC_KEY0 */
#define FMC_KEY0_KEY BITS(0,31) /*!< FMC_CTL0 unlock key bits */
/* FMC_OBKEY */
#define FMC_OBKEY_OBKEY BITS(0,31) /*!< option bytes unlock key bits */
/* FMC_STAT0 */
#define FMC_STAT0_BUSY BIT(0) /*!< flash busy flag bit */
#define FMC_STAT0_PGERR BIT(2) /*!< flash program error flag bit */
#define FMC_STAT0_WPERR BIT(4) /*!< erase/program protection error flag bit */
#define FMC_STAT0_ENDF BIT(5) /*!< end of operation flag bit */
/* FMC_CTL0 */
#define FMC_CTL0_PG BIT(0) /*!< main flash program for bank0 command bit */
#define FMC_CTL0_PER BIT(1) /*!< main flash page erase for bank0 command bit */
#define FMC_CTL0_MER BIT(2) /*!< main flash mass erase for bank0 command bit */
#define FMC_CTL0_OBPG BIT(4) /*!< option bytes program command bit */
#define FMC_CTL0_OBER BIT(5) /*!< option bytes erase command bit */
#define FMC_CTL0_START BIT(6) /*!< send erase command to FMC bit */
#define FMC_CTL0_LK BIT(7) /*!< FMC_CTL0 lock bit */
#define FMC_CTL0_OBWEN BIT(9) /*!< option bytes erase/program enable bit */
#define FMC_CTL0_ERRIE BIT(10) /*!< error interrupt enable bit */
#define FMC_CTL0_ENDIE BIT(12) /*!< end of operation interrupt enable bit */
/* FMC_ADDR0 */
#define FMC_ADDR0_ADDR BITS(0,31) /*!< Flash erase/program command address bits */
/* FMC_OBSTAT */
#define FMC_OBSTAT_OBERR BIT(0) /*!< option bytes read error bit. */
#define FMC_OBSTAT_SPC BIT(1) /*!< option bytes security protection code */
#define FMC_OBSTAT_USER BITS(2,9) /*!< store USER of option bytes block after system reset */
#define FMC_OBSTAT_DATA BITS(10,25) /*!< store DATA of option bytes block after system reset. */
/* FMC_WP */
#define FMC_WP_WP BITS(0,31) /*!< store WP of option bytes block after system reset */
/* FMC_KEY1 */
#define FMC_KEY1_KEY BITS(0,31) /*!< FMC_CTL1 unlock key bits */
/* FMC_STAT1 */
#define FMC_STAT1_BUSY BIT(0) /*!< flash busy flag bit */
#define FMC_STAT1_PGERR BIT(2) /*!< flash program error flag bit */
#define FMC_STAT1_WPERR BIT(4) /*!< erase/program protection error flag bit */
#define FMC_STAT1_ENDF BIT(5) /*!< end of operation flag bit */
/* FMC_CTL1 */
#define FMC_CTL1_PG BIT(0) /*!< main flash program for bank1 command bit */
#define FMC_CTL1_PER BIT(1) /*!< main flash page erase for bank1 command bit */
#define FMC_CTL1_MER BIT(2) /*!< main flash mass erase for bank1 command bit */
#define FMC_CTL1_START BIT(6) /*!< send erase command to FMC bit */
#define FMC_CTL1_LK BIT(7) /*!< FMC_CTL1 lock bit */
#define FMC_CTL1_ERRIE BIT(10) /*!< error interrupt enable bit */
#define FMC_CTL1_ENDIE BIT(12) /*!< end of operation interrupt enable bit */
/* FMC_ADDR1 */
#define FMC_ADDR1_ADDR BITS(0,31) /*!< Flash erase/program command address bits */
/* FMC_WSEN */
#define FMC_WSEN_WSEN BIT(0) /*!< FMC wait state enable bit */
/* FMC_PID */
#define FMC_PID_PID BITS(0,31) /*!< product ID bits */
/* constants definitions */
/* define the FMC bit position and its register index offset */
#define FMC_REGIDX_BIT(regidx, bitpos) (((uint32_t)(regidx) << 6) | (uint32_t)(bitpos))
#define FMC_REG_VAL(offset) (REG32(FMC + ((uint32_t)(offset) >> 6)))
#define FMC_BIT_POS(val) ((uint32_t)(val) & 0x1FU)
#define FMC_REGIDX_BITS(regidx, bitpos0, bitpos1) (((uint32_t)(regidx) << 12) | ((uint32_t)(bitpos0) << 6) | (uint32_t)(bitpos1))
#define FMC_REG_VALS(offset) (REG32(FMC + ((uint32_t)(offset) >> 12)))
#define FMC_BIT_POS0(val) (((uint32_t)(val) >> 6) & 0x1FU)
#define FMC_BIT_POS1(val) ((uint32_t)(val) & 0x1FU)
#define FMC_REG_OFFSET_GET(flag) ((uint32_t)(flag) >> 12)
/* configuration register */
#define FMC_STAT0_REG_OFFSET 0x0CU /*!< status register 0 offset */
#define FMC_CTL0_REG_OFFSET 0x10U /*!< control register 0 offset */
#define FMC_STAT1_REG_OFFSET 0x4CU /*!< status register 1 offset */
#define FMC_CTL1_REG_OFFSET 0x50U /*!< control register 1 offset */
#define FMC_OBSTAT_REG_OFFSET 0x1CU /*!< option byte status register offset */
/* fmc state */
typedef enum
{
FMC_READY, /*!< the operation has been completed */
FMC_BUSY, /*!< the operation is in progress */
FMC_PGERR, /*!< program error */
FMC_WPERR, /*!< erase/program protection error */
FMC_TOERR, /*!< timeout error */
}fmc_state_enum;
/* FMC interrupt enable */
typedef enum
{
FMC_INT_BANK0_END = FMC_REGIDX_BIT(FMC_CTL0_REG_OFFSET, 12U), /*!< enable FMC end of program interrupt */
FMC_INT_BANK0_ERR = FMC_REGIDX_BIT(FMC_CTL0_REG_OFFSET, 10U), /*!< enable FMC error interrupt */
FMC_INT_BANK1_END = FMC_REGIDX_BIT(FMC_CTL1_REG_OFFSET, 12U), /*!< enable FMC bank1 end of program interrupt */
FMC_INT_BANK1_ERR = FMC_REGIDX_BIT(FMC_CTL1_REG_OFFSET, 10U), /*!< enable FMC bank1 error interrupt */
}fmc_int_enum;
/* FMC flags */
typedef enum
{
FMC_FLAG_BANK0_BUSY = FMC_REGIDX_BIT(FMC_STAT0_REG_OFFSET, 0U), /*!< FMC bank0 busy flag */
FMC_FLAG_BANK0_PGERR = FMC_REGIDX_BIT(FMC_STAT0_REG_OFFSET, 2U), /*!< FMC bank0 operation error flag bit */
FMC_FLAG_BANK0_WPERR = FMC_REGIDX_BIT(FMC_STAT0_REG_OFFSET, 4U), /*!< FMC bank0 erase/program protection error flag bit */
FMC_FLAG_BANK0_END = FMC_REGIDX_BIT(FMC_STAT0_REG_OFFSET, 5U), /*!< FMC bank0 end of operation flag bit */
FMC_FLAG_OBERR = FMC_REGIDX_BIT(FMC_OBSTAT_REG_OFFSET, 0U), /*!< FMC option bytes read error flag */
FMC_FLAG_BANK1_BUSY = FMC_REGIDX_BIT(FMC_STAT1_REG_OFFSET, 0U), /*!< FMC bank1 busy flag */
FMC_FLAG_BANK1_PGERR = FMC_REGIDX_BIT(FMC_STAT1_REG_OFFSET, 2U), /*!< FMC bank1 operation error flag bit */
FMC_FLAG_BANK1_WPERR = FMC_REGIDX_BIT(FMC_STAT1_REG_OFFSET, 4U), /*!< FMC bank1 erase/program protection error flag bit */
FMC_FLAG_BANK1_END = FMC_REGIDX_BIT(FMC_STAT1_REG_OFFSET, 5U), /*!< FMC bank1 end of operation flag bit */
}fmc_flag_enum;
/* FMC interrupt flags */
typedef enum
{
FMC_INT_FLAG_BANK0_PGERR = FMC_REGIDX_BITS(FMC_STAT0_REG_OFFSET, 2U, 10U), /*!< FMC bank0 operation error interrupt flag bit */
FMC_INT_FLAG_BANK0_WPERR = FMC_REGIDX_BITS(FMC_STAT0_REG_OFFSET, 4U, 10U), /*!< FMC bank0 erase/program protection error interrupt flag bit */
FMC_INT_FLAG_BANK0_END = FMC_REGIDX_BITS(FMC_STAT0_REG_OFFSET, 5U, 12U), /*!< FMC bank0 end of operation interrupt flag bit */
FMC_INT_FLAG_BANK1_PGERR = FMC_REGIDX_BITS(FMC_STAT1_REG_OFFSET, 2U, 10U), /*!< FMC bank1 operation error interrupt flag bit */
FMC_INT_FLAG_BANK1_WPERR = FMC_REGIDX_BITS(FMC_STAT1_REG_OFFSET, 4U, 10U), /*!< FMC bank1 erase/program protection error interrupt flag bit */
FMC_INT_FLAG_BANK1_END = FMC_REGIDX_BITS(FMC_STAT1_REG_OFFSET, 5U, 12U), /*!< FMC bank1 end of operation interrupt flag bit */
}fmc_interrupt_flag_enum;
/* unlock key */
#define UNLOCK_KEY0 ((uint32_t)0x45670123U) /*!< unlock key 0 */
#define UNLOCK_KEY1 ((uint32_t)0xCDEF89ABU) /*!< unlock key 1 */
/* FMC wait state counter */
#define WS_WSCNT(regval) (BITS(0,2) & ((uint32_t)(regval)))
#define WS_WSCNT_0 WS_WSCNT(0) /*!< FMC 0 wait */
#define WS_WSCNT_1 WS_WSCNT(1) /*!< FMC 1 wait */
#define WS_WSCNT_2 WS_WSCNT(2) /*!< FMC 2 wait */
/* option bytes software/hardware free watch dog timer */
#define OB_FWDGT_SW ((uint8_t)0x01U) /*!< software free watchdog */
#define OB_FWDGT_HW ((uint8_t)0x00U) /*!< hardware free watchdog */
/* option bytes reset or not entering deep sleep mode */
#define OB_DEEPSLEEP_NRST ((uint8_t)0x02U) /*!< no reset when entering deepsleep mode */
#define OB_DEEPSLEEP_RST ((uint8_t)0x00U) /*!< generate a reset instead of entering deepsleep mode */
/* option bytes reset or not entering standby mode */
#define OB_STDBY_NRST ((uint8_t)0x04U) /*!< no reset when entering deepsleep mode */
#define OB_STDBY_RST ((uint8_t)0x00U) /*!< generate a reset instead of entering standby mode */
/* option bytes boot bank value */
#define OB_BOOT_B0 ((uint8_t)0x08U) /*!< boot from bank0 */
#define OB_BOOT_B1 ((uint8_t)0x00U) /*!< boot from bank1 */
#define OB_USER_MASK ((uint8_t)0xF0U) /*!< MASK value */
/* read protect configure */
#define FMC_NSPC ((uint8_t)0xA5U) /*!< no security protection */
#define FMC_USPC ((uint8_t)0xBBU) /*!< under security protection */
/* OB_SPC */
#define OB_SPC_SPC ((uint32_t)0x000000FFU) /*!< option byte security protection value */
#define OB_SPC_SPC_N ((uint32_t)0x0000FF00U) /*!< option byte security protection complement value */
/* OB_USER */
#define OB_USER_USER ((uint32_t)0x00FF0000U) /*!< user option value */
#define OB_USER_USER_N ((uint32_t)0xFF000000U) /*!< user option complement value */
/* OB_WP0 */
#define OB_WP0_WP0 ((uint32_t)0x000000FFU) /*!< FMC write protection option value */
/* OB_WP1 */
#define OB_WP1_WP1 ((uint32_t)0x0000FF00U) /*!< FMC write protection option complement value */
/* OB_WP2 */
#define OB_WP2_WP2 ((uint32_t)0x00FF0000U) /*!< FMC write protection option value */
/* OB_WP3 */
#define OB_WP3_WP3 ((uint32_t)0xFF000000U) /*!< FMC write protection option complement value */
/* option bytes write protection */
#define OB_WP_0 ((uint32_t)0x00000001U) /*!< erase/program protection of sector 0 */
#define OB_WP_1 ((uint32_t)0x00000002U) /*!< erase/program protection of sector 1 */
#define OB_WP_2 ((uint32_t)0x00000004U) /*!< erase/program protection of sector 2 */
#define OB_WP_3 ((uint32_t)0x00000008U) /*!< erase/program protection of sector 3 */
#define OB_WP_4 ((uint32_t)0x00000010U) /*!< erase/program protection of sector 4 */
#define OB_WP_5 ((uint32_t)0x00000020U) /*!< erase/program protection of sector 5 */
#define OB_WP_6 ((uint32_t)0x00000040U) /*!< erase/program protection of sector 6 */
#define OB_WP_7 ((uint32_t)0x00000080U) /*!< erase/program protection of sector 7 */
#define OB_WP_8 ((uint32_t)0x00000100U) /*!< erase/program protection of sector 8 */
#define OB_WP_9 ((uint32_t)0x00000200U) /*!< erase/program protection of sector 9 */
#define OB_WP_10 ((uint32_t)0x00000400U) /*!< erase/program protection of sector 10 */
#define OB_WP_11 ((uint32_t)0x00000800U) /*!< erase/program protection of sector 11 */
#define OB_WP_12 ((uint32_t)0x00001000U) /*!< erase/program protection of sector 12 */
#define OB_WP_13 ((uint32_t)0x00002000U) /*!< erase/program protection of sector 13 */
#define OB_WP_14 ((uint32_t)0x00004000U) /*!< erase/program protection of sector 14 */
#define OB_WP_15 ((uint32_t)0x00008000U) /*!< erase/program protection of sector 15 */
#define OB_WP_16 ((uint32_t)0x00010000U) /*!< erase/program protection of sector 16 */
#define OB_WP_17 ((uint32_t)0x00020000U) /*!< erase/program protection of sector 17 */
#define OB_WP_18 ((uint32_t)0x00040000U) /*!< erase/program protection of sector 18 */
#define OB_WP_19 ((uint32_t)0x00080000U) /*!< erase/program protection of sector 19 */
#define OB_WP_20 ((uint32_t)0x00100000U) /*!< erase/program protection of sector 20 */
#define OB_WP_21 ((uint32_t)0x00200000U) /*!< erase/program protection of sector 21 */
#define OB_WP_22 ((uint32_t)0x00400000U) /*!< erase/program protection of sector 22 */
#define OB_WP_23 ((uint32_t)0x00800000U) /*!< erase/program protection of sector 23 */
#define OB_WP_24 ((uint32_t)0x01000000U) /*!< erase/program protection of sector 24 */
#define OB_WP_25 ((uint32_t)0x02000000U) /*!< erase/program protection of sector 25 */
#define OB_WP_26 ((uint32_t)0x04000000U) /*!< erase/program protection of sector 26 */
#define OB_WP_27 ((uint32_t)0x08000000U) /*!< erase/program protection of sector 27 */
#define OB_WP_28 ((uint32_t)0x10000000U) /*!< erase/program protection of sector 28 */
#define OB_WP_29 ((uint32_t)0x20000000U) /*!< erase/program protection of sector 29 */
#define OB_WP_30 ((uint32_t)0x40000000U) /*!< erase/program protection of sector 30 */
#define OB_WP_31 ((uint32_t)0x80000000U) /*!< erase/program protection of sector 31 */
#define OB_WP_ALL ((uint32_t)0xFFFFFFFFU) /*!< erase/program protection of all sectors */
/* FMC timeout */
#define FMC_TIMEOUT_COUNT ((uint32_t)0x000F0000U) /*!< FMC timeout count value */
/* FMC BANK address */
#define FMC_BANK0_END_ADDRESS ((uint32_t)0x0807FFFFU) /*!< FMC bank0 end address */
#define FMC_BANK0_SIZE ((uint32_t)0x00000200U) /*!< FMC bank0 size */
#define FMC_SIZE (*(uint16_t *)0x1FFFF7E0U) /*!< FMC size */
/* function declarations */
/* FMC main memory programming functions */
/* set the FMC wait state counter */
void fmc_wscnt_set(uint32_t wscnt);
/* unlock the main FMC operation */
void fmc_unlock(void);
/* unlock the FMC bank0 operation */
void fmc_bank0_unlock(void);
/* unlock the FMC bank1 operation */
void fmc_bank1_unlock(void);
/* lock the main FMC operation */
void fmc_lock(void);
/* lock the bank0 FMC operation */
void fmc_bank0_lock(void);
/* lock the bank1 FMC operation */
void fmc_bank1_lock(void);
/* FMC erase page */
fmc_state_enum fmc_page_erase(uint32_t page_address);
/* FMC erase whole chip */
fmc_state_enum fmc_mass_erase(void);
/* FMC erase whole bank0 */
fmc_state_enum fmc_bank0_erase(void);
/* FMC erase whole bank1 */
fmc_state_enum fmc_bank1_erase(void);
/* FMC program a word at the corresponding address */
fmc_state_enum fmc_word_program(uint32_t address, uint32_t data);
/* FMC program a half word at the corresponding address */
fmc_state_enum fmc_halfword_program(uint32_t address, uint16_t data);
/* FMC option bytes programming functions */
/* unlock the option byte operation */
void ob_unlock(void);
/* lock the option byte operation */
void ob_lock(void);
/* erase the option byte */
fmc_state_enum ob_erase(void);
/* enable write protect */
fmc_state_enum ob_write_protection_enable(uint32_t ob_wp);
/* configure the option byte security protection */
fmc_state_enum ob_security_protection_config(uint8_t ob_spc);
/* write the FMC option byte */
fmc_state_enum ob_user_write(uint8_t ob_fwdgt, uint8_t ob_deepsleep, uint8_t ob_stdby, uint8_t ob_boot);
/* program option bytes data */
fmc_state_enum ob_data_program(uint32_t address, uint8_t data);
/* get the FMC option byte user */
uint8_t ob_user_get(void);
/* get OB_DATA in register FMC_OBSTAT */
uint16_t ob_data_get(void);
/* get the FMC option byte write protection */
uint32_t ob_write_protection_get(void);
/* get option byte security protection code value */
FlagStatus ob_spc_get(void);
/* FMC interrupts and flags management functions */
/* enable FMC interrupt */
void fmc_interrupt_enable(uint32_t interrupt);
/* disable FMC interrupt */
void fmc_interrupt_disable(uint32_t interrupt);
/* check flag is set or not */
FlagStatus fmc_flag_get(uint32_t flag);
/* clear the FMC flag */
void fmc_flag_clear(uint32_t flag);
/* get FMC interrupt flag state */
FlagStatus fmc_interrupt_flag_get(fmc_interrupt_flag_enum flag);
/* clear FMC interrupt flag state */
void fmc_interrupt_flag_clear(fmc_interrupt_flag_enum flag);
/* return the FMC bank0 state */
fmc_state_enum fmc_bank0_state_get(void);
/* return the FMC bank1 state */
fmc_state_enum fmc_bank1_state_get(void);
/* check FMC bank0 ready or not */
fmc_state_enum fmc_bank0_ready_wait(uint32_t timeout);
/* check FMC bank1 ready or not */
fmc_state_enum fmc_bank1_ready_wait(uint32_t timeout);
#endif /* GD32F30X_FMC_H */

View File

@ -0,0 +1,79 @@
/*!
\file gd32f30x_fwdgt.h
\brief definitions for the FWDGT
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_FWDGT_H
#define GD32F30X_FWDGT_H
#include "gd32f30x.h"
/* FWDGT definitions */
#define FWDGT FWDGT_BASE
/* registers definitions */
#define FWDGT_CTL REG32((FWDGT) + 0x00U) /*!< FWDGT control register */
#define FWDGT_PSC REG32((FWDGT) + 0x04U) /*!< FWDGT prescaler register */
#define FWDGT_RLD REG32((FWDGT) + 0x08U) /*!< FWDGT reload register */
#define FWDGT_STAT REG32((FWDGT) + 0x0CU) /*!< FWDGT status register */
/* bits definitions */
/* FWDGT_CTL */
#define FWDGT_CTL_CMD BITS(0,15) /*!< FWDGT command value */
/* FWDGT_PSC */
#define FWDGT_PSC_PSC BITS(0,2) /*!< FWDGT prescaler divider value */
/* FWDGT_RLD */
#define FWDGT_RLD_RLD BITS(0,11) /*!< FWDGT counter reload value */
/* FWDGT_STAT */
#define FWDGT_STAT_PUD BIT(0) /*!< FWDGT prescaler divider value update */
#define FWDGT_STAT_RUD BIT(1) /*!< FWDGT counter reload value update */
/* constants definitions */
/* psc register value */
#define PSC_PSC(regval) (BITS(0,2) & ((uint32_t)(regval) << 0))
#define FWDGT_PSC_DIV4 ((uint8_t)PSC_PSC(0)) /*!< FWDGT prescaler set to 4 */
#define FWDGT_PSC_DIV8 ((uint8_t)PSC_PSC(1)) /*!< FWDGT prescaler set to 8 */
#define FWDGT_PSC_DIV16 ((uint8_t)PSC_PSC(2)) /*!< FWDGT prescaler set to 16 */
#define FWDGT_PSC_DIV32 ((uint8_t)PSC_PSC(3)) /*!< FWDGT prescaler set to 32 */
#define FWDGT_PSC_DIV64 ((uint8_t)PSC_PSC(4)) /*!< FWDGT prescaler set to 64 */
#define FWDGT_PSC_DIV128 ((uint8_t)PSC_PSC(5)) /*!< FWDGT prescaler set to 128 */
#define FWDGT_PSC_DIV256 ((uint8_t)PSC_PSC(6)) /*!< FWDGT prescaler set to 256 */
/* control value */
#define FWDGT_WRITEACCESS_ENABLE ((uint16_t)0x5555U) /*!< FWDGT_CTL bits write access enable value */
#define FWDGT_WRITEACCESS_DISABLE ((uint16_t)0x0000U) /*!< FWDGT_CTL bits write access disable value */
#define FWDGT_KEY_RELOAD ((uint16_t)0xAAAAU) /*!< FWDGT_CTL bits fwdgt counter reload value */
#define FWDGT_KEY_ENABLE ((uint16_t)0xCCCCU) /*!< FWDGT_CTL bits fwdgt counter enable value */
/* FWDGT timeout value */
#define FWDGT_PSC_TIMEOUT ((uint32_t)0x000FFFFFU) /*!< FWDGT_PSC register write operation state flag timeout */
#define FWDGT_RLD_TIMEOUT ((uint32_t)0x000FFFFFU) /*!< FWDGT_RLD register write operation state flag timeout */
/* FWDGT flag definitions */
#define FWDGT_FLAG_PUD FWDGT_STAT_PUD /*!< FWDGT prescaler divider value update flag */
#define FWDGT_FLAG_RUD FWDGT_STAT_RUD /*!< FWDGT counter reload value update flag */
/* function declarations */
/* disable write access to FWDGT_PSC and FWDGT_RLD */
void fwdgt_write_disable(void);
/* start the free watchdog timer counter */
void fwdgt_enable(void);
/* reload the counter of FWDGT */
void fwdgt_counter_reload(void);
/* configure counter reload value, and prescaler divider value */
ErrStatus fwdgt_config(uint16_t reload_value, uint8_t prescaler_div);
/* get flag state of FWDGT */
FlagStatus fwdgt_flag_get(uint16_t flag);
#endif /* GD32F30X_FWDGT_H */

View File

@ -0,0 +1,504 @@
/*!
\file gd32f30x_gpio.h
\brief definitions for the GPIO
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_GPIO_H
#define GD32F30X_GPIO_H
#include "gd32f30x.h"
/* GPIOx(x=A,B,C,D,E,F,G) definitions */
#define GPIOA (GPIO_BASE + 0x00000000U)
#define GPIOB (GPIO_BASE + 0x00000400U)
#define GPIOC (GPIO_BASE + 0x00000800U)
#define GPIOD (GPIO_BASE + 0x00000C00U)
#define GPIOE (GPIO_BASE + 0x00001000U)
#define GPIOF (GPIO_BASE + 0x00001400U)
#define GPIOG (GPIO_BASE + 0x00001800U)
/* AFIO definitions */
#define AFIO AFIO_BASE
/* registers definitions */
/* GPIO registers definitions */
#define GPIO_CTL0(gpiox) REG32((gpiox) + 0x00U) /*!< GPIO port control register 0 */
#define GPIO_CTL1(gpiox) REG32((gpiox) + 0x04U) /*!< GPIO port control register 1 */
#define GPIO_ISTAT(gpiox) REG32((gpiox) + 0x08U) /*!< GPIO port input status register */
#define GPIO_OCTL(gpiox) REG32((gpiox) + 0x0CU) /*!< GPIO port output control register */
#define GPIO_BOP(gpiox) REG32((gpiox) + 0x10U) /*!< GPIO port bit operation register */
#define GPIO_BC(gpiox) REG32((gpiox) + 0x14U) /*!< GPIO bit clear register */
#define GPIO_LOCK(gpiox) REG32((gpiox) + 0x18U) /*!< GPIO port configuration lock register */
#define GPIOx_SPD(gpiox) REG32((gpiox) + 0x3CU) /*!< GPIO port bit speed register */
/* AFIO registers definitions */
#define AFIO_EC REG32(AFIO + 0x00U) /*!< AFIO event control register */
#define AFIO_PCF0 REG32(AFIO + 0x04U) /*!< AFIO port configuration register 0 */
#define AFIO_EXTISS0 REG32(AFIO + 0x08U) /*!< AFIO port EXTI sources selection register 0 */
#define AFIO_EXTISS1 REG32(AFIO + 0x0CU) /*!< AFIO port EXTI sources selection register 1 */
#define AFIO_EXTISS2 REG32(AFIO + 0x10U) /*!< AFIO port EXTI sources selection register 2 */
#define AFIO_EXTISS3 REG32(AFIO + 0x14U) /*!< AFIO port EXTI sources selection register 3 */
#define AFIO_PCF1 REG32(AFIO + 0x1CU) /*!< AFIO port configuration register 1 */
#define AFIO_CPSCTL REG32(AFIO + 0x20U) /*!< IO compensation control register */
/* bits definitions */
/* GPIO_CTL0 */
#define GPIO_CTL0_MD0 BITS(0,1) /*!< port 0 mode bits */
#define GPIO_CTL0_CTL0 BITS(2,3) /*!< pin 0 configuration bits */
#define GPIO_CTL0_MD1 BITS(4,5) /*!< port 1 mode bits */
#define GPIO_CTL0_CTL1 BITS(6,7) /*!< pin 1 configuration bits */
#define GPIO_CTL0_MD2 BITS(8,9) /*!< port 2 mode bits */
#define GPIO_CTL0_CTL2 BITS(10,11) /*!< pin 2 configuration bits */
#define GPIO_CTL0_MD3 BITS(12,13) /*!< port 3 mode bits */
#define GPIO_CTL0_CTL3 BITS(14,15) /*!< pin 3 configuration bits */
#define GPIO_CTL0_MD4 BITS(16,17) /*!< port 4 mode bits */
#define GPIO_CTL0_CTL4 BITS(18,19) /*!< pin 4 configuration bits */
#define GPIO_CTL0_MD5 BITS(20,21) /*!< port 5 mode bits */
#define GPIO_CTL0_CTL5 BITS(22,23) /*!< pin 5 configuration bits */
#define GPIO_CTL0_MD6 BITS(24,25) /*!< port 6 mode bits */
#define GPIO_CTL0_CTL6 BITS(26,27) /*!< pin 6 configuration bits */
#define GPIO_CTL0_MD7 BITS(28,29) /*!< port 7 mode bits */
#define GPIO_CTL0_CTL7 BITS(30,31) /*!< pin 7 configuration bits */
/* GPIO_CTL1 */
#define GPIO_CTL1_MD8 BITS(0,1) /*!< port 8 mode bits */
#define GPIO_CTL1_CTL8 BITS(2,3) /*!< pin 8 configuration bits */
#define GPIO_CTL1_MD9 BITS(4,5) /*!< port 9 mode bits */
#define GPIO_CTL1_CTL9 BITS(6,7) /*!< pin 9 configuration bits */
#define GPIO_CTL1_MD10 BITS(8,9) /*!< port 10 mode bits */
#define GPIO_CTL1_CTL10 BITS(10,11) /*!< pin 10 configuration bits */
#define GPIO_CTL1_MD11 BITS(12,13) /*!< port 11 mode bits */
#define GPIO_CTL1_CTL11 BITS(14,15) /*!< pin 11 configuration bits */
#define GPIO_CTL1_MD12 BITS(16,17) /*!< port 12 mode bits */
#define GPIO_CTL1_CTL12 BITS(18,19) /*!< pin 12 configuration bits */
#define GPIO_CTL1_MD13 BITS(20,21) /*!< port 13 mode bits */
#define GPIO_CTL1_CTL13 BITS(22,23) /*!< pin 13 configuration bits */
#define GPIO_CTL1_MD14 BITS(24,25) /*!< port 14 mode bits */
#define GPIO_CTL1_CTL14 BITS(26,27) /*!< pin 14 configuration bits */
#define GPIO_CTL1_MD15 BITS(28,29) /*!< port 15 mode bits */
#define GPIO_CTL1_CTL15 BITS(30,31) /*!< pin 15 configuration bits */
/* GPIO_ISTAT */
#define GPIO_ISTAT_ISTAT0 BIT(0) /*!< pin 0 input status */
#define GPIO_ISTAT_ISTAT1 BIT(1) /*!< pin 1 input status */
#define GPIO_ISTAT_ISTAT2 BIT(2) /*!< pin 2 input status */
#define GPIO_ISTAT_ISTAT3 BIT(3) /*!< pin 3 input status */
#define GPIO_ISTAT_ISTAT4 BIT(4) /*!< pin 4 input status */
#define GPIO_ISTAT_ISTAT5 BIT(5) /*!< pin 5 input status */
#define GPIO_ISTAT_ISTAT6 BIT(6) /*!< pin 6 input status */
#define GPIO_ISTAT_ISTAT7 BIT(7) /*!< pin 7 input status */
#define GPIO_ISTAT_ISTAT8 BIT(8) /*!< pin 8 input status */
#define GPIO_ISTAT_ISTAT9 BIT(9) /*!< pin 9 input status */
#define GPIO_ISTAT_ISTAT10 BIT(10) /*!< pin 10 input status */
#define GPIO_ISTAT_ISTAT11 BIT(11) /*!< pin 11 input status */
#define GPIO_ISTAT_ISTAT12 BIT(12) /*!< pin 12 input status */
#define GPIO_ISTAT_ISTAT13 BIT(13) /*!< pin 13 input status */
#define GPIO_ISTAT_ISTAT14 BIT(14) /*!< pin 14 input status */
#define GPIO_ISTAT_ISTAT15 BIT(15) /*!< pin 15 input status */
/* GPIO_OCTL */
#define GPIO_OCTL_OCTL0 BIT(0) /*!< pin 0 output bit */
#define GPIO_OCTL_OCTL1 BIT(1) /*!< pin 1 output bit */
#define GPIO_OCTL_OCTL2 BIT(2) /*!< pin 2 output bit */
#define GPIO_OCTL_OCTL3 BIT(3) /*!< pin 3 output bit */
#define GPIO_OCTL_OCTL4 BIT(4) /*!< pin 4 output bit */
#define GPIO_OCTL_OCTL5 BIT(5) /*!< pin 5 output bit */
#define GPIO_OCTL_OCTL6 BIT(6) /*!< pin 6 output bit */
#define GPIO_OCTL_OCTL7 BIT(7) /*!< pin 7 output bit */
#define GPIO_OCTL_OCTL8 BIT(8) /*!< pin 8 output bit */
#define GPIO_OCTL_OCTL9 BIT(9) /*!< pin 9 output bit */
#define GPIO_OCTL_OCTL10 BIT(10) /*!< pin 10 output bit */
#define GPIO_OCTL_OCTL11 BIT(11) /*!< pin 11 output bit */
#define GPIO_OCTL_OCTL12 BIT(12) /*!< pin 12 output bit */
#define GPIO_OCTL_OCTL13 BIT(13) /*!< pin 13 output bit */
#define GPIO_OCTL_OCTL14 BIT(14) /*!< pin 14 output bit */
#define GPIO_OCTL_OCTL15 BIT(15) /*!< pin 15 output bit */
/* GPIO_BOP */
#define GPIO_BOP_BOP0 BIT(0) /*!< pin 0 set bit */
#define GPIO_BOP_BOP1 BIT(1) /*!< pin 1 set bit */
#define GPIO_BOP_BOP2 BIT(2) /*!< pin 2 set bit */
#define GPIO_BOP_BOP3 BIT(3) /*!< pin 3 set bit */
#define GPIO_BOP_BOP4 BIT(4) /*!< pin 4 set bit */
#define GPIO_BOP_BOP5 BIT(5) /*!< pin 5 set bit */
#define GPIO_BOP_BOP6 BIT(6) /*!< pin 6 set bit */
#define GPIO_BOP_BOP7 BIT(7) /*!< pin 7 set bit */
#define GPIO_BOP_BOP8 BIT(8) /*!< pin 8 set bit */
#define GPIO_BOP_BOP9 BIT(9) /*!< pin 9 set bit */
#define GPIO_BOP_BOP10 BIT(10) /*!< pin 10 set bit */
#define GPIO_BOP_BOP11 BIT(11) /*!< pin 11 set bit */
#define GPIO_BOP_BOP12 BIT(12) /*!< pin 12 set bit */
#define GPIO_BOP_BOP13 BIT(13) /*!< pin 13 set bit */
#define GPIO_BOP_BOP14 BIT(14) /*!< pin 14 set bit */
#define GPIO_BOP_BOP15 BIT(15) /*!< pin 15 set bit */
#define GPIO_BOP_CR0 BIT(16) /*!< pin 0 clear bit */
#define GPIO_BOP_CR1 BIT(17) /*!< pin 1 clear bit */
#define GPIO_BOP_CR2 BIT(18) /*!< pin 2 clear bit */
#define GPIO_BOP_CR3 BIT(19) /*!< pin 3 clear bit */
#define GPIO_BOP_CR4 BIT(20) /*!< pin 4 clear bit */
#define GPIO_BOP_CR5 BIT(21) /*!< pin 5 clear bit */
#define GPIO_BOP_CR6 BIT(22) /*!< pin 6 clear bit */
#define GPIO_BOP_CR7 BIT(23) /*!< pin 7 clear bit */
#define GPIO_BOP_CR8 BIT(24) /*!< pin 8 clear bit */
#define GPIO_BOP_CR9 BIT(25) /*!< pin 9 clear bit */
#define GPIO_BOP_CR10 BIT(26) /*!< pin 10 clear bit */
#define GPIO_BOP_CR11 BIT(27) /*!< pin 11 clear bit */
#define GPIO_BOP_CR12 BIT(28) /*!< pin 12 clear bit */
#define GPIO_BOP_CR13 BIT(29) /*!< pin 13 clear bit */
#define GPIO_BOP_CR14 BIT(30) /*!< pin 14 clear bit */
#define GPIO_BOP_CR15 BIT(31) /*!< pin 15 clear bit */
/* GPIO_BC */
#define GPIO_BC_CR0 BIT(0) /*!< pin 0 clear bit */
#define GPIO_BC_CR1 BIT(1) /*!< pin 1 clear bit */
#define GPIO_BC_CR2 BIT(2) /*!< pin 2 clear bit */
#define GPIO_BC_CR3 BIT(3) /*!< pin 3 clear bit */
#define GPIO_BC_CR4 BIT(4) /*!< pin 4 clear bit */
#define GPIO_BC_CR5 BIT(5) /*!< pin 5 clear bit */
#define GPIO_BC_CR6 BIT(6) /*!< pin 6 clear bit */
#define GPIO_BC_CR7 BIT(7) /*!< pin 7 clear bit */
#define GPIO_BC_CR8 BIT(8) /*!< pin 8 clear bit */
#define GPIO_BC_CR9 BIT(9) /*!< pin 9 clear bit */
#define GPIO_BC_CR10 BIT(10) /*!< pin 10 clear bit */
#define GPIO_BC_CR11 BIT(11) /*!< pin 11 clear bit */
#define GPIO_BC_CR12 BIT(12) /*!< pin 12 clear bit */
#define GPIO_BC_CR13 BIT(13) /*!< pin 13 clear bit */
#define GPIO_BC_CR14 BIT(14) /*!< pin 14 clear bit */
#define GPIO_BC_CR15 BIT(15) /*!< pin 15 clear bit */
/* GPIO_LOCK */
#define GPIO_LOCK_LK0 BIT(0) /*!< pin 0 lock bit */
#define GPIO_LOCK_LK1 BIT(1) /*!< pin 1 lock bit */
#define GPIO_LOCK_LK2 BIT(2) /*!< pin 2 lock bit */
#define GPIO_LOCK_LK3 BIT(3) /*!< pin 3 lock bit */
#define GPIO_LOCK_LK4 BIT(4) /*!< pin 4 lock bit */
#define GPIO_LOCK_LK5 BIT(5) /*!< pin 5 lock bit */
#define GPIO_LOCK_LK6 BIT(6) /*!< pin 6 lock bit */
#define GPIO_LOCK_LK7 BIT(7) /*!< pin 7 lock bit */
#define GPIO_LOCK_LK8 BIT(8) /*!< pin 8 lock bit */
#define GPIO_LOCK_LK9 BIT(9) /*!< pin 9 lock bit */
#define GPIO_LOCK_LK10 BIT(10) /*!< pin 10 lock bit */
#define GPIO_LOCK_LK11 BIT(11) /*!< pin 11 lock bit */
#define GPIO_LOCK_LK12 BIT(12) /*!< pin 12 lock bit */
#define GPIO_LOCK_LK13 BIT(13) /*!< pin 13 lock bit */
#define GPIO_LOCK_LK14 BIT(14) /*!< pin 14 lock bit */
#define GPIO_LOCK_LK15 BIT(15) /*!< pin 15 lock bit */
#define GPIO_LOCK_LKK BIT(16) /*!< pin sequence lock key */
/* GPIO_SPD */
#define GPIO_SPD_SPD0 BIT(0) /*!< pin 0 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD1 BIT(1) /*!< pin 1 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD2 BIT(2) /*!< pin 2 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD3 BIT(3) /*!< pin 3 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD4 BIT(4) /*!< pin 4 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD5 BIT(5) /*!< pin 5 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD6 BIT(6) /*!< pin 6 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD7 BIT(7) /*!< pin 7 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD8 BIT(8) /*!< pin 8 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD9 BIT(9) /*!< pin 9 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD10 BIT(10) /*!< pin 10 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD11 BIT(11) /*!< pin 11 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD12 BIT(12) /*!< pin 12 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD13 BIT(13) /*!< pin 13 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD14 BIT(14) /*!< pin 14 set very high output speed when MDx is 0b11 */
#define GPIO_SPD_SPD15 BIT(15) /*!< pin 15 set very high output speed when MDx is 0b11 */
/* AFIO_EC */
#define AFIO_EC_PIN BITS(0,3) /*!< event output pin selection */
#define AFIO_EC_PORT BITS(4,6) /*!< event output port selection */
#define AFIO_EC_EOE BIT(7) /*!< event output enable */
/* AFIO_PCF0 */
#ifdef GD32F30X_CL
/* memory map and bit definitions for GD32F30X_CL devices */
#define AFIO_PCF0_SPI0_REMAP BIT(0) /*!< SPI0 remapping */
#define AFIO_PCF0_I2C0_REMAP BIT(1) /*!< I2C0 remapping */
#define AFIO_PCF0_USART0_REMAP BIT(2) /*!< USART0 remapping */
#define AFIO_PCF0_USART1_REMAP BIT(3) /*!< USART1 remapping */
#define AFIO_PCF0_USART2_REMAP BITS(4,5) /*!< USART2 remapping */
#define AFIO_PCF0_TIMER0_REMAP BITS(6,7) /*!< TIMER0 remapping */
#define AFIO_PCF0_TIMER1_REMAP BITS(8,9) /*!< TIMER1 remapping */
#define AFIO_PCF0_TIMER2_REMAP BITS(10,11) /*!< TIMER2 remapping */
#define AFIO_PCF0_TIMER3_REMAP BIT(12) /*!< TIMER3 remapping */
#define AFIO_PCF0_CAN0_REMAP BITS(13,14) /*!< CAN0 remapping */
#define AFIO_PCF0_PD01_REMAP BIT(15) /*!< port D0/port D1 mapping on OSC_IN/OSC_OUT */
#define AFIO_PCF0_TIMER4CH3_IREMAP BIT(16) /*!< TIMER4 channel3 internal remapping */
#define AFIO_PCF0_ENET_REMAP BIT(21) /*!< ethernet MAC I/O remapping */
#define AFIO_PCF0_CAN1_REMAP BIT(22) /*!< CAN1 remapping */
#define AFIO_PCF0_ENET_PHY_SEL BIT(23) /*!< ethernet MII or RMII PHY selection */
#define AFIO_PCF0_SWJ_CFG BITS(24,26) /*!< serial wire JTAG configuration */
#define AFIO_PCF0_SPI2_REMAP BIT(28) /*!< SPI2/I2S2 remapping */
#define AFIO_PCF0_TIMER1ITR0_REMAP BIT(29) /*!< TIMER1 internal trigger 0 remapping */
#define AFIO_PCF0_PTP_PPS_REMAP BIT(30) /*!< ethernet PTP PPS remapping */
#else
/* memory map and bit definitions for GD32F30X_HD devices and GD32F30X_XD devices */
#define AFIO_PCF0_SPI0_REMAP BIT(0) /*!< SPI0 remapping */
#define AFIO_PCF0_I2C0_REMAP BIT(1) /*!< I2C0 remapping */
#define AFIO_PCF0_USART0_REMAP BIT(2) /*!< USART0 remapping */
#define AFIO_PCF0_USART1_REMAP BIT(3) /*!< USART1 remapping */
#define AFIO_PCF0_USART2_REMAP BITS(4,5) /*!< USART2 remapping */
#define AFIO_PCF0_TIMER0_REMAP BITS(6,7) /*!< TIMER0 remapping */
#define AFIO_PCF0_TIMER1_REMAP BITS(8,9) /*!< TIMER1 remapping */
#define AFIO_PCF0_TIMER2_REMAP BITS(10,11) /*!< TIMER2 remapping */
#define AFIO_PCF0_TIMER3_REMAP BIT(12) /*!< TIMER3 remapping */
#define AFIO_PCF0_CAN_REMAP BITS(13,14) /*!< CAN remapping */
#define AFIO_PCF0_PD01_REMAP BIT(15) /*!< port D0/port D1 mapping on OSC_IN/OSC_OUT */
#define AFIO_PCF0_TIMER4CH3_REMAP BIT(16) /*!< TIMER4 channel3 internal remapping */
#define AFIO_PCF0_ADC0_ETRGINS_REMAP BIT(17) /*!< ADC 0 external trigger inserted conversion remapping */
#define AFIO_PCF0_ADC0_ETRGREG_REMAP BIT(18) /*!< ADC 0 external trigger regular conversion remapping */
#define AFIO_PCF0_ADC1_ETRGINS_REMAP BIT(19) /*!< ADC 1 external trigger inserted conversion remapping */
#define AFIO_PCF0_ADC1_ETRGREG_REMAP BIT(20) /*!< ADC 1 external trigger regular conversion remapping */
#define AFIO_PCF0_SWJ_CFG BITS(24,26) /*!< serial wire JTAG configuration */
#endif /* GD32F30X_CL */
/* AFIO_EXTISS0 */
#define AFIO_EXTI0_SS BITS(0,3) /*!< EXTI 0 sources selection */
#define AFIO_EXTI1_SS BITS(4,7) /*!< EXTI 1 sources selection */
#define AFIO_EXTI2_SS BITS(8,11) /*!< EXTI 2 sources selection */
#define AFIO_EXTI3_SS BITS(12,15) /*!< EXTI 3 sources selection */
/* AFIO_EXTISS1 */
#define AFIO_EXTI4_SS BITS(0,3) /*!< EXTI 4 sources selection */
#define AFIO_EXTI5_SS BITS(4,7) /*!< EXTI 5 sources selection */
#define AFIO_EXTI6_SS BITS(8,11) /*!< EXTI 6 sources selection */
#define AFIO_EXTI7_SS BITS(12,15) /*!< EXTI 7 sources selection */
/* AFIO_EXTISS2 */
#define AFIO_EXTI8_SS BITS(0,3) /*!< EXTI 8 sources selection */
#define AFIO_EXTI9_SS BITS(4,7) /*!< EXTI 9 sources selection */
#define AFIO_EXTI10_SS BITS(8,11) /*!< EXTI 10 sources selection */
#define AFIO_EXTI11_SS BITS(12,15) /*!< EXTI 11 sources selection */
/* AFIO_EXTISS3 */
#define AFIO_EXTI12_SS BITS(0,3) /*!< EXTI 12 sources selection */
#define AFIO_EXTI13_SS BITS(4,7) /*!< EXTI 13 sources selection */
#define AFIO_EXTI14_SS BITS(8,11) /*!< EXTI 14 sources selection */
#define AFIO_EXTI15_SS BITS(12,15) /*!< EXTI 15 sources selection */
/* AFIO_PCF1 */
#define AFIO_PCF1_TIMER8_REMAP BIT(5) /*!< TIMER8 remapping */
#define AFIO_PCF1_TIMER9_REMAP BIT(6) /*!< TIMER9 remapping */
#define AFIO_PCF1_TIMER10_REMAP BIT(7) /*!< TIMER10 remapping */
#define AFIO_PCF1_TIMER12_REMAP BIT(8) /*!< TIMER12 remapping */
#define AFIO_PCF1_TIMER13_REMAP BIT(9) /*!< TIMER13 remapping */
#define AFIO_PCF1_EXMC_NADV BIT(10) /*!< EXMC_NADV connect/disconnect */
#define AFIO_PCF1_CTC_REMAP BITS(11,12) /*!< CTC remapping */
/* AFIO_CPSCTL */
#define AFIO_CPSCTL_CPS_EN BIT(0) /*!< I/O compensation cell enable */
#define AFIO_CPSCTL_CPS_RDY BIT(8) /*!< I/O compensation cell is ready or not */
/* constants definitions */
typedef FlagStatus bit_status;
/* GPIO mode values set */
#define GPIO_MODE_SET(n, mode) ((uint32_t)((uint32_t)(mode) << (4U * (n))))
#define GPIO_MODE_MASK(n) (0xFU << (4U * (n)))
/* GPIO mode definitions */
#define GPIO_MODE_AIN ((uint8_t)0x00U) /*!< analog input mode */
#define GPIO_MODE_IN_FLOATING ((uint8_t)0x04U) /*!< floating input mode */
#define GPIO_MODE_IPD ((uint8_t)0x28U) /*!< pull-down input mode */
#define GPIO_MODE_IPU ((uint8_t)0x48U) /*!< pull-up input mode */
#define GPIO_MODE_OUT_OD ((uint8_t)0x14U) /*!< GPIO output with open-drain */
#define GPIO_MODE_OUT_PP ((uint8_t)0x10U) /*!< GPIO output with push-pull */
#define GPIO_MODE_AF_OD ((uint8_t)0x1CU) /*!< AFIO output with open-drain */
#define GPIO_MODE_AF_PP ((uint8_t)0x18U) /*!< AFIO output with push-pull */
/* GPIO output max speed value */
#define GPIO_OSPEED_10MHZ ((uint8_t)0x01U) /*!< output max speed 10MHz */
#define GPIO_OSPEED_2MHZ ((uint8_t)0x02U) /*!< output max speed 2MHz */
#define GPIO_OSPEED_50MHZ ((uint8_t)0x03U) /*!< output max speed 50MHz */
#define GPIO_OSPEED_MAX ((uint8_t)0x04U) /*!< GPIO very high output speed, max speed more than 50MHz */
/* GPIO event output port definitions */
#define GPIO_EVENT_PORT_GPIOA ((uint8_t)0x00U) /*!< event output port A */
#define GPIO_EVENT_PORT_GPIOB ((uint8_t)0x01U) /*!< event output port B */
#define GPIO_EVENT_PORT_GPIOC ((uint8_t)0x02U) /*!< event output port C */
#define GPIO_EVENT_PORT_GPIOD ((uint8_t)0x03U) /*!< event output port D */
#define GPIO_EVENT_PORT_GPIOE ((uint8_t)0x04U) /*!< event output port E */
/* GPIO output port source definitions */
#define GPIO_PORT_SOURCE_GPIOA ((uint8_t)0x00U) /*!< output port source A */
#define GPIO_PORT_SOURCE_GPIOB ((uint8_t)0x01U) /*!< output port source B */
#define GPIO_PORT_SOURCE_GPIOC ((uint8_t)0x02U) /*!< output port source C */
#define GPIO_PORT_SOURCE_GPIOD ((uint8_t)0x03U) /*!< output port source D */
#define GPIO_PORT_SOURCE_GPIOE ((uint8_t)0x04U) /*!< output port source E */
#define GPIO_PORT_SOURCE_GPIOF ((uint8_t)0x05U) /*!< output port source F */
#define GPIO_PORT_SOURCE_GPIOG ((uint8_t)0x06U) /*!< output port source G */
/* GPIO event output pin definitions */
#define GPIO_EVENT_PIN_0 ((uint8_t)0x00U) /*!< GPIO event pin 0 */
#define GPIO_EVENT_PIN_1 ((uint8_t)0x01U) /*!< GPIO event pin 1 */
#define GPIO_EVENT_PIN_2 ((uint8_t)0x02U) /*!< GPIO event pin 2 */
#define GPIO_EVENT_PIN_3 ((uint8_t)0x03U) /*!< GPIO event pin 3 */
#define GPIO_EVENT_PIN_4 ((uint8_t)0x04U) /*!< GPIO event pin 4 */
#define GPIO_EVENT_PIN_5 ((uint8_t)0x05U) /*!< GPIO event pin 5 */
#define GPIO_EVENT_PIN_6 ((uint8_t)0x06U) /*!< GPIO event pin 6 */
#define GPIO_EVENT_PIN_7 ((uint8_t)0x07U) /*!< GPIO event pin 7 */
#define GPIO_EVENT_PIN_8 ((uint8_t)0x08U) /*!< GPIO event pin 8 */
#define GPIO_EVENT_PIN_9 ((uint8_t)0x09U) /*!< GPIO event pin 9 */
#define GPIO_EVENT_PIN_10 ((uint8_t)0x0AU) /*!< GPIO event pin 10 */
#define GPIO_EVENT_PIN_11 ((uint8_t)0x0BU) /*!< GPIO event pin 11 */
#define GPIO_EVENT_PIN_12 ((uint8_t)0x0CU) /*!< GPIO event pin 12 */
#define GPIO_EVENT_PIN_13 ((uint8_t)0x0DU) /*!< GPIO event pin 13 */
#define GPIO_EVENT_PIN_14 ((uint8_t)0x0EU) /*!< GPIO event pin 14 */
#define GPIO_EVENT_PIN_15 ((uint8_t)0x0FU) /*!< GPIO event pin 15 */
/* GPIO output pin source definitions */
#define GPIO_PIN_SOURCE_0 ((uint8_t)0x00U) /*!< GPIO pin source 0 */
#define GPIO_PIN_SOURCE_1 ((uint8_t)0x01U) /*!< GPIO pin source 1 */
#define GPIO_PIN_SOURCE_2 ((uint8_t)0x02U) /*!< GPIO pin source 2 */
#define GPIO_PIN_SOURCE_3 ((uint8_t)0x03U) /*!< GPIO pin source 3 */
#define GPIO_PIN_SOURCE_4 ((uint8_t)0x04U) /*!< GPIO pin source 4 */
#define GPIO_PIN_SOURCE_5 ((uint8_t)0x05U) /*!< GPIO pin source 5 */
#define GPIO_PIN_SOURCE_6 ((uint8_t)0x06U) /*!< GPIO pin source 6 */
#define GPIO_PIN_SOURCE_7 ((uint8_t)0x07U) /*!< GPIO pin source 7 */
#define GPIO_PIN_SOURCE_8 ((uint8_t)0x08U) /*!< GPIO pin source 8 */
#define GPIO_PIN_SOURCE_9 ((uint8_t)0x09U) /*!< GPIO pin source 9 */
#define GPIO_PIN_SOURCE_10 ((uint8_t)0x0AU) /*!< GPIO pin source 10 */
#define GPIO_PIN_SOURCE_11 ((uint8_t)0x0BU) /*!< GPIO pin source 11 */
#define GPIO_PIN_SOURCE_12 ((uint8_t)0x0CU) /*!< GPIO pin source 12 */
#define GPIO_PIN_SOURCE_13 ((uint8_t)0x0DU) /*!< GPIO pin source 13 */
#define GPIO_PIN_SOURCE_14 ((uint8_t)0x0EU) /*!< GPIO pin source 14 */
#define GPIO_PIN_SOURCE_15 ((uint8_t)0x0FU) /*!< GPIO pin source 15 */
/* GPIO pin definitions */
#define GPIO_PIN_0 BIT(0) /*!< GPIO pin 0 */
#define GPIO_PIN_1 BIT(1) /*!< GPIO pin 1 */
#define GPIO_PIN_2 BIT(2) /*!< GPIO pin 2 */
#define GPIO_PIN_3 BIT(3) /*!< GPIO pin 3 */
#define GPIO_PIN_4 BIT(4) /*!< GPIO pin 4 */
#define GPIO_PIN_5 BIT(5) /*!< GPIO pin 5 */
#define GPIO_PIN_6 BIT(6) /*!< GPIO pin 6 */
#define GPIO_PIN_7 BIT(7) /*!< GPIO pin 7 */
#define GPIO_PIN_8 BIT(8) /*!< GPIO pin 8 */
#define GPIO_PIN_9 BIT(9) /*!< GPIO pin 9 */
#define GPIO_PIN_10 BIT(10) /*!< GPIO pin 10 */
#define GPIO_PIN_11 BIT(11) /*!< GPIO pin 11 */
#define GPIO_PIN_12 BIT(12) /*!< GPIO pin 12 */
#define GPIO_PIN_13 BIT(13) /*!< GPIO pin 13 */
#define GPIO_PIN_14 BIT(14) /*!< GPIO pin 14 */
#define GPIO_PIN_15 BIT(15) /*!< GPIO pin 15 */
#define GPIO_PIN_ALL BITS(0,15) /*!< GPIO pin all */
/* GPIO remap definitions */
#define GPIO_SPI0_REMAP ((uint32_t)0x00000001U) /*!< SPI0 remapping */
#define GPIO_I2C0_REMAP ((uint32_t)0x00000002U) /*!< I2C0 remapping */
#define GPIO_USART0_REMAP ((uint32_t)0x00000004U) /*!< USART0 remapping */
#define GPIO_USART1_REMAP ((uint32_t)0x00000008U) /*!< USART1 remapping */
#define GPIO_USART2_PARTIAL_REMAP ((uint32_t)0x00140010U) /*!< USART2 partial remapping */
#define GPIO_USART2_FULL_REMAP ((uint32_t)0x00140030U) /*!< USART2 full remapping */
#define GPIO_TIMER0_PARTIAL_REMAP ((uint32_t)0x00160040U) /*!< TIMER0 partial remapping */
#define GPIO_TIMER0_FULL_REMAP ((uint32_t)0x001600C0U) /*!< TIMER0 full remapping */
#define GPIO_TIMER1_PARTIAL_REMAP0 ((uint32_t)0x00180100U) /*!< TIMER1 partial remapping */
#define GPIO_TIMER1_PARTIAL_REMAP1 ((uint32_t)0x00180200U) /*!< TIMER1 partial remapping */
#define GPIO_TIMER1_FULL_REMAP ((uint32_t)0x00180300U) /*!< TIMER1 full remapping */
#define GPIO_TIMER2_PARTIAL_REMAP ((uint32_t)0x001A0800U) /*!< TIMER2 partial remapping */
#define GPIO_TIMER2_FULL_REMAP ((uint32_t)0x001A0C00U) /*!< TIMER2 full remapping */
#define GPIO_TIMER3_REMAP ((uint32_t)0x00001000U) /*!< TIMER3 remapping */
#define GPIO_PD01_REMAP ((uint32_t)0x00008000U) /*!< PD01 remapping */
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
#define GPIO_CAN_PARTIAL_REMAP ((uint32_t)0x001D4000U) /*!< CAN partial remapping(only for GD32F30X_HD devices and GD32F30X_XD devices) */
#define GPIO_CAN_FULL_REMAP ((uint32_t)0x001D6000U) /*!< CAN full remapping(only for GD32F30X_HD devices and GD32F30X_XD devices) */
#endif /* GD32F30X_HD||GD32F30X_XD */
#if (defined(GD32F30X_CL) || defined(GD32F30X_HD))
#define GPIO_TIMER4CH3_IREMAP ((uint32_t)0x00200001U) /*!< TIMER4 channel3 internal remapping(only for GD32F30X_CL devices and GD32F30X_HD devices) */
#endif /* GD32F30X_CL||GD32F30X_HD */
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
#define GPIO_ADC0_ETRGINS_REMAP ((uint32_t)0x00200002U) /*!< ADC0 external trigger inserted conversion remapping(only for GD32F30X_HD devices and GD32F30X_XD devices) */
#define GPIO_ADC0_ETRGREG_REMAP ((uint32_t)0x00200004U) /*!< ADC0 external trigger regular conversion remapping(only for GD32F30X_HD devices and GD32F30X_XD devices) */
#define GPIO_ADC1_ETRGINS_REMAP ((uint32_t)0x00200008U) /*!< ADC1 external trigger inserted conversion remapping(only for GD32F30X_HD devices and GD32F30X_XD devices) */
#define GPIO_ADC1_ETRGREG_REMAP ((uint32_t)0x00200010U) /*!< ADC1 external trigger regular conversion remapping(only for GD32F30X_HD devices and GD32F30X_XD devices) */
#endif /* GD32F30X_HD||GD32F30X_XD */
#define GPIO_SWJ_NONJTRST_REMAP ((uint32_t)0x00300100U) /*!< full SWJ(JTAG-DP + SW-DP),but without NJTRST */
#define GPIO_SWJ_SWDPENABLE_REMAP ((uint32_t)0x00300200U) /*!< JTAG-DP disabled and SW-DP enabled */
#define GPIO_SWJ_DISABLE_REMAP ((uint32_t)0x00300400U) /*!< JTAG-DP disabled and SW-DP disabled */
#ifdef GD32F30X_CL
#define GPIO_CAN0_PARTIAL_REMAP ((uint32_t)0x001D4000U) /*!< CAN0 partial remapping(only for GD32F30X_CL devices) */
#define GPIO_CAN0_FULL_REMAP ((uint32_t)0x001D6000U) /*!< CAN0 full remapping(only for GD32F30X_CL devices) */
#define GPIO_ENET_REMAP ((uint32_t)0x00200020U) /*!< ENET remapping(only for GD32F30X_CL devices) */
#define GPIO_CAN1_REMAP ((uint32_t)0x00200040U) /*!< CAN1 remapping(only for GD32F30X_CL devices) */
#define GPIO_SPI2_REMAP ((uint32_t)0x00201100U) /*!< SPI2 remapping(only for GD32F30X_CL devices) */
#define GPIO_TIMER1ITR0_REMAP ((uint32_t)0x00202000U) /*!< TIMER1 internal trigger 0 remapping(only for GD32F30X_CL devices) */
#define GPIO_PTP_PPS_REMAP ((uint32_t)0x00204000U) /*!< ethernet PTP PPS remapping(only for GD32F30X_CL devices) */
#endif /* GD32F30X_CL */
#define GPIO_TIMER8_REMAP ((uint32_t)0x80000020U) /*!< TIMER8 remapping */
#define GPIO_TIMER9_REMAP ((uint32_t)0x80000040U) /*!< TIMER9 remapping */
#define GPIO_TIMER10_REMAP ((uint32_t)0x80000080U) /*!< TIMER10 remapping */
#define GPIO_TIMER12_REMAP ((uint32_t)0x80000100U) /*!< TIMER12 remapping */
#define GPIO_TIMER13_REMAP ((uint32_t)0x80000200U) /*!< TIMER13 remapping */
#define GPIO_EXMC_NADV_REMAP ((uint32_t)0x80000400U) /*!< EXMC_NADV connect/disconnect */
#define GPIO_CTC_REMAP0 ((uint32_t)0x801B0800U) /*!< CTC remapping(PD15)*/
#define GPIO_CTC_REMAP1 ((uint32_t)0x801B1000U) /*!< CTC remapping(PF0) */
#ifdef GD32F30X_CL
/* ethernet MII or RMII PHY selection */
#define GPIO_ENET_PHY_MII ((uint32_t)0x00000000U) /*!< configure ethernet MAC for connection with an MII PHY */
#define GPIO_ENET_PHY_RMII AFIO_PCF0_ENET_PHY_SEL /*!< configure ethernet MAC for connection with an RMII PHY */
#endif /* GD32F30X_CL */
/* I/O compensation cell enable/disable */
#define GPIO_COMPENSATION_ENABLE AFIO_CPSCTL_CPS_EN /*!< I/O compensation cell is enable */
#define GPIO_COMPENSATION_DISABLE ((uint32_t)0x00000000U) /*!< I/O compensation cell is disable */
/* function declarations */
/* reset GPIO port */
void gpio_deinit(uint32_t gpio_periph);
/* reset alternate function I/O(AFIO) */
void gpio_afio_deinit(void);
/* GPIO parameter initialization */
void gpio_init(uint32_t gpio_periph, uint32_t mode, uint32_t speed, uint32_t pin);
/* set GPIO pin bit */
void gpio_bit_set(uint32_t gpio_periph, uint32_t pin);
/* reset GPIO pin bit */
void gpio_bit_reset(uint32_t gpio_periph, uint32_t pin);
/* write data to the specified GPIO pin */
void gpio_bit_write(uint32_t gpio_periph, uint32_t pin, bit_status bit_value);
/* write data to the specified GPIO port */
void gpio_port_write(uint32_t gpio_periph, uint16_t data);
/* get GPIO pin input status */
FlagStatus gpio_input_bit_get(uint32_t gpio_periph, uint32_t pin);
/* get GPIO port input status */
uint16_t gpio_input_port_get(uint32_t gpio_periph);
/* get GPIO pin output status */
FlagStatus gpio_output_bit_get(uint32_t gpio_periph, uint32_t pin);
/* get GPIO port output status */
uint16_t gpio_output_port_get(uint32_t gpio_periph);
/* lock GPIO pin bit */
void gpio_pin_lock(uint32_t gpio_periph, uint32_t pin);
/* configure GPIO pin event output */
void gpio_event_output_config(uint8_t output_port, uint8_t output_pin);
/* enable GPIO pin event output */
void gpio_event_output_enable(void);
/* disable GPIO pin event output */
void gpio_event_output_disable(void);
/* select GPIO pin exti sources */
void gpio_exti_source_select(uint8_t output_port, uint8_t output_pin);
#ifdef GD32F30X_CL
/* select ethernet MII or RMII PHY */
void gpio_ethernet_phy_select(uint32_t enet_sel);
#endif /* GD32F30X_CL */
/* configure GPIO pin remap */
void gpio_pin_remap_config(uint32_t gpio_remap, ControlStatus newvalue);
/* configure the I/O compensation cell */
void gpio_compensation_config(uint32_t compensation);
/* check the I/O compensation cell is ready or not */
FlagStatus gpio_compensation_flag_get(void);
#endif /* GD32F30X_GPIO_H */

View File

@ -0,0 +1,301 @@
/*!
\file gd32f30x_i2c.h
\brief definitions for the I2C
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_I2C_H
#define GD32F30X_I2C_H
#include "gd32f30x.h"
/* I2Cx(x=0,1) definitions */
#define I2C0 I2C_BASE /*!< I2C0 base address */
#define I2C1 (I2C_BASE+0x400U) /*!< I2C1 base address */
/* registers definitions */
#define I2C_CTL0(i2cx) REG32((i2cx) + 0x00U) /*!< I2C control register 0 */
#define I2C_CTL1(i2cx) REG32((i2cx) + 0x04U) /*!< I2C control register 1 */
#define I2C_SADDR0(i2cx) REG32((i2cx) + 0x08U) /*!< I2C slave address register 0*/
#define I2C_SADDR1(i2cx) REG32((i2cx) + 0x0CU) /*!< I2C slave address register */
#define I2C_DATA(i2cx) REG32((i2cx) + 0x10U) /*!< I2C transfer buffer register */
#define I2C_STAT0(i2cx) REG32((i2cx) + 0x14U) /*!< I2C transfer status register 0 */
#define I2C_STAT1(i2cx) REG32((i2cx) + 0x18U) /*!< I2C transfer status register */
#define I2C_CKCFG(i2cx) REG32((i2cx) + 0x1CU) /*!< I2C clock configure register */
#define I2C_RT(i2cx) REG32((i2cx) + 0x20U) /*!< I2C rise time register */
#define I2C_FMPCFG(i2cx) REG32((i2cx) + 0x90U) /*!< I2C fast-mode-plus configure register */
/* bits definitions */
/* I2Cx_CTL0 */
#define I2C_CTL0_I2CEN BIT(0) /*!< peripheral enable */
#define I2C_CTL0_SMBEN BIT(1) /*!< SMBus mode */
#define I2C_CTL0_SMBSEL BIT(3) /*!< SMBus type */
#define I2C_CTL0_ARPEN BIT(4) /*!< ARP enable */
#define I2C_CTL0_PECEN BIT(5) /*!< PEC enable */
#define I2C_CTL0_GCEN BIT(6) /*!< general call enable */
#define I2C_CTL0_DISSTRC BIT(7) /*!< clock stretching disable (slave mode) */
#define I2C_CTL0_START BIT(8) /*!< start generation */
#define I2C_CTL0_STOP BIT(9) /*!< stop generation */
#define I2C_CTL0_ACKEN BIT(10) /*!< acknowledge enable */
#define I2C_CTL0_POAP BIT(11) /*!< acknowledge/PEC position (for data reception) */
#define I2C_CTL0_PECTRANS BIT(12) /*!< packet error checking */
#define I2C_CTL0_SALT BIT(13) /*!< SMBus alert */
#define I2C_CTL0_SRESET BIT(15) /*!< software reset */
/* I2Cx_CTL1 */
#define I2C_CTL1_I2CCLK BITS(0,6) /*!< I2CCLK[6:0] bits (peripheral clock frequency) */
#define I2C_CTL1_ERRIE BIT(8) /*!< error interrupt inable */
#define I2C_CTL1_EVIE BIT(9) /*!< event interrupt enable */
#define I2C_CTL1_BUFIE BIT(10) /*!< buffer interrupt enable */
#define I2C_CTL1_DMAON BIT(11) /*!< DMA requests enable */
#define I2C_CTL1_DMALST BIT(12) /*!< DMA last transfer */
/* I2Cx_SADDR0 */
#define I2C_SADDR0_ADDRESS0 BIT(0) /*!< bit 0 of a 10-bit address */
#define I2C_SADDR0_ADDRESS BITS(1,7) /*!< 7-bit address or bits 7:1 of a 10-bit address */
#define I2C_SADDR0_ADDRESS_H BITS(8,9) /*!< highest two bits of a 10-bit address */
#define I2C_SADDR0_ADDFORMAT BIT(15) /*!< address mode for the I2C slave */
/* I2Cx_SADDR1 */
#define I2C_SADDR1_DUADEN BIT(0) /*!< aual-address mode switch */
#define I2C_SADDR1_ADDRESS2 BITS(1,7) /*!< second I2C address for the slave in dual-address mode */
/* I2Cx_DATA */
#define I2C_DATA_TRB BITS(0,7) /*!< 8-bit data register */
/* I2Cx_STAT0 */
#define I2C_STAT0_SBSEND BIT(0) /*!< start bit (master mode) */
#define I2C_STAT0_ADDSEND BIT(1) /*!< address sent (master mode)/matched (slave mode) */
#define I2C_STAT0_BTC BIT(2) /*!< byte transfer finished */
#define I2C_STAT0_ADD10SEND BIT(3) /*!< 10-bit header sent (master mode) */
#define I2C_STAT0_STPDET BIT(4) /*!< stop detection (slave mode) */
#define I2C_STAT0_RBNE BIT(6) /*!< data register not empty (receivers) */
#define I2C_STAT0_TBE BIT(7) /*!< data register empty (transmitters) */
#define I2C_STAT0_BERR BIT(8) /*!< bus error */
#define I2C_STAT0_LOSTARB BIT(9) /*!< arbitration lost (master mode) */
#define I2C_STAT0_AERR BIT(10) /*!< acknowledge failure */
#define I2C_STAT0_OUERR BIT(11) /*!< overrun/underrun */
#define I2C_STAT0_PECERR BIT(12) /*!< PEC error in reception */
#define I2C_STAT0_SMBTO BIT(14) /*!< timeout signal in SMBus mode */
#define I2C_STAT0_SMBALT BIT(15) /*!< SMBus alert status */
/* I2Cx_STAT1 */
#define I2C_STAT1_MASTER BIT(0) /*!< master/slave */
#define I2C_STAT1_I2CBSY BIT(1) /*!< bus busy */
#define I2C_STAT1_TRS BIT(2) /*!< transmitter/receiver */
#define I2C_STAT1_RXGC BIT(4) /*!< general call address (slave mode) */
#define I2C_STAT1_DEFSMB BIT(5) /*!< SMBus device default address (slave mode) */
#define I2C_STAT1_HSTSMB BIT(6) /*!< SMBus host header (slave mode) */
#define I2C_STAT1_DUMODF BIT(7) /*!< dual flag (slave mode) */
#define I2C_STAT1_ECV BITS(8,15) /*!< packet error checking value */
/* I2Cx_CKCFG */
#define I2C_CKCFG_CLKC BITS(0,11) /*!< clock control register in fast/standard mode or fast mode plus(master mode) */
#define I2C_CKCFG_DTCY BIT(14) /*!< duty cycle of fast mode or fast mode plus */
#define I2C_CKCFG_FAST BIT(15) /*!< I2C speed selection in master mode */
/* I2Cx_RT */
#define I2C_RT_RISETIME BITS(0,6) /*!< maximum rise time in fast/standard mode or fast mode plus(master mode) */
/* I2Cx_FMPCFG */
#define I2C_FMPCFG_FMPEN BIT(0) /*!< fast mode plus enable bit */
/* constants definitions */
/* SMBus/I2C mode switch and SMBus type selection */
#define I2C_I2CMODE_ENABLE ((uint32_t)0x00000000U) /*!< I2C mode */
#define I2C_SMBUSMODE_ENABLE I2C_CTL0_SMBEN /*!< SMBus mode */
/* SMBus/I2C mode switch and SMBus type selection */
#define I2C_SMBUS_DEVICE ((uint32_t)0x00000000U) /*!< SMBus mode device type */
#define I2C_SMBUS_HOST I2C_CTL0_SMBSEL /*!< SMBus mode host type */
/* I2C transfer direction */
#define I2C_RECEIVER ((uint32_t)0x00000001U) /*!< receiver */
#define I2C_TRANSMITTER ((uint32_t)0xFFFFFFFEU) /*!< transmitter */
/* whether or not to send an ACK */
#define I2C_ACK_DISABLE ((uint32_t)0x00000000U) /*!< ACK will be not sent */
#define I2C_ACK_ENABLE ((uint32_t)0x00000001U) /*!< ACK will be sent */
/* I2C POAP position*/
#define I2C_ACKPOS_NEXT ((uint32_t)0x00000000U) /*!< ACKEN bit decides whether or not to send ACK for the next byte */
#define I2C_ACKPOS_CURRENT ((uint32_t)0x00000001U) /*!< ACKEN bit decides whether or not to send ACK or not for the current byte */
/* I2C dual-address mode switch */
#define I2C_DUADEN_DISABLE ((uint32_t)0x00000000U) /*!< dual-address mode disabled */
#define I2C_DUADEN_ENABLE ((uint32_t)0x00000001U) /*!< dual-address mode enabled */
/* whether or not to stretch SCL low */
#define I2C_SCLSTRETCH_ENABLE ((uint32_t)0x00000000U) /*!< SCL stretching is enabled */
#define I2C_SCLSTRETCH_DISABLE I2C_CTL0_DISSTRC /*!< SCL stretching is disabled */
/* whether or not to response to a general call */
#define I2C_GCEN_ENABLE I2C_CTL0_GCEN /*!< slave will response to a general call */
#define I2C_GCEN_DISABLE ((uint32_t)0x00000000U) /*!< slave will not response to a general call */
/* software reset I2C */
#define I2C_SRESET_SET I2C_CTL0_SRESET /*!< I2C is under reset */
#define I2C_SRESET_RESET ((uint32_t)0x00000000U) /*!< I2C is not under reset */
/* I2C DMA mode configure */
/* DMA mode switch */
#define I2C_DMA_ON I2C_CTL1_DMAON /*!< DMA mode enabled */
#define I2C_DMA_OFF ((uint32_t)0x00000000U) /*!< DMA mode disabled */
/* flag indicating DMA last transfer */
#define I2C_DMALST_ON I2C_CTL1_DMALST /*!< next DMA EOT is the last transfer */
#define I2C_DMALST_OFF ((uint32_t)0x00000000U) /*!< next DMA EOT is not the last transfer */
/* I2C PEC configure */
/* PEC enable */
#define I2C_PEC_ENABLE I2C_CTL0_PECEN /*!< PEC calculation on */
#define I2C_PEC_DISABLE ((uint32_t)0x00000000U) /*!< PEC calculation off */
/* PEC transfer */
#define I2C_PECTRANS_ENABLE I2C_CTL0_PECTRANS /*!< transfer PEC */
#define I2C_PECTRANS_DISABLE ((uint32_t)0x00000000U) /*!< not transfer PEC value */
/* I2C SMBus configure */
/* issue or not alert through SMBA pin */
#define I2C_SALTSEND_ENABLE I2C_CTL0_SALT /*!< issue alert through SMBA pin */
#define I2C_SALTSEND_DISABLE ((uint32_t)0x00000000U) /*!< not issue alert through SMBA */
/* ARP protocol in SMBus switch */
#define I2C_ARP_ENABLE I2C_CTL0_ARPEN /*!< ARP enable */
#define I2C_ARP_DISABLE ((uint32_t)0x00000000U) /*!< ARP disable */
/* fast mode plus enable */
#define I2C_FAST_MODE_PLUS_ENABLE I2C_FMPCFG_FMPEN /*!< fast mode plus enable */
#define I2C_FAST_MODE_PLUS_DISABLE ((uint32_t)0x00000000U) /*!< fast mode plus disable */
/* transmit I2C data */
#define DATA_TRANS(regval) (BITS(0,7) & ((uint32_t)(regval) << 0))
/* receive I2C data */
#define DATA_RECV(regval) GET_BITS((uint32_t)(regval), 0, 7)
/* I2C flag definitions */
#define I2C_FLAG_SBSEND BIT(0) /*!< start condition sent out in master mode */
#define I2C_FLAG_ADDSEND BIT(1) /*!< address is sent in master mode or received and matches in slave mode */
#define I2C_FLAG_BTC BIT(2) /*!< byte transmission finishes */
#define I2C_FLAG_ADD10SEND BIT(3) /*!< header of 10-bit address is sent in master mode */
#define I2C_FLAG_STPDET BIT(4) /*!< etop condition detected in slave mode */
#define I2C_FLAG_RBNE BIT(6) /*!< I2C_DATA is not Empty during receiving */
#define I2C_FLAG_TBE BIT(7) /*!< I2C_DATA is empty during transmitting */
#define I2C_FLAG_BERR BIT(8) /*!< a bus error occurs indication a unexpected start or stop condition on I2C bus */
#define I2C_FLAG_LOSTARB BIT(9) /*!< arbitration lost in master mode */
#define I2C_FLAG_AERR BIT(10) /*!< acknowledge error */
#define I2C_FLAG_OUERR BIT(11) /*!< over-run or under-run situation occurs in slave mode */
#define I2C_FLAG_PECERR BIT(12) /*!< PEC error when receiving data */
#define I2C_FLAG_SMBTO BIT(14) /*!< timeout signal in SMBus mode */
#define I2C_FLAG_SMBALT BIT(15) /*!< SMBus alert status */
#define I2C_FLAG_MASTER (BIT(0)|BIT(31)) /*!< a flag indicating whether I2C block is in master or slave mode */
#define I2C_FLAG_I2CBSY (BIT(1)|BIT(31)) /*!< busy flag */
#define I2C_FLAG_TRS (BIT(2)|BIT(31)) /*!< whether the I2C is a transmitter or a receiver */
#define I2C_FLAG_RXGC (BIT(4)|BIT(31)) /*!< general call address (00h) received */
#define I2C_FLAG_DEFSMB (BIT(5)|BIT(31)) /*!< default address of SMBus device */
#define I2C_FLAG_HSTSMB (BIT(6)|BIT(31)) /*!< SMBus host header detected in slave mode */
#define I2C_FLAG_DUMOD (BIT(7)|BIT(31)) /*!< dual flag in slave mode indicating which address is matched in dual-address mode */
/* I2C interrupt flags */
#define I2C_INT_FLAG_SBSEND I2C_FLAG_SBSEND /*!< start condition sent out in master mode interrupt flag */
#define I2C_INT_FLAG_ADDSEND I2C_FLAG_ADDSEND /*!< address is sent in master mode or received and matches in slave mode interrupt flag */
#define I2C_INT_FLAG_BTC I2C_FLAG_BTC /*!< byte transmission finishes */
#define I2C_INT_FLAG_ADD10SEND I2C_FLAG_ADD10SEND /*!< header of 10-bit address is sent in master mode interrupt flag */
#define I2C_INT_FLAG_STPDET I2C_FLAG_STPDET /*!< stop condition detected in slave mode interrupt flag */
#define I2C_INT_FLAG_RBNE I2C_FLAG_RBNE /*!< I2C_DATA is not Empty during receiving interrupt flag */
#define I2C_INT_FLAG_TBE I2C_FLAG_TBE /*!< I2C_DATA is empty during transmitting interrupt flag */
#define I2C_INT_FLAG_BERR I2C_FLAG_BERR /*!< a bus error occurs indication a unexpected start or stop condition on I2C bus interrupt flag */
#define I2C_INT_FLAG_LOSTARB I2C_FLAG_LOSTARB /*!< arbitration lost in master mode interrupt flag */
#define I2C_INT_FLAG_AERR I2C_FLAG_AERR /*!< acknowledge error interrupt flag */
#define I2C_INT_FLAG_OUERR I2C_FLAG_OUERR /*!< over-run or under-run situation occurs in slave mode interrupt flag */
#define I2C_INT_FLAG_PECERR I2C_FLAG_PECERR /*!< PEC error when receiving data interrupt flag */
#define I2C_INT_FLAG_SMBTO I2C_FLAG_SMBTO /*!< timeout signal in SMBus mode interrupt flag */
#define I2C_INT_FLAG_SMBALT I2C_FLAG_SMBALT /*!< SMBus Alert status interrupt flag */
/* I2C interrupt enable bit */
#define I2C_INT_ERR I2C_CTL1_ERRIE /*!< error interrupt enable */
#define I2C_INT_EV I2C_CTL1_EVIE /*!< event interrupt enable */
#define I2C_INT_BUF I2C_CTL1_BUFIE /*!< buffer interrupt enable */
/* I2C duty cycle in fast mode or fast mode plus */
#define CKCFG_DTCY(regval) (BIT(14) & ((uint32_t)(regval) << 14))
#define I2C_DTCY_2 CKCFG_DTCY(0) /*!< in I2C fast mode or fast mode plus Tlow/Thigh = 2 */
#define I2C_DTCY_16_9 CKCFG_DTCY(1) /*!< in I2C fast mode or fast mode plus Tlow/Thigh = 16/9 */
/* address mode for the I2C slave */
#define SADDR0_ADDFORMAT(regval) (BIT(15) & ((uint32_t)(regval) << 15))
#define I2C_ADDFORMAT_7BITS SADDR0_ADDFORMAT(0) /*!< address:7 bits */
#define I2C_ADDFORMAT_10BITS SADDR0_ADDFORMAT(1) /*!< address:10 bits */
/* function declarations */
/* reset I2C */
void i2c_deinit(uint32_t i2c_periph);
/* configure I2C clock */
void i2c_clock_config(uint32_t i2c_periph, uint32_t clkspeed, uint32_t dutycyc);
/* configure I2C address */
void i2c_mode_addr_config(uint32_t i2c_periph, uint32_t mode, uint32_t addformat, uint32_t addr);
/* SMBus type selection */
void i2c_smbus_type_config(uint32_t i2c_periph, uint32_t type);
/* whether or not to send an ACK */
void i2c_ack_config(uint32_t i2c_periph, uint32_t ack);
/* configure I2C POAP position */
void i2c_ackpos_config(uint32_t i2c_periph, uint32_t pos);
/* master send slave address */
void i2c_master_addressing(uint32_t i2c_periph, uint32_t addr, uint32_t trandirection);
/* dual-address mode switch */
void i2c_dualaddr_enable(uint32_t i2c_periph, uint32_t dualaddr);
/* enable I2C */
void i2c_enable(uint32_t i2c_periph);
/* disable I2C */
void i2c_disable(uint32_t i2c_periph);
/* generate a START condition on I2C bus */
void i2c_start_on_bus(uint32_t i2c_periph);
/* generate a STOP condition on I2C bus */
void i2c_stop_on_bus(uint32_t i2c_periph);
/* I2C transmit data function */
void i2c_data_transmit(uint32_t i2c_periph, uint8_t data);
/* I2C receive data function */
uint8_t i2c_data_receive(uint32_t i2c_periph);
/* I2C DMA mode enable */
void i2c_dma_enable(uint32_t i2c_periph, uint32_t dmastate);
/* flag indicating DMA last transfer */
void i2c_dma_last_transfer_enable(uint32_t i2c_periph, uint32_t dmalast);
/* whether to stretch SCL low when data is not ready in slave mode */
void i2c_stretch_scl_low_config(uint32_t i2c_periph, uint32_t stretchpara );
/* whether or not to response to a general call */
void i2c_slave_response_to_gcall_config(uint32_t i2c_periph, uint32_t gcallpara);
/* software reset I2C */
void i2c_software_reset_config(uint32_t i2c_periph, uint32_t sreset);
/* check I2C flag is set or not */
FlagStatus i2c_flag_get(uint32_t i2c_periph, uint32_t flag);
/* clear I2C flag */
void i2c_flag_clear(uint32_t i2c_periph, uint32_t flag);
/* enable I2C interrupt */
void i2c_interrupt_enable(uint32_t i2c_periph, uint32_t inttype);
/* disable I2C interrupt */
void i2c_interrupt_disable(uint32_t i2c_periph, uint32_t inttype);
/* check I2C interrupt flag */
FlagStatus i2c_interrupt_flag_get(uint32_t i2c_periph,uint32_t intflag);
/* clear I2C interrupt flag */
void i2c_interrupt_flag_clear(uint32_t i2c_periph,uint32_t intflag);
/* I2C PEC calculation on or off */
void i2c_pec_enable(uint32_t i2c_periph, uint32_t pecstate);
/* I2C whether to transfer PEC value */
void i2c_pec_transfer_enable(uint32_t i2c_periph, uint32_t pecpara);
/* packet error checking value */
uint8_t i2c_pec_value_get(uint32_t i2c_periph);
/* I2C issue alert through SMBA pin */
void i2c_smbus_issue_alert(uint32_t i2c_periph, uint32_t smbuspara);
/* I2C ARP protocol in SMBus switch */
void i2c_smbus_arp_enable(uint32_t i2c_periph, uint32_t arpstate);
#endif /* GD32F30X_I2C_H */

View File

@ -0,0 +1,68 @@
/*!
\file gd32f30x_misc.h
\brief definitions for the MISC
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef GD32F30X_MISC_H
#define GD32F30X_MISC_H
#include "gd32f30x.h"
/* constants definitions */
/* set the RAM and FLASH base address */
#define NVIC_VECTTAB_RAM ((uint32_t)0x20000000) /*!< RAM base address */
#define NVIC_VECTTAB_FLASH ((uint32_t)0x08000000) /*!< Flash base address */
/* set the NVIC vector table offset mask */
#define NVIC_VECTTAB_OFFSET_MASK ((uint32_t)0x1FFFFF80)
/* the register key mask, if you want to do the write operation, you should write 0x5FA to VECTKEY bits */
#define NVIC_AIRCR_VECTKEY_MASK ((uint32_t)0x05FA0000)
/* priority group - define the pre-emption priority and the subpriority */
#define NVIC_PRIGROUP_PRE0_SUB4 ((uint32_t)0x700) /*!< 0 bits for pre-emption priority 4 bits for subpriority */
#define NVIC_PRIGROUP_PRE1_SUB3 ((uint32_t)0x600) /*!< 1 bits for pre-emption priority 3 bits for subpriority */
#define NVIC_PRIGROUP_PRE2_SUB2 ((uint32_t)0x500) /*!< 2 bits for pre-emption priority 2 bits for subpriority */
#define NVIC_PRIGROUP_PRE3_SUB1 ((uint32_t)0x400) /*!< 3 bits for pre-emption priority 1 bits for subpriority */
#define NVIC_PRIGROUP_PRE4_SUB0 ((uint32_t)0x300) /*!< 4 bits for pre-emption priority 0 bits for subpriority */
/* choose the method to enter or exit the lowpower mode */
#define SCB_SCR_SLEEPONEXIT ((uint8_t)0x02) /*!< choose the the system whether enter low power mode by exiting from ISR */
#define SCB_SCR_SLEEPDEEP ((uint8_t)0x04) /*!< choose the the system enter the DEEPSLEEP mode or SLEEP mode */
#define SCB_SCR_SEVONPEND ((uint8_t)0x10) /*!< choose the interrupt source that can wake up the lowpower mode */
#define SCB_LPM_SLEEP_EXIT_ISR SCB_SCR_SLEEPONEXIT
#define SCB_LPM_DEEPSLEEP SCB_SCR_SLEEPDEEP
#define SCB_LPM_WAKE_BY_ALL_INT SCB_SCR_SEVONPEND
/* choose the systick clock source */
#define SYSTICK_CLKSOURCE_HCLK_DIV8 ((uint32_t)0xFFFFFFFBU) /*!< systick clock source is from HCLK/8 */
#define SYSTICK_CLKSOURCE_HCLK ((uint32_t)0x00000004U) /*!< systick clock source is from HCLK */
/* function declarations */
/* set the priority group */
void nvic_priority_group_set(uint32_t nvic_prigroup);
/* enable NVIC request */
void nvic_irq_enable(uint8_t nvic_irq, uint8_t nvic_irq_pre_priority, uint8_t nvic_irq_sub_priority);
/* disable NVIC request */
void nvic_irq_disable(uint8_t nvic_irq);
/* set the NVIC vector table base address */
void nvic_vector_table_set(uint32_t nvic_vict_tab, uint32_t offset);
/* set the state of the low power mode */
void system_lowpower_set(uint8_t lowpower_mode);
/* reset the state of the low power mode */
void system_lowpower_reset(uint8_t lowpower_mode);
/* set the systick clock source */
void systick_clksource_set(uint32_t systick_clksource);
#endif /* GD32F30X_MISC_H */

View File

@ -0,0 +1,160 @@
/*!
\file gd32f30x_pmu.h
\brief definitions for the PMU
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef GD32F30X_PMU_H
#define GD32F30X_PMU_H
#include "gd32f30x.h"
/* PMU definitions */
#define PMU PMU_BASE /*!< PMU base address */
/* registers definitions */
#define PMU_CTL REG32((PMU) + 0x00U) /*!< PMU control register */
#define PMU_CS REG32((PMU) + 0x04U) /*!< PMU control and status register */
/* bits definitions */
/* PMU_CTL */
#define PMU_CTL_LDOLP BIT(0) /*!< LDO low power mode */
#define PMU_CTL_STBMOD BIT(1) /*!< standby mode */
#define PMU_CTL_WURST BIT(2) /*!< wakeup flag reset */
#define PMU_CTL_STBRST BIT(3) /*!< standby flag reset */
#define PMU_CTL_LVDEN BIT(4) /*!< low voltage detector enable */
#define PMU_CTL_LVDT BITS(5,7) /*!< low voltage detector threshold */
#define PMU_CTL_BKPWEN BIT(8) /*!< backup domain write enable */
#define PMU_CTL_LDLP BIT(10) /*!< low-driver mode when use low power LDO */
#define PMU_CTL_LDNP BIT(11) /*!< low-driver mode when use normal power LDO */
#define PMU_CTL_LDOVS BITS(14,15) /*!< LDO output voltage select */
#define PMU_CTL_HDEN BIT(16) /*!< high-driver mode enable */
#define PMU_CTL_HDS BIT(17) /*!< high-driver mode switch */
#define PMU_CTL_LDEN BITS(18,19) /*!< low-driver mode enable in deep-sleep mode */
/* PMU_CS */
#define PMU_CS_WUF BIT(0) /*!< wakeup flag */
#define PMU_CS_STBF BIT(1) /*!< standby flag */
#define PMU_CS_LVDF BIT(2) /*!< low voltage detector status flag */
#define PMU_CS_WUPEN BIT(8) /*!< wakeup pin enable */
#define PMU_CS_LDOVSRF BIT(14) /*!< LDO voltage select ready flag */
#define PMU_CS_HDRF BIT(16) /*!< high-driver ready flag */
#define PMU_CS_HDSRF BIT(17) /*!< high-driver switch ready flag */
#define PMU_CS_LDRF BITS(18,19) /*!< Low-driver mode ready flag */
/* constants definitions */
/* PMU low voltage detector threshold definitions */
#define CTL_LVDT(regval) (BITS(5,7)&((uint32_t)(regval)<<5))
#define PMU_LVDT_0 CTL_LVDT(0) /*!< voltage threshold is 2.1V */
#define PMU_LVDT_1 CTL_LVDT(1) /*!< voltage threshold is 2.3V */
#define PMU_LVDT_2 CTL_LVDT(2) /*!< voltage threshold is 2.4V */
#define PMU_LVDT_3 CTL_LVDT(3) /*!< voltage threshold is 2.6V */
#define PMU_LVDT_4 CTL_LVDT(4) /*!< voltage threshold is 2.7V */
#define PMU_LVDT_5 CTL_LVDT(5) /*!< voltage threshold is 2.9V */
#define PMU_LVDT_6 CTL_LVDT(6) /*!< voltage threshold is 3.0V */
#define PMU_LVDT_7 CTL_LVDT(7) /*!< voltage threshold is 3.1V */
/* PMU LDO output voltage select definitions */
#define CTL_LDOVS(regval) (BITS(14,15)&((uint32_t)(regval)<<14))
#define PMU_LDOVS_LOW CTL_LDOVS(1) /*!< LDO output voltage low mode */
#define PMU_LDOVS_MID CTL_LDOVS(2) /*!< LDO output voltage mid mode */
#define PMU_LDOVS_HIGH CTL_LDOVS(3) /*!< LDO output voltage high mode */
/* PMU high-driver mode switch */
#define CTL_HDS(regval) (BIT(17)&((uint32_t)(regval)<<17))
#define PMU_HIGHDR_SWITCH_NONE CTL_HDS(0) /*!< no high-driver mode switch */
#define PMU_HIGHDR_SWITCH_EN CTL_HDS(1) /*!< high-driver mode switch */
/* PMU low-driver mode when use low power LDO */
#define CTL_LDLP(regval) (BIT(10)&((uint32_t)(regval)<<10))
#define PMU_NORMALDR_LOWPWR CTL_LDLP(0) /*!< normal driver when use low power LDO */
#define PMU_LOWDR_LOWPWR CTL_LDLP(1) /*!< low-driver mode enabled when LDEN is 11 and use low power LDO */
/* PMU low-driver mode when use normal power LDO */
#define CTL_LDNP(regval) (BIT(11)&((uint32_t)(regval)<<11))
#define PMU_NORMALDR_NORMALPWR CTL_LDNP(0) /*!< normal driver when use normal power LDO */
#define PMU_LOWDR_NORMALPWR CTL_LDNP(1) /*!< low-driver mode enabled when LDEN is 11 and use normal power LDO */
/* PMU low power mode ready flag definitions */
#define CS_LDRF(regval) (BITS(18,19)&((uint32_t)(regval)<<18))
#define PMU_LDRF_NORMAL CS_LDRF(0) /*!< normal driver in deep-sleep mode */
#define PMU_LDRF_LOWDRIVER CS_LDRF(3) /*!< low-driver mode in deep-sleep mode */
/* PMU flag definitions */
#define PMU_FLAG_WAKEUP PMU_CS_WUF /*!< wakeup flag status */
#define PMU_FLAG_STANDBY PMU_CS_STBF /*!< standby flag status */
#define PMU_FLAG_LVD PMU_CS_LVDF /*!< lvd flag status */
#define PMU_FLAG_LDOVSRF PMU_CS_LDOVSRF /*!< LDO voltage select ready flag */
#define PMU_FLAG_HDRF PMU_CS_HDRF /*!< high-driver ready flag */
#define PMU_FLAG_HDSRF PMU_CS_HDSRF /*!< high-driver switch ready flag */
#define PMU_FLAG_LDRF PMU_CS_LDRF /*!< low-driver mode ready flag */
/* PMU ldo definitions */
#define PMU_LDO_NORMAL ((uint32_t)0x00000000U) /*!< LDO normal work when PMU enter deepsleep mode */
#define PMU_LDO_LOWPOWER PMU_CTL_LDOLP /*!< LDO work at low power status when PMU enter deepsleep mode */
/* PMU flag reset definitions */
#define PMU_FLAG_RESET_WAKEUP ((uint8_t)0x00U) /*!< wakeup flag reset */
#define PMU_FLAG_RESET_STANDBY ((uint8_t)0x01U) /*!< standby flag reset */
/* PMU command constants definitions */
#define WFI_CMD ((uint8_t)0x00U) /*!< use WFI command */
#define WFE_CMD ((uint8_t)0x01U) /*!< use WFE command */
/* function declarations */
/* reset PMU registers */
void pmu_deinit(void);
/* select low voltage detector threshold */
void pmu_lvd_select(uint32_t lvdt_n);
/* select LDO output voltage */
void pmu_ldo_output_select(uint32_t ldo_output);
/* disable PMU lvd */
void pmu_lvd_disable(void);
/* functions of low-driver mode and high-driver mode in deep-sleep mode */
/* switch high-driver mode */
void pmu_highdriver_switch_select(uint32_t highdr_switch);
/* enable high-driver mode */
void pmu_highdriver_mode_enable(void);
/* disable high-driver mode */
void pmu_highdriver_mode_disable(void);
/* enable low-driver mode in deep-sleep mode */
void pmu_lowdriver_mode_enable(void);
/* disable low-driver mode in deep-sleep mode */
void pmu_lowdriver_mode_disable(void);
/* in deep-sleep mode, driver mode when use low power LDO */
void pmu_lowpower_driver_config(uint32_t mode);
/* in deep-sleep mode, driver mode when use normal power LDO */
void pmu_normalpower_driver_config(uint32_t mode);
/* set PMU mode */
/* PMU work at sleep mode */
void pmu_to_sleepmode(uint8_t sleepmodecmd);
/* PMU work at deepsleep mode */
void pmu_to_deepsleepmode(uint32_t ldo, uint8_t deepsleepmodecmd);
/* PMU work at standby mode */
void pmu_to_standbymode(uint8_t standbymodecmd);
/* enable PMU wakeup pin */
void pmu_wakeup_pin_enable(void);
/* disable PMU wakeup pin */
void pmu_wakeup_pin_disable(void);
/* backup related functions */
/* enable backup domain write */
void pmu_backup_write_enable(void);
/* disable backup domain write */
void pmu_backup_write_disable(void);
/* flag functions */
/* clear flag bit */
void pmu_flag_clear(uint32_t flag_reset);
/* get flag state */
FlagStatus pmu_flag_get(uint32_t flag);
#endif /* GD32F30X_PMU_H */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,111 @@
/*!
\file gd32f30x_rtc.h
\brief definitions for the RTC
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_RTC_H
#define GD32F30X_RTC_H
#include "gd32f30x.h"
/* RTC definitions */
#define RTC RTC_BASE
/* registers definitions */
#define RTC_INTEN REG32(RTC + 0x00U) /*!< interrupt enable register */
#define RTC_CTL REG32(RTC + 0x04U) /*!< control register */
#define RTC_PSCH REG32(RTC + 0x08U) /*!< prescaler high register */
#define RTC_PSCL REG32(RTC + 0x0CU) /*!< prescaler low register */
#define RTC_DIVH REG32(RTC + 0x10U) /*!< divider high register */
#define RTC_DIVL REG32(RTC + 0x14U) /*!< divider low register */
#define RTC_CNTH REG32(RTC + 0x18U) /*!< counter high register */
#define RTC_CNTL REG32(RTC + 0x1CU) /*!< counter low register */
#define RTC_ALRMH REG32(RTC + 0x20U) /*!< alarm high register */
#define RTC_ALRML REG32(RTC + 0x24U) /*!< alarm low register */
/* bits definitions */
/* RTC_INTEN */
#define RTC_INTEN_SCIE BIT(0) /*!< second interrupt enable */
#define RTC_INTEN_ALRMIE BIT(1) /*!< alarm interrupt enable */
#define RTC_INTEN_OVIE BIT(2) /*!< overflow interrupt enable */
/* RTC_CTL */
#define RTC_CTL_SCIF BIT(0) /*!< second interrupt flag */
#define RTC_CTL_ALRMIF BIT(1) /*!< alarm interrupt flag */
#define RTC_CTL_OVIF BIT(2) /*!< overflow interrupt flag */
#define RTC_CTL_RSYNF BIT(3) /*!< registers synchronized flag */
#define RTC_CTL_CMF BIT(4) /*!< configuration mode flag */
#define RTC_CTL_LWOFF BIT(5) /*!< last write operation finished flag */
/* RTC_PSC */
#define RTC_PSCH_PSC BITS(0, 3) /*!< prescaler high value */
#define RTC_PSCL_PSC BITS(0, 15) /*!< prescaler low value */
/* RTC_DIV */
#define RTC_DIVH_DIV BITS(0, 3) /*!< divider high value */
#define RTC_DIVL_DIV BITS(0, 15) /*!< divider low value */
/* RTC_CNT */
#define RTC_CNTH_CNT BITS(0, 15) /*!< counter high value */
#define RTC_CNTL_CNT BITS(0, 15) /*!< counter low value */
/* RTC_ALRM */
#define RTC_ALRMH_ALRM BITS(0, 15) /*!< alarm high value */
#define RTC_ALRML_ALRM BITS(0, 15) /*!< alarm low value */
/* constants definitions */
#define RTC_HIGH_VALUE 0x000F0000U /*!< RTC high value */
#define RTC_LOW_VALUE 0x0000FFFFU /*!< RTC low value */
/* RTC interrupt enable or disable definitions */
#define RTC_INT_SECOND RTC_INTEN_SCIE /*!< second interrupt enable */
#define RTC_INT_ALARM RTC_INTEN_ALRMIE /*!< alarm interrupt enable */
#define RTC_INT_OVERFLOW RTC_INTEN_OVIE /*!< overflow interrupt enable */
/* RTC flag definitions */
#define RTC_FLAG_SECOND RTC_CTL_SCIF /*!< second interrupt flag */
#define RTC_FLAG_ALARM RTC_CTL_ALRMIF /*!< alarm interrupt flag */
#define RTC_FLAG_OVERFLOW RTC_CTL_OVIF /*!< overflow interrupt flag */
#define RTC_FLAG_RSYN RTC_CTL_RSYNF /*!< registers synchronized flag */
#define RTC_FLAG_LWOF RTC_CTL_LWOFF /*!< last write operation finished flag */
/* function declarations */
/* enable RTC interrupt */
void rtc_interrupt_enable(uint32_t interrupt);
/* disable RTC interrupt */
void rtc_interrupt_disable(uint32_t interrupt);
/* enter RTC configuration mode */
void rtc_configuration_mode_enter(void);
/* exit RTC configuration mode */
void rtc_configuration_mode_exit(void);
/* wait RTC last write operation finished flag set */
void rtc_lwoff_wait(void);
/* wait RTC registers synchronized flag set */
void rtc_register_sync_wait(void);
/* get RTC counter value */
uint32_t rtc_counter_get(void);
/* set RTC counter value */
void rtc_counter_set(uint32_t cnt);
/* set RTC prescaler value */
void rtc_prescaler_set(uint32_t psc);
/* set RTC alarm value */
void rtc_alarm_config(uint32_t alarm);
/* get RTC divider value */
uint32_t rtc_divider_get(void);
/* get RTC flag status */
FlagStatus rtc_flag_get(uint32_t flag);
/* clear RTC flag status */
void rtc_flag_clear(uint32_t flag);
#endif /* GD32F30X_RTC_H */

View File

@ -0,0 +1,404 @@
/*!
\file gd32f30x_sdio.h
\brief definitions for the SDIO
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_SDIO_H
#define GD32F30X_SDIO_H
#include "gd32f30x.h"
/* SDIO definitions */
#define SDIO SDIO_BASE
/* registers definitions */
#define SDIO_PWRCTL REG32(SDIO + 0x00U) /*!< SDIO power control register */
#define SDIO_CLKCTL REG32(SDIO + 0x04U) /*!< SDIO clock control register */
#define SDIO_CMDAGMT REG32(SDIO + 0x08U) /*!< SDIO command argument register */
#define SDIO_CMDCTL REG32(SDIO + 0x0CU) /*!< SDIO command control register */
#define SDIO_RSPCMDIDX REG32(SDIO + 0x10U) /*!< SDIO command index response register */
#define SDIO_RESP0 REG32(SDIO + 0x14U) /*!< SDIO response register 0 */
#define SDIO_RESP1 REG32(SDIO + 0x18U) /*!< SDIO response register 1 */
#define SDIO_RESP2 REG32(SDIO + 0x1CU) /*!< SDIO response register 2 */
#define SDIO_RESP3 REG32(SDIO + 0x20U) /*!< SDIO response register 3 */
#define SDIO_DATATO REG32(SDIO + 0x24U) /*!< SDIO data timeout register */
#define SDIO_DATALEN REG32(SDIO + 0x28U) /*!< SDIO data length register */
#define SDIO_DATACTL REG32(SDIO + 0x2CU) /*!< SDIO data control register */
#define SDIO_DATACNT REG32(SDIO + 0x30U) /*!< SDIO data counter register */
#define SDIO_STAT REG32(SDIO + 0x34U) /*!< SDIO status register */
#define SDIO_INTC REG32(SDIO + 0x38U) /*!< SDIO interrupt clear register */
#define SDIO_INTEN REG32(SDIO + 0x3CU) /*!< SDIO interrupt enable register */
#define SDIO_FIFOCNT REG32(SDIO + 0x48U) /*!< SDIO FIFO counter register */
#define SDIO_FIFO REG32(SDIO + 0x80U) /*!< SDIO FIFO data register */
/* bits definitions */
/* SDIO_PWRCTL */
#define SDIO_PWRCTL_PWRCTL BITS(0,1) /*!< SDIO power control bits */
/* SDIO_CLKCTL */
#define SDIO_CLKCTL_DIV BITS(0,7) /*!< clock division */
#define SDIO_CLKCTL_CLKEN BIT(8) /*!< SDIO_CLK clock output enable bit */
#define SDIO_CLKCTL_CLKPWRSAV BIT(9) /*!< SDIO_CLK clock dynamic switch on/off for power saving */
#define SDIO_CLKCTL_CLKBYP BIT(10) /*!< clock bypass enable bit */
#define SDIO_CLKCTL_BUSMODE BITS(11,12) /*!< SDIO card bus mode control bit */
#define SDIO_CLKCTL_CLKEDGE BIT(13) /*!< SDIO_CLK clock edge selection bit */
#define SDIO_CLKCTL_HWCLKEN BIT(14) /*!< hardware clock control enable bit */
#define SDIO_CLKCTL_DIV8 BIT(31) /*!< MSB of clock division */
/* SDIO_CMDAGMT */
#define SDIO_CMDAGMT_CMDAGMT BITS(0,31) /*!< SDIO card command argument */
/* SDIO_CMDCTL */
#define SDIO_CMDCTL_CMDIDX BITS(0,5) /*!< command index */
#define SDIO_CMDCTL_CMDRESP BITS(6,7) /*!< command response type bits */
#define SDIO_CMDCTL_INTWAIT BIT(8) /*!< interrupt wait instead of timeout */
#define SDIO_CMDCTL_WAITDEND BIT(9) /*!< wait for ends of data transfer */
#define SDIO_CMDCTL_CSMEN BIT(10) /*!< command state machine(CSM) enable bit */
#define SDIO_CMDCTL_SUSPEND BIT(11) /*!< SD I/O suspend command(SD I/O only) */
#define SDIO_CMDCTL_ENCMDC BIT(12) /*!< CMD completion signal enabled (CE-ATA only) */
#define SDIO_CMDCTL_NINTEN BIT(13) /*!< no CE-ATA interrupt (CE-ATA only) */
#define SDIO_CMDCTL_ATAEN BIT(14) /*!< CE-ATA command enable(CE-ATA only) */
/* SDIO_DATATO */
#define SDIO_DATATO_DATATO BITS(0,31) /*!< data timeout period */
/* SDIO_DATALEN */
#define SDIO_DATALEN_DATALEN BITS(0,24) /*!< data transfer length */
/* SDIO_DATACTL */
#define SDIO_DATACTL_DATAEN BIT(0) /*!< data transfer enabled bit */
#define SDIO_DATACTL_DATADIR BIT(1) /*!< data transfer direction */
#define SDIO_DATACTL_TRANSMOD BIT(2) /*!< data transfer mode */
#define SDIO_DATACTL_DMAEN BIT(3) /*!< DMA enable bit */
#define SDIO_DATACTL_BLKSZ BITS(4,7) /*!< data block size */
#define SDIO_DATACTL_RWEN BIT(8) /*!< read wait mode enabled(SD I/O only) */
#define SDIO_DATACTL_RWSTOP BIT(9) /*!< read wait stop(SD I/O only) */
#define SDIO_DATACTL_RWTYPE BIT(10) /*!< read wait type(SD I/O only) */
#define SDIO_DATACTL_IOEN BIT(11) /*!< SD I/O specific function enable(SD I/O only) */
/* SDIO_STAT */
#define SDIO_STAT_CCRCERR BIT(0) /*!< command response received (CRC check failed) */
#define SDIO_STAT_DTCRCERR BIT(1) /*!< data block sent/received (CRC check failed) */
#define SDIO_STAT_CMDTMOUT BIT(2) /*!< command response timeout */
#define SDIO_STAT_DTTMOUT BIT(3) /*!< data timeout */
#define SDIO_STAT_TXURE BIT(4) /*!< transmit FIFO underrun error occurs */
#define SDIO_STAT_RXORE BIT(5) /*!< received FIFO overrun error occurs */
#define SDIO_STAT_CMDRECV BIT(6) /*!< command response received (CRC check passed) */
#define SDIO_STAT_CMDSEND BIT(7) /*!< command sent (no response required) */
#define SDIO_STAT_DTEND BIT(8) /*!< data end (data counter, SDIO_DATACNT, is zero) */
#define SDIO_STAT_STBITE BIT(9) /*!< start bit error in the bus */
#define SDIO_STAT_DTBLKEND BIT(10) /*!< data block sent/received (CRC check passed) */
#define SDIO_STAT_CMDRUN BIT(11) /*!< command transmission in progress */
#define SDIO_STAT_TXRUN BIT(12) /*!< data transmission in progress */
#define SDIO_STAT_RXRUN BIT(13) /*!< data reception in progress */
#define SDIO_STAT_TFH BIT(14) /*!< transmit FIFO is half empty: at least 8 words can be written into the FIFO */
#define SDIO_STAT_RFH BIT(15) /*!< receive FIFO is half full: at least 8 words can be read in the FIFO */
#define SDIO_STAT_TFF BIT(16) /*!< transmit FIFO is full */
#define SDIO_STAT_RFF BIT(17) /*!< receive FIFO is full */
#define SDIO_STAT_TFE BIT(18) /*!< transmit FIFO is empty */
#define SDIO_STAT_RFE BIT(19) /*!< receive FIFO is empty */
#define SDIO_STAT_TXDTVAL BIT(20) /*!< data is valid in transmit FIFO */
#define SDIO_STAT_RXDTVAL BIT(21) /*!< data is valid in receive FIFO */
#define SDIO_STAT_SDIOINT BIT(22) /*!< SD I/O interrupt received */
#define SDIO_STAT_ATAEND BIT(23) /*!< CE-ATA command completion signal received (only for CMD61) */
/* SDIO_INTC */
#define SDIO_INTC_CCRCERRC BIT(0) /*!< CCRCERR flag clear bit */
#define SDIO_INTC_DTCRCERRC BIT(1) /*!< DTCRCERR flag clear bit */
#define SDIO_INTC_CMDTMOUTC BIT(2) /*!< CMDTMOUT flag clear bit */
#define SDIO_INTC_DTTMOUTC BIT(3) /*!< DTTMOUT flag clear bit */
#define SDIO_INTC_TXUREC BIT(4) /*!< TXURE flag clear bit */
#define SDIO_INTC_RXOREC BIT(5) /*!< RXORE flag clear bit */
#define SDIO_INTC_CMDRECVC BIT(6) /*!< CMDRECV flag clear bit */
#define SDIO_INTC_CMDSENDC BIT(7) /*!< CMDSEND flag clear bit */
#define SDIO_INTC_DTENDC BIT(8) /*!< DTEND flag clear bit */
#define SDIO_INTC_STBITEC BIT(9) /*!< STBITE flag clear bit */
#define SDIO_INTC_DTBLKENDC BIT(10) /*!< DTBLKEND flag clear bit */
#define SDIO_INTC_SDIOINTC BIT(22) /*!< SDIOINT flag clear bit */
#define SDIO_INTC_ATAENDC BIT(23) /*!< ATAEND flag clear bit */
/* SDIO_INTEN */
#define SDIO_INTEN_CCRCERRIE BIT(0) /*!< command response CRC fail interrupt enable */
#define SDIO_INTEN_DTCRCERRIE BIT(1) /*!< data CRC fail interrupt enable */
#define SDIO_INTEN_CMDTMOUTIE BIT(2) /*!< command response timeout interrupt enable */
#define SDIO_INTEN_DTTMOUTIE BIT(3) /*!< data timeout interrupt enable */
#define SDIO_INTEN_TXUREIE BIT(4) /*!< transmit FIFO underrun error interrupt enable */
#define SDIO_INTEN_RXOREIE BIT(5) /*!< received FIFO overrun error interrupt enable */
#define SDIO_INTEN_CMDRECVIE BIT(6) /*!< command response received interrupt enable */
#define SDIO_INTEN_CMDSENDIE BIT(7) /*!< command sent interrupt enable */
#define SDIO_INTEN_DTENDIE BIT(8) /*!< data end interrupt enable */
#define SDIO_INTEN_STBITEIE BIT(9) /*!< start bit error interrupt enable */
#define SDIO_INTEN_DTBLKENDIE BIT(10) /*!< data block end interrupt enable */
#define SDIO_INTEN_CMDRUNIE BIT(11) /*!< command transmission interrupt enable */
#define SDIO_INTEN_TXRUNIE BIT(12) /*!< data transmission interrupt enable */
#define SDIO_INTEN_RXRUNIE BIT(13) /*!< data reception interrupt enable */
#define SDIO_INTEN_TFHIE BIT(14) /*!< transmit FIFO half empty interrupt enable */
#define SDIO_INTEN_RFHIE BIT(15) /*!< receive FIFO half full interrupt enable */
#define SDIO_INTEN_TFFIE BIT(16) /*!< transmit FIFO full interrupt enable */
#define SDIO_INTEN_RFFIE BIT(17) /*!< receive FIFO full interrupt enable */
#define SDIO_INTEN_TFEIE BIT(18) /*!< transmit FIFO empty interrupt enable */
#define SDIO_INTEN_RFEIE BIT(19) /*!< receive FIFO empty interrupt enable */
#define SDIO_INTEN_TXDTVALIE BIT(20) /*!< data valid in transmit FIFO interrupt enable */
#define SDIO_INTEN_RXDTVALIE BIT(21) /*!< data valid in receive FIFO interrupt enable */
#define SDIO_INTEN_SDIOINTIE BIT(22) /*!< SD I/O interrupt received interrupt enable */
#define SDIO_INTEN_ATAENDIE BIT(23) /*!< CE-ATA command completion signal received interrupt enable */
/* SDIO_FIFO */
#define SDIO_FIFO_FIFODT BITS(0,31) /*!< receive FIFO data or transmit FIFO data */
/* constants definitions */
/* SDIO flags */
#define SDIO_FLAG_CCRCERR BIT(0) /*!< command response received (CRC check failed) flag */
#define SDIO_FLAG_DTCRCERR BIT(1) /*!< data block sent/received (CRC check failed) flag */
#define SDIO_FLAG_CMDTMOUT BIT(2) /*!< command response timeout flag */
#define SDIO_FLAG_DTTMOUT BIT(3) /*!< data timeout flag */
#define SDIO_FLAG_TXURE BIT(4) /*!< transmit FIFO underrun error occurs flag */
#define SDIO_FLAG_RXORE BIT(5) /*!< received FIFO overrun error occurs flag */
#define SDIO_FLAG_CMDRECV BIT(6) /*!< command response received (CRC check passed) flag */
#define SDIO_FLAG_CMDSEND BIT(7) /*!< command sent (no response required) flag */
#define SDIO_FLAG_DTEND BIT(8) /*!< data end (data counter, SDIO_DATACNT, is zero) flag */
#define SDIO_FLAG_STBITE BIT(9) /*!< start bit error in the bus flag */
#define SDIO_FLAG_DTBLKEND BIT(10) /*!< data block sent/received (CRC check passed) flag */
#define SDIO_FLAG_CMDRUN BIT(11) /*!< command transmission in progress flag */
#define SDIO_FLAG_TXRUN BIT(12) /*!< data transmission in progress flag */
#define SDIO_FLAG_RXRUN BIT(13) /*!< data reception in progress flag */
#define SDIO_FLAG_TFH BIT(14) /*!< transmit FIFO is half empty flag: at least 8 words can be written into the FIFO */
#define SDIO_FLAG_RFH BIT(15) /*!< receive FIFO is half full flag: at least 8 words can be read in the FIFO */
#define SDIO_FLAG_TFF BIT(16) /*!< transmit FIFO is full flag */
#define SDIO_FLAG_RFF BIT(17) /*!< receive FIFO is full flag */
#define SDIO_FLAG_TFE BIT(18) /*!< transmit FIFO is empty flag */
#define SDIO_FLAG_RFE BIT(19) /*!< receive FIFO is empty flag */
#define SDIO_FLAG_TXDTVAL BIT(20) /*!< data is valid in transmit FIFO flag */
#define SDIO_FLAG_RXDTVAL BIT(21) /*!< data is valid in receive FIFO flag */
#define SDIO_FLAG_SDIOINT BIT(22) /*!< SD I/O interrupt received flag */
#define SDIO_FLAG_ATAEND BIT(23) /*!< CE-ATA command completion signal received (only for CMD61) flag */
/* SDIO interrupt enable or disable */
#define SDIO_INT_CCRCERR BIT(0) /*!< SDIO CCRCERR interrupt */
#define SDIO_INT_DTCRCERR BIT(1) /*!< SDIO DTCRCERR interrupt */
#define SDIO_INT_CMDTMOUT BIT(2) /*!< SDIO CMDTMOUT interrupt */
#define SDIO_INT_DTTMOUT BIT(3) /*!< SDIO DTTMOUT interrupt */
#define SDIO_INT_TXURE BIT(4) /*!< SDIO TXURE interrupt */
#define SDIO_INT_RXORE BIT(5) /*!< SDIO RXORE interrupt */
#define SDIO_INT_CMDRECV BIT(6) /*!< SDIO CMDRECV interrupt */
#define SDIO_INT_CMDSEND BIT(7) /*!< SDIO CMDSEND interrupt */
#define SDIO_INT_DTEND BIT(8) /*!< SDIO DTEND interrupt */
#define SDIO_INT_STBITE BIT(9) /*!< SDIO STBITE interrupt */
#define SDIO_INT_DTBLKEND BIT(10) /*!< SDIO DTBLKEND interrupt */
#define SDIO_INT_CMDRUN BIT(11) /*!< SDIO CMDRUN interrupt */
#define SDIO_INT_TXRUN BIT(12) /*!< SDIO TXRUN interrupt */
#define SDIO_INT_RXRUN BIT(13) /*!< SDIO RXRUN interrupt */
#define SDIO_INT_TFH BIT(14) /*!< SDIO TFH interrupt */
#define SDIO_INT_RFH BIT(15) /*!< SDIO RFH interrupt */
#define SDIO_INT_TFF BIT(16) /*!< SDIO TFF interrupt */
#define SDIO_INT_RFF BIT(17) /*!< SDIO RFF interrupt */
#define SDIO_INT_TFE BIT(18) /*!< SDIO TFE interrupt */
#define SDIO_INT_RFE BIT(19) /*!< SDIO RFE interrupt */
#define SDIO_INT_TXDTVAL BIT(20) /*!< SDIO TXDTVAL interrupt */
#define SDIO_INT_RXDTVAL BIT(21) /*!< SDIO RXDTVAL interrupt */
#define SDIO_INT_SDIOINT BIT(22) /*!< SDIO SDIOINT interrupt */
#define SDIO_INT_ATAEND BIT(23) /*!< SDIO ATAEND interrupt */
/* SDIO interrupt flags */
#define SDIO_INT_FLAG_CCRCERR BIT(0) /*!< SDIO CCRCERR interrupt */
#define SDIO_INT_FLAG_DTCRCERR BIT(1) /*!< SDIO DTCRCERR interrupt */
#define SDIO_INT_FLAG_CMDTMOUT BIT(2) /*!< SDIO CMDTMOUT interrupt */
#define SDIO_INT_FLAG_DTTMOUT BIT(3) /*!< SDIO DTTMOUT interrupt */
#define SDIO_INT_FLAG_TXURE BIT(4) /*!< SDIO TXURE interrupt */
#define SDIO_INT_FLAG_RXORE BIT(5) /*!< SDIO RXORE interrupt */
#define SDIO_INT_FLAG_CMDRECV BIT(6) /*!< SDIO CMDRECV interrupt */
#define SDIO_INT_FLAG_CMDSEND BIT(7) /*!< SDIO CMDSEND interrupt */
#define SDIO_INT_FLAG_DTEND BIT(8) /*!< SDIO DTEND interrupt */
#define SDIO_INT_FLAG_STBITE BIT(9) /*!< SDIO STBITE interrupt */
#define SDIO_INT_FLAG_DTBLKEND BIT(10) /*!< SDIO DTBLKEND interrupt */
#define SDIO_INT_FLAG_CMDRUN BIT(11) /*!< SDIO CMDRUN interrupt */
#define SDIO_INT_FLAG_TXRUN BIT(12) /*!< SDIO TXRUN interrupt */
#define SDIO_INT_FLAG_RXRUN BIT(13) /*!< SDIO RXRUN interrupt */
#define SDIO_INT_FLAG_TFH BIT(14) /*!< SDIO TFH interrupt */
#define SDIO_INT_FLAG_RFH BIT(15) /*!< SDIO RFH interrupt */
#define SDIO_INT_FLAG_TFF BIT(16) /*!< SDIO TFF interrupt */
#define SDIO_INT_FLAG_RFF BIT(17) /*!< SDIO RFF interrupt */
#define SDIO_INT_FLAG_TFE BIT(18) /*!< SDIO TFE interrupt */
#define SDIO_INT_FLAG_RFE BIT(19) /*!< SDIO RFE interrupt */
#define SDIO_INT_FLAG_TXDTVAL BIT(20) /*!< SDIO TXDTVAL interrupt */
#define SDIO_INT_FLAG_RXDTVAL BIT(21) /*!< SDIO RXDTVAL interrupt */
#define SDIO_INT_FLAG_SDIOINT BIT(22) /*!< SDIO SDIOINT interrupt */
#define SDIO_INT_FLAG_ATAEND BIT(23) /*!< SDIO ATAEND interrupt */
/* SDIO power control */
#define PWRCTL_PWRCTL(regval) (BITS(0,1) & ((uint32_t)(regval) << 0))
#define SDIO_POWER_OFF PWRCTL_PWRCTL(0) /*!< SDIO power off */
#define SDIO_POWER_ON PWRCTL_PWRCTL(3) /*!< SDIO power on */
/* SDIO card bus mode control */
#define CLKCTL_BUSMODE(regval) (BITS(11,12) & ((uint32_t)(regval) << 11))
#define SDIO_BUSMODE_1BIT CLKCTL_BUSMODE(0) /*!< 1-bit SDIO card bus mode */
#define SDIO_BUSMODE_4BIT CLKCTL_BUSMODE(1) /*!< 4-bit SDIO card bus mode */
#define SDIO_BUSMODE_8BIT CLKCTL_BUSMODE(2) /*!< 8-bit SDIO card bus mode */
/* SDIO_CLK clock edge selection */
#define SDIO_SDIOCLKEDGE_RISING (uint32_t)0x00000000U /*!< select the rising edge of the SDIOCLK to generate SDIO_CLK */
#define SDIO_SDIOCLKEDGE_FALLING SDIO_CLKCTL_CLKEDGE /*!< select the falling edge of the SDIOCLK to generate SDIO_CLK */
/* clock bypass enable or disable */
#define SDIO_CLOCKBYPASS_DISABLE (uint32_t)0x00000000U /*!< no bypass */
#define SDIO_CLOCKBYPASS_ENABLE SDIO_CLKCTL_CLKBYP /*!< clock bypass */
/* SDIO_CLK clock dynamic switch on/off for power saving */
#define SDIO_CLOCKPWRSAVE_DISABLE (uint32_t)0x00000000U /*!< SDIO_CLK clock is always on */
#define SDIO_CLOCKPWRSAVE_ENABLE SDIO_CLKCTL_CLKPWRSAV /*!< SDIO_CLK closed when bus is idle */
/* SDIO command response type */
#define CMDCTL_CMDRESP(regval) (BITS(6,7) & ((uint32_t)(regval) << 6))
#define SDIO_RESPONSETYPE_NO CMDCTL_CMDRESP(0) /*!< no response */
#define SDIO_RESPONSETYPE_SHORT CMDCTL_CMDRESP(1) /*!< short response */
#define SDIO_RESPONSETYPE_LONG CMDCTL_CMDRESP(3) /*!< long response */
/* command state machine wait type */
#define SDIO_WAITTYPE_NO (uint32_t)0x00000000U /*!< not wait interrupt */
#define SDIO_WAITTYPE_INTERRUPT SDIO_CMDCTL_INTWAIT /*!< wait interrupt */
#define SDIO_WAITTYPE_DATAEND SDIO_CMDCTL_WAITDEND /*!< wait the end of data transfer */
#define SDIO_RESPONSE0 (uint32_t)0x00000000U /*!< card response[31:0]/card response[127:96] */
#define SDIO_RESPONSE1 (uint32_t)0x00000001U /*!< card response[95:64] */
#define SDIO_RESPONSE2 (uint32_t)0x00000002U /*!< card response[63:32] */
#define SDIO_RESPONSE3 (uint32_t)0x00000003U /*!< card response[31:1], plus bit 0 */
/* SDIO data block size */
#define DATACTL_BLKSZ(regval) (BITS(4,7) & ((uint32_t)(regval) << 4))
#define SDIO_DATABLOCKSIZE_1BYTE DATACTL_BLKSZ(0) /*!< block size = 1 byte */
#define SDIO_DATABLOCKSIZE_2BYTES DATACTL_BLKSZ(1) /*!< block size = 2 bytes */
#define SDIO_DATABLOCKSIZE_4BYTES DATACTL_BLKSZ(2) /*!< block size = 4 bytes */
#define SDIO_DATABLOCKSIZE_8BYTES DATACTL_BLKSZ(3) /*!< block size = 8 bytes */
#define SDIO_DATABLOCKSIZE_16BYTES DATACTL_BLKSZ(4) /*!< block size = 16 bytes */
#define SDIO_DATABLOCKSIZE_32BYTES DATACTL_BLKSZ(5) /*!< block size = 32 bytes */
#define SDIO_DATABLOCKSIZE_64BYTES DATACTL_BLKSZ(6) /*!< block size = 64 bytes */
#define SDIO_DATABLOCKSIZE_128BYTES DATACTL_BLKSZ(7) /*!< block size = 128 bytes */
#define SDIO_DATABLOCKSIZE_256BYTES DATACTL_BLKSZ(8) /*!< block size = 256 bytes */
#define SDIO_DATABLOCKSIZE_512BYTES DATACTL_BLKSZ(9) /*!< block size = 512 bytes */
#define SDIO_DATABLOCKSIZE_1024BYTES DATACTL_BLKSZ(10) /*!< block size = 1024 bytes */
#define SDIO_DATABLOCKSIZE_2048BYTES DATACTL_BLKSZ(11) /*!< block size = 2048 bytes */
#define SDIO_DATABLOCKSIZE_4096BYTES DATACTL_BLKSZ(12) /*!< block size = 4096 bytes */
#define SDIO_DATABLOCKSIZE_8192BYTES DATACTL_BLKSZ(13) /*!< block size = 8192 bytes */
#define SDIO_DATABLOCKSIZE_16384BYTES DATACTL_BLKSZ(14) /*!< block size = 16384 bytes */
/* SDIO data transfer mode */
#define SDIO_TRANSMODE_BLOCK (uint32_t)0x00000000U /*!< block transfer */
#define SDIO_TRANSMODE_STREAM SDIO_DATACTL_TRANSMOD /*!< stream transfer or SDIO multibyte transfer */
/* SDIO data transfer direction */
#define SDIO_TRANSDIRECTION_TOCARD (uint32_t)0x00000000U /*!< write data to card */
#define SDIO_TRANSDIRECTION_TOSDIO SDIO_DATACTL_DATADIR /*!< read data from card */
/* SDIO read wait type */
#define SDIO_READWAITTYPE_DAT2 (uint32_t)0x00000000U /*!< read wait control using SDIO_DAT[2] */
#define SDIO_READWAITTYPE_CLK SDIO_DATACTL_RWTYPE /*!< read wait control by stopping SDIO_CLK */
/* function declarations */
/* deinitialize the SDIO */
void sdio_deinit(void);
/* configure the SDIO clock */
void sdio_clock_config(uint32_t clock_edge, uint32_t clock_bypass, uint32_t clock_powersave, uint16_t clock_division);
/* enable hardware clock control */
void sdio_hardware_clock_enable(void);
/* disable hardware clock control */
void sdio_hardware_clock_disable(void);
/* set different SDIO card bus mode */
void sdio_bus_mode_set(uint32_t bus_mode);
/* set the SDIO power state */
void sdio_power_state_set(uint32_t power_state);
/* get the SDIO power state */
uint32_t sdio_power_state_get(void);
/* enable SDIO_CLK clock output */
void sdio_clock_enable(void);
/* disable SDIO_CLK clock output */
void sdio_clock_disable(void);
/* configure the command index, argument, response type, wait type and CSM to send command */
/* configure the command and response */
void sdio_command_response_config(uint32_t cmd_index, uint32_t cmd_argument, uint32_t response_type);
/* set the command state machine wait type */
void sdio_wait_type_set(uint32_t wait_type);
/* enable the CSM(command state machine) */
void sdio_csm_enable(void);
/* disable the CSM(command state machine) */
void sdio_csm_disable(void);
/* get the last response command index */
uint8_t sdio_command_index_get(void);
/* get the response for the last received command */
uint32_t sdio_response_get(uint32_t responsex);
/* configure the data timeout, length, block size, transfer mode, direction and DSM for data transfer */
/* configure the data timeout, data length and data block size */
void sdio_data_config(uint32_t data_timeout, uint32_t data_length, uint32_t data_blocksize);
/* configure the data transfer mode and direction */
void sdio_data_transfer_config(uint32_t transfer_mode, uint32_t transfer_direction);
/* enable the DSM(data state machine) for data transfer */
void sdio_dsm_enable(void);
/* disable the DSM(data state machine) */
void sdio_dsm_disable(void);
/* write data(one word) to the transmit FIFO */
void sdio_data_write(uint32_t data);
/* read data(one word) from the receive FIFO */
uint32_t sdio_data_read(void);
/* get the number of remaining data bytes to be transferred to card */
uint32_t sdio_data_counter_get(void);
/* get the number of words remaining to be written or read from FIFO */
uint32_t sdio_fifo_counter_get(void);
/* enable the DMA request for SDIO */
void sdio_dma_enable(void);
/* disable the DMA request for SDIO */
void sdio_dma_disable(void);
/* get the flags state of SDIO */
FlagStatus sdio_flag_get(uint32_t flag);
/* clear the pending flags of SDIO */
void sdio_flag_clear(uint32_t flag);
/* enable the SDIO interrupt */
void sdio_interrupt_enable(uint32_t int_flag);
/* disable the SDIO interrupt */
void sdio_interrupt_disable(uint32_t int_flag);
/* get the interrupt flags state of SDIO */
FlagStatus sdio_interrupt_flag_get(uint32_t int_flag);
/* clear the interrupt pending flags of SDIO */
void sdio_interrupt_flag_clear(uint32_t int_flag);
/* enable the read wait mode(SD I/O only) */
void sdio_readwait_enable(void);
/* disable the read wait mode(SD I/O only) */
void sdio_readwait_disable(void);
/* enable the function that stop the read wait process(SD I/O only) */
void sdio_stop_readwait_enable(void);
/* disable the function that stop the read wait process(SD I/O only) */
void sdio_stop_readwait_disable(void);
/* set the read wait type(SD I/O only) */
void sdio_readwait_type_set(uint32_t readwait_type);
/* enable the SD I/O mode specific operation(SD I/O only) */
void sdio_operation_enable(void);
/* disable the SD I/O mode specific operation(SD I/O only) */
void sdio_operation_disable(void);
/* enable the SD I/O suspend operation(SD I/O only) */
void sdio_suspend_enable(void);
/* disable the SD I/O suspend operation(SD I/O only) */
void sdio_suspend_disable(void);
/* enable the CE-ATA command(CE-ATA only) */
void sdio_ceata_command_enable(void);
/* disable the CE-ATA command(CE-ATA only) */
void sdio_ceata_command_disable(void);
/* enable the CE-ATA interrupt(CE-ATA only) */
void sdio_ceata_interrupt_enable(void);
/* disable the CE-ATA interrupt(CE-ATA only) */
void sdio_ceata_interrupt_disable(void);
/* enable the CE-ATA command completion signal(CE-ATA only) */
void sdio_ceata_command_completion_enable(void);
/* disable the CE-ATA command completion signal(CE-ATA only) */
void sdio_ceata_command_completion_disable(void);
#endif /* GD32F30X_SDIO_H */

View File

@ -0,0 +1,328 @@
/*!
\file gd32f30x_spi.h
\brief definitions for the SPI
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_SPI_H
#define GD32F30X_SPI_H
#include "gd32f30x.h"
/* SPIx(x=0,1,2) definitions */
#define SPI0 (SPI_BASE + 0x0000F800U)
#define SPI1 SPI_BASE
#define SPI2 (SPI_BASE + 0x00000400U)
/* SPI registers definitions */
#define SPI_CTL0(spix) REG32((spix) + 0x00U) /*!< SPI control register 0 */
#define SPI_CTL1(spix) REG32((spix) + 0x04U) /*!< SPI control register 1*/
#define SPI_STAT(spix) REG32((spix) + 0x08U) /*!< SPI status register */
#define SPI_DATA(spix) REG32((spix) + 0x0CU) /*!< SPI data register */
#define SPI_CRCPOLY(spix) REG32((spix) + 0x10U) /*!< SPI CRC polynomial register */
#define SPI_RCRC(spix) REG32((spix) + 0x14U) /*!< SPI receive CRC register */
#define SPI_TCRC(spix) REG32((spix) + 0x18U) /*!< SPI transmit CRC register */
#define SPI_I2SCTL(spix) REG32((spix) + 0x1CU) /*!< SPI I2S control register */
#define SPI_I2SPSC(spix) REG32((spix) + 0x20U) /*!< SPI I2S clock prescaler register */
#define SPI_QCTL(spix) REG32((spix) + 0x80U) /*!< SPI quad mode control register(only SPI0) */
/* bits definitions */
/* SPI_CTL0 */
#define SPI_CTL0_CKPH BIT(0) /*!< clock phase selection*/
#define SPI_CTL0_CKPL BIT(1) /*!< clock polarity selection */
#define SPI_CTL0_MSTMOD BIT(2) /*!< master mode enable */
#define SPI_CTL0_PSC BITS(3,5) /*!< master clock prescaler selection */
#define SPI_CTL0_SPIEN BIT(6) /*!< SPI enable*/
#define SPI_CTL0_LF BIT(7) /*!< LSB first mode */
#define SPI_CTL0_SWNSS BIT(8) /*!< NSS pin selection in NSS software mode */
#define SPI_CTL0_SWNSSEN BIT(9) /*!< NSS software mode selection */
#define SPI_CTL0_RO BIT(10) /*!< receive only */
#define SPI_CTL0_FF16 BIT(11) /*!< data frame size */
#define SPI_CTL0_CRCNT BIT(12) /*!< CRC next transfer */
#define SPI_CTL0_CRCEN BIT(13) /*!< CRC calculation enable */
#define SPI_CTL0_BDOEN BIT(14) /*!< bidirectional transmit output enable*/
#define SPI_CTL0_BDEN BIT(15) /*!< bidirectional enable */
/* SPI_CTL1 */
#define SPI_CTL1_DMAREN BIT(0) /*!< receive buffer dma enable */
#define SPI_CTL1_DMATEN BIT(1) /*!< transmit buffer dma enable */
#define SPI_CTL1_NSSDRV BIT(2) /*!< drive NSS output */
#define SPI_CTL1_NSSP BIT(3) /*!< SPI NSS pulse mode enable */
#define SPI_CTL1_TMOD BIT(4) /*!< SPI TI mode enable */
#define SPI_CTL1_ERRIE BIT(5) /*!< errors interrupt enable */
#define SPI_CTL1_RBNEIE BIT(6) /*!< receive buffer not empty interrupt enable */
#define SPI_CTL1_TBEIE BIT(7) /*!< transmit buffer empty interrupt enable */
/* SPI_STAT */
#define SPI_STAT_RBNE BIT(0) /*!< receive buffer not empty */
#define SPI_STAT_TBE BIT(1) /*!< transmit buffer empty */
#define SPI_STAT_I2SCH BIT(2) /*!< I2S channel side */
#define SPI_STAT_TXURERR BIT(3) /*!< I2S transmission underrun error bit */
#define SPI_STAT_CRCERR BIT(4) /*!< SPI CRC error bit */
#define SPI_STAT_CONFERR BIT(5) /*!< SPI configuration error bit */
#define SPI_STAT_RXORERR BIT(6) /*!< SPI reception overrun error bit */
#define SPI_STAT_TRANS BIT(7) /*!< transmitting on-going bit */
#define SPI_STAT_FERR BIT(8) /*!< format error bit */
/* SPI_DATA */
#define SPI_DATA_DATA BITS(0,15) /*!< data transfer register */
/* SPI_CRCPOLY */
#define SPI_CRCPOLY_CPR BITS(0,15) /*!< CRC polynomial register */
/* SPI_RCRC */
#define SPI_RCRC_RCR BITS(0,15) /*!< RX CRC register */
/* SPI_TCRC */
#define SPI_TCRC_TCR BITS(0,15) /*!< RX CRC register */
/* SPI_I2SCTL */
#define SPI_I2SCTL_CHLEN BIT(0) /*!< channel length */
#define SPI_I2SCTL_DTLEN BITS(1,2) /*!< data length */
#define SPI_I2SCTL_CKPL BIT(3) /*!< idle state clock polarity */
#define SPI_I2SCTL_I2SSTD BITS(4,5) /*!< I2S standard selection */
#define SPI_I2SCTL_PCMSMOD BIT(7) /*!< PCM frame synchronization mode */
#define SPI_I2SCTL_I2SOPMOD BITS(8,9) /*!< I2S operation mode */
#define SPI_I2SCTL_I2SEN BIT(10) /*!< I2S enable */
#define SPI_I2SCTL_I2SSEL BIT(11) /*!< I2S mode selection */
/* SPI_I2SPSC */
#define SPI_I2SPSC_DIV BITS(0,7) /*!< dividing factor for the prescaler */
#define SPI_I2SPSC_OF BIT(8) /*!< odd factor for the prescaler */
#define SPI_I2SPSC_MCKOEN BIT(9) /*!< I2S MCK output enable */
/* SPI_QCTL(only for SPI0) */
#define SPI_QCTL_QMOD BIT(0) /*!< quad-SPI mode enable */
#define SPI_QCTL_QRD BIT(1) /*!< quad-SPI mode read select */
#define SPI_QCTL_IO23_DRV BIT(2) /*!< drive SPI_IO2 and SPI_IO3 enable */
/* constants definitions */
/* SPI and I2S parameter struct definitions */
typedef struct
{
uint32_t device_mode; /*!< SPI master or slave */
uint32_t trans_mode; /*!< SPI transtype */
uint32_t frame_size; /*!< SPI frame size */
uint32_t nss; /*!< SPI NSS control by handware or software */
uint32_t endian; /*!< SPI big endian or little endian */
uint32_t clock_polarity_phase; /*!< SPI clock phase and polarity */
uint32_t prescale; /*!< SPI prescale factor */
}spi_parameter_struct;
/* SPI mode definitions */
#define SPI_MASTER (SPI_CTL0_MSTMOD | SPI_CTL0_SWNSS) /*!< SPI as master */
#define SPI_SLAVE ((uint32_t)0x00000000U) /*!< SPI as slave */
/* SPI bidirectional transfer direction */
#define SPI_BIDIRECTIONAL_TRANSMIT SPI_CTL0_BDOEN /*!< SPI work in transmit-only mode */
#define SPI_BIDIRECTIONAL_RECEIVE ~SPI_CTL0_BDOEN /*!< SPI work in receive-only mode */
/* SPI transmit type */
#define SPI_TRANSMODE_FULLDUPLEX ((uint32_t)0x00000000U) /*!< SPI receive and send data at fullduplex communication */
#define SPI_TRANSMODE_RECEIVEONLY SPI_CTL0_RO /*!< SPI only receive data */
#define SPI_TRANSMODE_BDRECEIVE SPI_CTL0_BDEN /*!< bidirectional receive data */
#define SPI_TRANSMODE_BDTRANSMIT (SPI_CTL0_BDEN | SPI_CTL0_BDOEN) /*!< bidirectional transmit data*/
/* SPI frame size */
#define SPI_FRAMESIZE_16BIT SPI_CTL0_FF16 /*!< SPI frame size is 16 bits */
#define SPI_FRAMESIZE_8BIT ((uint32_t)0x00000000U) /*!< SPI frame size is 8 bits */
/* SPI NSS control mode */
#define SPI_NSS_SOFT SPI_CTL0_SWNSSEN /*!< SPI NSS control by sofrware */
#define SPI_NSS_HARD ((uint32_t)0x00000000U) /*!< SPI NSS control by hardware */
/* SPI transmit way */
#define SPI_ENDIAN_MSB ((uint32_t)0x00000000U) /*!< SPI transmit way is big endian: transmit MSB first */
#define SPI_ENDIAN_LSB SPI_CTL0_LF /*!< SPI transmit way is little endian: transmit LSB first */
/* SPI clock phase and polarity */
#define SPI_CK_PL_LOW_PH_1EDGE ((uint32_t)0x00000000U) /*!< SPI clock polarity is low level and phase is first edge */
#define SPI_CK_PL_HIGH_PH_1EDGE SPI_CTL0_CKPL /*!< SPI clock polarity is high level and phase is first edge */
#define SPI_CK_PL_LOW_PH_2EDGE SPI_CTL0_CKPH /*!< SPI clock polarity is low level and phase is second edge */
#define SPI_CK_PL_HIGH_PH_2EDGE (SPI_CTL0_CKPL | SPI_CTL0_CKPH) /*!< SPI clock polarity is high level and phase is second edge */
/* SPI clock prescale factor */
#define CTL0_PSC(regval) (BITS(3,5) & ((uint32_t)(regval) << 3))
#define SPI_PSC_2 CTL0_PSC(0) /*!< SPI clock prescale factor is 2 */
#define SPI_PSC_4 CTL0_PSC(1) /*!< SPI clock prescale factor is 4 */
#define SPI_PSC_8 CTL0_PSC(2) /*!< SPI clock prescale factor is 8 */
#define SPI_PSC_16 CTL0_PSC(3) /*!< SPI clock prescale factor is 16 */
#define SPI_PSC_32 CTL0_PSC(4) /*!< SPI clock prescale factor is 32 */
#define SPI_PSC_64 CTL0_PSC(5) /*!< SPI clock prescale factor is 64 */
#define SPI_PSC_128 CTL0_PSC(6) /*!< SPI clock prescale factor is 128 */
#define SPI_PSC_256 CTL0_PSC(7) /*!< SPI clock prescale factor is 256 */
/* I2S audio sample rate */
#define I2S_AUDIOSAMPLE_8K ((uint32_t)8000U) /*!< I2S audio sample rate is 8KHz */
#define I2S_AUDIOSAMPLE_11K ((uint32_t)11025U) /*!< I2S audio sample rate is 11KHz */
#define I2S_AUDIOSAMPLE_16K ((uint32_t)16000U) /*!< I2S audio sample rate is 16KHz */
#define I2S_AUDIOSAMPLE_22K ((uint32_t)22050U) /*!< I2S audio sample rate is 22KHz */
#define I2S_AUDIOSAMPLE_32K ((uint32_t)32000U) /*!< I2S audio sample rate is 32KHz */
#define I2S_AUDIOSAMPLE_44K ((uint32_t)44100U) /*!< I2S audio sample rate is 44KHz */
#define I2S_AUDIOSAMPLE_48K ((uint32_t)48000U) /*!< I2S audio sample rate is 48KHz */
#define I2S_AUDIOSAMPLE_96K ((uint32_t)96000U) /*!< I2S audio sample rate is 96KHz */
#define I2S_AUDIOSAMPLE_192K ((uint32_t)192000U) /*!< I2S audio sample rate is 192KHz */
/* I2S frame format */
#define I2SCTL_DTLEN(regval) (BITS(1,2) & ((uint32_t)(regval) << 1))
#define I2S_FRAMEFORMAT_DT16B_CH16B I2SCTL_DTLEN(0) /*!< I2S data length is 16 bit and channel length is 16 bit */
#define I2S_FRAMEFORMAT_DT16B_CH32B (I2SCTL_DTLEN(0) | SPI_I2SCTL_CHLEN) /*!< I2S data length is 16 bit and channel length is 32 bit */
#define I2S_FRAMEFORMAT_DT24B_CH32B (I2SCTL_DTLEN(1) | SPI_I2SCTL_CHLEN) /*!< I2S data length is 24 bit and channel length is 32 bit */
#define I2S_FRAMEFORMAT_DT32B_CH32B (I2SCTL_DTLEN(2) | SPI_I2SCTL_CHLEN) /*!< I2S data length is 32 bit and channel length is 32 bit */
/* I2S master clock output */
#define I2S_MCKOUT_DISABLE ((uint32_t)0x00000000U) /*!< I2S master clock output disable */
#define I2S_MCKOUT_ENABLE SPI_I2SPSC_MCKOEN /*!< I2S master clock output enable */
/* I2S operation mode */
#define I2SCTL_I2SOPMOD(regval) (BITS(8,9) & ((uint32_t)(regval) << 8))
#define I2S_MODE_SLAVETX I2SCTL_I2SOPMOD(0) /*!< I2S slave transmit mode */
#define I2S_MODE_SLAVERX I2SCTL_I2SOPMOD(1) /*!< I2S slave receive mode */
#define I2S_MODE_MASTERTX I2SCTL_I2SOPMOD(2) /*!< I2S master transmit mode */
#define I2S_MODE_MASTERRX I2SCTL_I2SOPMOD(3) /*!< I2S master receive mode */
/* I2S standard */
#define I2SCTL_I2SSTD(regval) (BITS(4,5) & ((uint32_t)(regval) << 4))
#define I2S_STD_PHILLIPS I2SCTL_I2SSTD(0) /*!< I2S phillips standard */
#define I2S_STD_MSB I2SCTL_I2SSTD(1) /*!< I2S MSB standard */
#define I2S_STD_LSB I2SCTL_I2SSTD(2) /*!< I2S LSB standard */
#define I2S_STD_PCMSHORT I2SCTL_I2SSTD(3) /*!< I2S PCM short standard */
#define I2S_STD_PCMLONG (I2SCTL_I2SSTD(3) | SPI_I2SCTL_PCMSMOD) /*!< I2S PCM long standard */
/* I2S clock polarity */
#define I2S_CKPL_LOW ((uint32_t)0x00000000U) /*!< I2S clock polarity low level */
#define I2S_CKPL_HIGH SPI_I2SCTL_CKPL /*!< I2S clock polarity high level */
/* SPI DMA constants definitions */
#define SPI_DMA_TRANSMIT ((uint8_t)0x00U) /*!< SPI transmit data use DMA */
#define SPI_DMA_RECEIVE ((uint8_t)0x01U) /*!< SPI receive data use DMA */
/* SPI CRC constants definitions */
#define SPI_CRC_TX ((uint8_t)0x00U) /*!< SPI transmit CRC value */
#define SPI_CRC_RX ((uint8_t)0x01U) /*!< SPI receive CRC value */
/* SPI/I2S interrupt enable/disable constants definitions */
#define SPI_I2S_INT_TBE ((uint8_t)0x00U) /*!< transmit buffer empty interrupt */
#define SPI_I2S_INT_RBNE ((uint8_t)0x01U) /*!< receive buffer not empty interrupt */
#define SPI_I2S_INT_ERR ((uint8_t)0x02U) /*!< error interrupt */
/* SPI/I2S interrupt flag constants definitions */
#define SPI_I2S_INT_FLAG_TBE ((uint8_t)0x00U) /*!< transmit buffer empty interrupt flag */
#define SPI_I2S_INT_FLAG_RBNE ((uint8_t)0x01U) /*!< receive buffer not empty interrupt flag */
#define SPI_I2S_INT_FLAG_RXORERR ((uint8_t)0x02U) /*!< overrun interrupt flag */
#define SPI_INT_FLAG_CONFERR ((uint8_t)0x03U) /*!< config error interrupt flag */
#define SPI_INT_FLAG_CRCERR ((uint8_t)0x04U) /*!< CRC error interrupt flag */
#define I2S_INT_FLAG_TXURERR ((uint8_t)0x05U) /*!< underrun error interrupt flag */
#define SPI_I2S_INT_FLAG_FERR ((uint8_t)0x06U) /*!< format error interrupt flag */
/* SPI/I2S flag definitions */
#define SPI_FLAG_RBNE SPI_STAT_RBNE /*!< receive buffer not empty flag */
#define SPI_FLAG_TBE SPI_STAT_TBE /*!< transmit buffer empty flag */
#define SPI_FLAG_CRCERR SPI_STAT_CRCERR /*!< CRC error flag */
#define SPI_FLAG_CONFERR SPI_STAT_CONFERR /*!< mode config error flag */
#define SPI_FLAG_RXORERR SPI_STAT_RXORERR /*!< receive overrun error flag */
#define SPI_FLAG_TRANS SPI_STAT_TRANS /*!< transmit on-going flag */
#define SPI_FLAG_FERR SPI_STAT_FERR /*!< format error interrupt flag */
#define I2S_FLAG_RBNE SPI_STAT_RBNE /*!< receive buffer not empty flag */
#define I2S_FLAG_TBE SPI_STAT_TBE /*!< transmit buffer empty flag */
#define I2S_FLAG_CH SPI_STAT_I2SCH /*!< channel side flag */
#define I2S_FLAG_TXURERR SPI_STAT_TXURERR /*!< underrun error flag */
#define I2S_FLAG_RXORERR SPI_STAT_RXORERR /*!< overrun error flag */
#define I2S_FLAG_TRANS SPI_STAT_TRANS /*!< transmit on-going flag */
#define I2S_FLAG_FERR SPI_STAT_FERR /*!< format error interrupt flag */
/* function declarations */
/* reset SPI and I2S */
void spi_i2s_deinit(uint32_t spi_periph);
/* initialize SPI parameter */
void spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct);
/* enable SPI */
void spi_enable(uint32_t spi_periph);
/* disable SPI */
void spi_disable(uint32_t spi_periph);
/* initialize I2S parameter */
void i2s_init(uint32_t spi_periph, uint32_t mode, uint32_t standard, uint32_t ckpl);
/* configure I2S prescaler */
void i2s_psc_config(uint32_t spi_periph, uint32_t audiosample, uint32_t frameformat, uint32_t mckout);
/* enable I2S */
void i2s_enable(uint32_t spi_periph);
/* disable I2S */
void i2s_disable(uint32_t spi_periph);
/* enable SPI NSS output */
void spi_nss_output_enable(uint32_t spi_periph);
/* disable SPI NSS output */
void spi_nss_output_disable(uint32_t spi_periph);
/* SPI NSS pin high level in software mode */
void spi_nss_internal_high(uint32_t spi_periph);
/* SPI NSS pin low level in software mode */
void spi_nss_internal_low(uint32_t spi_periph);
/* enable SPI DMA */
void spi_dma_enable(uint32_t spi_periph, uint8_t dma);
/* disable SPI DMA */
void spi_dma_disable(uint32_t spi_periph, uint8_t dma);
/* configure SPI/I2S data frame format */
void spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format);
/* SPI transmit data */
void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data);
/* SPI receive data */
uint16_t spi_i2s_data_receive(uint32_t spi_periph);
/* configure SPI bidirectional transfer direction */
void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction);
/* enable SPI and I2S interrupt */
void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t interrupt);
/* disable SPI and I2S interrupt */
void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t interrupt);
/* get SPI and I2S interrupt status */
FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t interrupt);
/* get SPI and I2S flag status */
FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t flag);
/* clear SPI CRC error flag status */
void spi_crc_error_clear(uint32_t spi_periph);
/* set SPI CRC polynomial */
void spi_crc_polynomial_set(uint32_t spi_periph, uint16_t crc_poly);
/* get SPI CRC polynomial */
uint16_t spi_crc_polynomial_get(uint32_t spi_periph);
/* turn on SPI CRC function */
void spi_crc_on(uint32_t spi_periph);
/* turn off SPI CRC function */
void spi_crc_off(uint32_t spi_periph);
/* SPI next data is CRC value */
void spi_crc_next(uint32_t spi_periph);
/* get SPI CRC send value or receive value */
uint16_t spi_crc_get(uint32_t spi_periph, uint8_t crc);
/* enable SPI TI mode */
void spi_ti_mode_enable(uint32_t spi_periph);
/* disable SPI TI mode */
void spi_ti_mode_disable(uint32_t spi_periph);
/* enable SPI NSS pulse mode */
void spi_nssp_mode_enable(uint32_t spi_periph);
/* disable SPI NSS pulse mode */
void spi_nssp_mode_disable(uint32_t spi_periph);
/* enable quad wire SPI */
void qspi_enable(uint32_t spi_periph);
/* disable quad wire SPI */
void qspi_disable(uint32_t spi_periph);
/* enable quad wire SPI write */
void qspi_write_enable(uint32_t spi_periph);
/* enable quad wire SPI read */
void qspi_read_enable(uint32_t spi_periph);
/* enable quad wire SPI_IO2 and SPI_IO3 pin output */
void qspi_io23_output_enable(uint32_t spi_periph);
/* disable quad wire SPI_IO2 and SPI_IO3 pin output */
void qspi_io23_output_disable(uint32_t spi_periph);
#endif /* GD32F30X_SPI_H */

View File

@ -0,0 +1,716 @@
/*!
\file gd32f30x_timer.h
\brief definitions for the TIMER
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.2, firmware for GD32F30x
*/
#ifndef GD32F30X_TIMER_H
#define GD32F30X_TIMER_H
#include "gd32f30x.h"
/* TIMERx(x=0..13) definitions */
#define TIMER0 (TIMER_BASE + 0x00012C00U)
#define TIMER1 (TIMER_BASE + 0x00000000U)
#define TIMER2 (TIMER_BASE + 0x00000400U)
#define TIMER3 (TIMER_BASE + 0x00000800U)
#define TIMER4 (TIMER_BASE + 0x00000C00U)
#define TIMER5 (TIMER_BASE + 0x00001000U)
#define TIMER6 (TIMER_BASE + 0x00001400U)
#define TIMER7 (TIMER_BASE + 0x00013400U)
#define TIMER8 (TIMER_BASE + 0x00014C00U)
#define TIMER9 (TIMER_BASE + 0x00015000U)
#define TIMER10 (TIMER_BASE + 0x00015400U)
#define TIMER11 (TIMER_BASE + 0x00001800U)
#define TIMER12 (TIMER_BASE + 0x00001C00U)
#define TIMER13 (TIMER_BASE + 0x00002000U)
/* registers definitions */
#define TIMER_CTL0(timerx) REG32((timerx) + 0x00U) /*!< TIMER control register 0 */
#define TIMER_CTL1(timerx) REG32((timerx) + 0x04U) /*!< TIMER control register 1 */
#define TIMER_SMCFG(timerx) REG32((timerx) + 0x08U) /*!< TIMER slave mode configuration register */
#define TIMER_DMAINTEN(timerx) REG32((timerx) + 0x0CU) /*!< TIMER DMA and interrupt enable register */
#define TIMER_INTF(timerx) REG32((timerx) + 0x10U) /*!< TIMER interrupt flag register */
#define TIMER_SWEVG(timerx) REG32((timerx) + 0x14U) /*!< TIMER software event generation register */
#define TIMER_CHCTL0(timerx) REG32((timerx) + 0x18U) /*!< TIMER channel control register 0 */
#define TIMER_CHCTL1(timerx) REG32((timerx) + 0x1CU) /*!< TIMER channel control register 1 */
#define TIMER_CHCTL2(timerx) REG32((timerx) + 0x20U) /*!< TIMER channel control register 2 */
#define TIMER_CNT(timerx) REG32((timerx) + 0x24U) /*!< TIMER counter register */
#define TIMER_PSC(timerx) REG32((timerx) + 0x28U) /*!< TIMER prescaler register */
#define TIMER_CAR(timerx) REG32((timerx) + 0x2CU) /*!< TIMER counter auto reload register */
#define TIMER_CREP(timerx) REG32((timerx) + 0x30U) /*!< TIMER counter repetition register */
#define TIMER_CH0CV(timerx) REG32((timerx) + 0x34U) /*!< TIMER channel 0 capture/compare value register */
#define TIMER_CH1CV(timerx) REG32((timerx) + 0x38U) /*!< TIMER channel 1 capture/compare value register */
#define TIMER_CH2CV(timerx) REG32((timerx) + 0x3CU) /*!< TIMER channel 2 capture/compare value register */
#define TIMER_CH3CV(timerx) REG32((timerx) + 0x40U) /*!< TIMER channel 3 capture/compare value register */
#define TIMER_CCHP(timerx) REG32((timerx) + 0x44U) /*!< TIMER complementary channel protection register */
#define TIMER_DMACFG(timerx) REG32((timerx) + 0x48U) /*!< TIMER DMA configuration register */
#define TIMER_DMATB(timerx) REG32((timerx) + 0x4CU) /*!< TIMER DMA transfer buffer register */
#define TIMER_IRMP(timerx) REG32((timerx) + 0x50U) /*!< TIMER channel input remap register */
#define TIMER_CFG(timerx) REG32((timerx) + 0xFCU) /*!< TIMER configuration register */
/* bits definitions */
/* TIMER_CTL0 */
#define TIMER_CTL0_CEN BIT(0) /*!< TIMER counter enable */
#define TIMER_CTL0_UPDIS BIT(1) /*!< update disable */
#define TIMER_CTL0_UPS BIT(2) /*!< update source */
#define TIMER_CTL0_SPM BIT(3) /*!< single pulse mode */
#define TIMER_CTL0_DIR BIT(4) /*!< timer counter direction */
#define TIMER_CTL0_CAM BITS(5,6) /*!< center-aligned mode selection */
#define TIMER_CTL0_ARSE BIT(7) /*!< auto-reload shadow enable */
#define TIMER_CTL0_CKDIV BITS(8,9) /*!< clock division */
/* TIMER_CTL1 */
#define TIMER_CTL1_CCSE BIT(0) /*!< commutation control shadow enable */
#define TIMER_CTL1_CCUC BIT(2) /*!< commutation control shadow register update control */
#define TIMER_CTL1_DMAS BIT(3) /*!< DMA request source selection */
#define TIMER_CTL1_MMC BITS(4,6) /*!< master mode control */
#define TIMER_CTL1_TI0S BIT(7) /*!< channel 0 trigger input selection(hall mode selection) */
#define TIMER_CTL1_ISO0 BIT(8) /*!< idle state of channel 0 output */
#define TIMER_CTL1_ISO0N BIT(9) /*!< idle state of channel 0 complementary output */
#define TIMER_CTL1_ISO1 BIT(10) /*!< idle state of channel 1 output */
#define TIMER_CTL1_ISO1N BIT(11) /*!< idle state of channel 1 complementary output */
#define TIMER_CTL1_ISO2 BIT(12) /*!< idle state of channel 2 output */
#define TIMER_CTL1_ISO2N BIT(13) /*!< idle state of channel 2 complementary output */
#define TIMER_CTL1_ISO3 BIT(14) /*!< idle state of channel 3 output */
/* TIMER_SMCFG */
#define TIMER_SMCFG_SMC BITS(0,2) /*!< slave mode control */
#define TIMER_SMCFG_TRGS BITS(4,6) /*!< trigger selection */
#define TIMER_SMCFG_MSM BIT(7) /*!< master-slave mode */
#define TIMER_SMCFG_ETFC BITS(8,11) /*!< external trigger filter control */
#define TIMER_SMCFG_ETPSC BITS(12,13) /*!< external trigger prescaler */
#define TIMER_SMCFG_SMC1 BIT(14) /*!< part of SMC for enable external clock mode 1 */
#define TIMER_SMCFG_ETP BIT(15) /*!< external trigger polarity */
/* TIMER_DMAINTEN */
#define TIMER_DMAINTEN_UPIE BIT(0) /*!< update interrupt enable */
#define TIMER_DMAINTEN_CH0IE BIT(1) /*!< channel 0 interrupt enable */
#define TIMER_DMAINTEN_CH1IE BIT(2) /*!< channel 1 interrupt enable */
#define TIMER_DMAINTEN_CH2IE BIT(3) /*!< channel 2 interrupt enable */
#define TIMER_DMAINTEN_CH3IE BIT(4) /*!< channel 3 interrupt enable */
#define TIMER_DMAINTEN_CMTIE BIT(5) /*!< commutation DMA request enable */
#define TIMER_DMAINTEN_TRGIE BIT(6) /*!< trigger interrupt enable */
#define TIMER_DMAINTEN_BRKIE BIT(7) /*!< break interrupt enable */
#define TIMER_DMAINTEN_UPDEN BIT(8) /*!< update DMA request enable */
#define TIMER_DMAINTEN_CH0DEN BIT(9) /*!< channel 0 DMA request enable */
#define TIMER_DMAINTEN_CH1DEN BIT(10) /*!< channel 1 DMA request enable */
#define TIMER_DMAINTEN_CH2DEN BIT(11) /*!< channel 2 DMA request enable */
#define TIMER_DMAINTEN_CH3DEN BIT(12) /*!< channel 3 DMA request enable */
#define TIMER_DMAINTEN_CMTDEN BIT(13) /*!< channel control update DMA request enable */
#define TIMER_DMAINTEN_TRGDEN BIT(14) /*!< trigger DMA request enable */
/* TIMER_INTF */
#define TIMER_INTF_UPIF BIT(0) /*!< update interrupt flag */
#define TIMER_INTF_CH0IF BIT(1) /*!< channel 0 interrupt flag */
#define TIMER_INTF_CH1IF BIT(2) /*!< channel 1 interrupt flag */
#define TIMER_INTF_CH2IF BIT(3) /*!< channel 2 interrupt flag */
#define TIMER_INTF_CH3IF BIT(4) /*!< channel 3 interrupt flag */
#define TIMER_INTF_CMTIF BIT(5) /*!< channel commutation interrupt flag */
#define TIMER_INTF_TRGIF BIT(6) /*!< trigger interrupt flag */
#define TIMER_INTF_BRKIF BIT(7) /*!< break interrupt flag */
#define TIMER_INTF_CH0OF BIT(9) /*!< channel 0 overcapture flag */
#define TIMER_INTF_CH1OF BIT(10) /*!< channel 1 overcapture flag */
#define TIMER_INTF_CH2OF BIT(11) /*!< channel 2 overcapture flag */
#define TIMER_INTF_CH3OF BIT(12) /*!< channel 3 overcapture flag */
/* TIMER_SWEVG */
#define TIMER_SWEVG_UPG BIT(0) /*!< update event generate */
#define TIMER_SWEVG_CH0G BIT(1) /*!< channel 0 capture or compare event generation */
#define TIMER_SWEVG_CH1G BIT(2) /*!< channel 1 capture or compare event generation */
#define TIMER_SWEVG_CH2G BIT(3) /*!< channel 2 capture or compare event generation */
#define TIMER_SWEVG_CH3G BIT(4) /*!< channel 3 capture or compare event generation */
#define TIMER_SWEVG_CMTG BIT(5) /*!< channel commutation event generation */
#define TIMER_SWEVG_TRGG BIT(6) /*!< trigger event generation */
#define TIMER_SWEVG_BRKG BIT(7) /*!< break event generation */
/* TIMER_CHCTL0 */
/* output compare mode */
#define TIMER_CHCTL0_CH0MS BITS(0,1) /*!< channel 0 mode selection */
#define TIMER_CHCTL0_CH0COMFEN BIT(2) /*!< channel 0 output compare fast enable */
#define TIMER_CHCTL0_CH0COMSEN BIT(3) /*!< channel 0 output compare shadow enable */
#define TIMER_CHCTL0_CH0COMCTL BITS(4,6) /*!< channel 0 output compare mode */
#define TIMER_CHCTL0_CH0COMCEN BIT(7) /*!< channel 0 output compare clear enable */
#define TIMER_CHCTL0_CH1MS BITS(8,9) /*!< channel 1 mode selection */
#define TIMER_CHCTL0_CH1COMFEN BIT(10) /*!< channel 1 output compare fast enable */
#define TIMER_CHCTL0_CH1COMSEN BIT(11) /*!< channel 1 output compare shadow enable */
#define TIMER_CHCTL0_CH1COMCTL BITS(12,14) /*!< channel 1 output compare mode */
#define TIMER_CHCTL0_CH1COMCEN BIT(15) /*!< channel 1 output compare clear enable */
/* input capture mode */
#define TIMER_CHCTL0_CH0CAPPSC BITS(2,3) /*!< channel 0 input capture prescaler */
#define TIMER_CHCTL0_CH0CAPFLT BITS(4,7) /*!< channel 0 input capture filter control */
#define TIMER_CHCTL0_CH1CAPPSC BITS(10,11) /*!< channel 1 input capture prescaler */
#define TIMER_CHCTL0_CH1CAPFLT BITS(12,15) /*!< channel 1 input capture filter control */
/* TIMER_CHCTL1 */
/* output compare mode */
#define TIMER_CHCTL1_CH2MS BITS(0,1) /*!< channel 2 mode selection */
#define TIMER_CHCTL1_CH2COMFEN BIT(2) /*!< channel 2 output compare fast enable */
#define TIMER_CHCTL1_CH2COMSEN BIT(3) /*!< channel 2 output compare shadow enable */
#define TIMER_CHCTL1_CH2COMCTL BITS(4,6) /*!< channel 2 output compare mode */
#define TIMER_CHCTL1_CH2COMCEN BIT(7) /*!< channel 2 output compare clear enable */
#define TIMER_CHCTL1_CH3MS BITS(8,9) /*!< channel 3 mode selection */
#define TIMER_CHCTL1_CH3COMFEN BIT(10) /*!< channel 3 output compare fast enable */
#define TIMER_CHCTL1_CH3COMSEN BIT(11) /*!< channel 3 output compare shadow enable */
#define TIMER_CHCTL1_CH3COMCTL BITS(12,14) /*!< channel 3 output compare mode */
#define TIMER_CHCTL1_CH3COMCEN BIT(15) /*!< channel 3 output compare clear enable */
/* input capture mode */
#define TIMER_CHCTL1_CH2CAPPSC BITS(2,3) /*!< channel 2 input capture prescaler */
#define TIMER_CHCTL1_CH2CAPFLT BITS(4,7) /*!< channel 2 input capture filter control */
#define TIMER_CHCTL1_CH3CAPPSC BITS(10,11) /*!< channel 3 input capture prescaler */
#define TIMER_CHCTL1_CH3CAPFLT BITS(12,15) /*!< channel 3 input capture filter control */
/* TIMER_CHCTL2 */
#define TIMER_CHCTL2_CH0EN BIT(0) /*!< channel 0 enable */
#define TIMER_CHCTL2_CH0P BIT(1) /*!< channel 0 polarity */
#define TIMER_CHCTL2_CH0NEN BIT(2) /*!< channel 0 complementary output enable */
#define TIMER_CHCTL2_CH0NP BIT(3) /*!< channel 0 complementary output polarity */
#define TIMER_CHCTL2_CH1EN BIT(4) /*!< channel 1 enable */
#define TIMER_CHCTL2_CH1P BIT(5) /*!< channel 1 polarity */
#define TIMER_CHCTL2_CH1NEN BIT(6) /*!< channel 1 complementary output enable */
#define TIMER_CHCTL2_CH1NP BIT(7) /*!< channel 1 complementary output polarity */
#define TIMER_CHCTL2_CH2EN BIT(8) /*!< channel 2 enable */
#define TIMER_CHCTL2_CH2P BIT(9) /*!< channel 2 polarity */
#define TIMER_CHCTL2_CH2NEN BIT(10) /*!< channel 2 complementary output enable */
#define TIMER_CHCTL2_CH2NP BIT(11) /*!< channel 2 complementary output polarity */
#define TIMER_CHCTL2_CH3EN BIT(12) /*!< channel 3 enable */
#define TIMER_CHCTL2_CH3P BIT(13) /*!< channel 3 polarity */
/* TIMER_CNT */
#define TIMER_CNT_CNT BITS(0,15) /*!< 16 bit timer counter */
/* TIMER_PSC */
#define TIMER_PSC_PSC BITS(0,15) /*!< prescaler value of the counter clock */
/* TIMER_CAR */
#define TIMER_CAR_CARL BITS(0,15) /*!< 16 bit counter auto reload value */
/* TIMER_CREP */
#define TIMER_CREP_CREP BITS(0,7) /*!< counter repetition value */
/* TIMER_CH0CV */
#define TIMER_CH0CV_CH0VAL BITS(0,15) /*!< 16 bit capture/compare value of channel 0 */
/* TIMER_CH1CV */
#define TIMER_CH1CV_CH1VAL BITS(0,15) /*!< 16 bit capture/compare value of channel 1 */
/* TIMER_CH2CV */
#define TIMER_CH2CV_CH2VAL BITS(0,15) /*!< 16 bit capture/compare value of channel 2 */
/* TIMER_CH3CV */
#define TIMER_CH3CV_CH3VAL BITS(0,15) /*!< 16 bit capture/compare value of channel 3 */
/* TIMER_CCHP */
#define TIMER_CCHP_DTCFG BITS(0,7) /*!< dead time configure */
#define TIMER_CCHP_PROT BITS(8,9) /*!< complementary register protect control */
#define TIMER_CCHP_IOS BIT(10) /*!< idle mode off-state configure */
#define TIMER_CCHP_ROS BIT(11) /*!< run mode off-state configure */
#define TIMER_CCHP_BRKEN BIT(12) /*!< break enable */
#define TIMER_CCHP_BRKP BIT(13) /*!< break polarity */
#define TIMER_CCHP_OAEN BIT(14) /*!< output automatic enable */
#define TIMER_CCHP_POEN BIT(15) /*!< primary output enable */
/* TIMER_DMACFG */
#define TIMER_DMACFG_DMATA BITS(0,4) /*!< DMA transfer access start address */
#define TIMER_DMACFG_DMATC BITS(8,12) /*!< DMA transfer count */
/* TIMER_DMATB */
#define TIMER_DMATB_DMATB BITS(0,15) /*!< DMA transfer buffer address */
/* TIMER_IRMP */
#define TIMER10_IRMP_ITI1_RMP BITS(0,1) /*!< TIMER10 internal trigger input 1 remap */
/* TIMER_CFG */
#define TIMER_CFG_OUTSEL BIT(0) /*!< the output value selection */
#define TIMER_CFG_CHVSEL BIT(1) /*!< write CHxVAL register selection */
/* constants definitions */
/* TIMER init parameter struct definitions*/
typedef struct
{
uint16_t prescaler; /*!< prescaler value */
uint16_t alignedmode; /*!< aligned mode */
uint16_t counterdirection; /*!< counter direction */
uint32_t period; /*!< period value */
uint16_t clockdivision; /*!< clock division value */
uint8_t repetitioncounter; /*!< the counter repetition value */
}timer_parameter_struct;
/* break parameter struct definitions*/
typedef struct
{
uint16_t runoffstate; /*!< run mode off-state */
uint32_t ideloffstate; /*!< idle mode off-state */
uint16_t deadtime; /*!< dead time */
uint16_t breakpolarity; /*!< break polarity */
uint16_t outputautostate; /*!< output automatic enable */
uint16_t protectmode; /*!< complementary register protect control */
uint16_t breakstate; /*!< break enable */
}timer_break_parameter_struct;
/* channel output parameter struct definitions */
typedef struct
{
uint32_t outputstate; /*!< channel output state */
uint16_t outputnstate; /*!< channel complementary output state */
uint16_t ocpolarity; /*!< channel output polarity */
uint16_t ocnpolarity; /*!< channel complementary output polarity */
uint16_t ocidlestate; /*!< idle state of channel output */
uint16_t ocnidlestate; /*!< idle state of channel complementary output */
}timer_oc_parameter_struct;
/* channel input parameter struct definitions */
typedef struct
{
uint16_t icpolarity; /*!< channel input polarity */
uint16_t icselection; /*!< channel input mode selection */
uint16_t icprescaler; /*!< channel input capture prescaler */
uint16_t icfilter; /*!< channel input capture filter control */
}timer_ic_parameter_struct;
/* TIMER interrupt enable or disable */
#define TIMER_INT_UP ((uint32_t)0x00000001U) /*!< update interrupt */
#define TIMER_INT_CH0 ((uint32_t)0x00000002U) /*!< channel 0 interrupt */
#define TIMER_INT_CH1 ((uint32_t)0x00000004U) /*!< channel 1 interrupt */
#define TIMER_INT_CH2 ((uint32_t)0x00000008U) /*!< channel 2 interrupt */
#define TIMER_INT_CH3 ((uint32_t)0x00000010U) /*!< channel 3 interrupt */
#define TIMER_INT_CMT ((uint32_t)0x00000020U) /*!< channel commutation interrupt flag */
#define TIMER_INT_TRG ((uint32_t)0x00000040U) /*!< trigger interrupt */
#define TIMER_INT_BRK ((uint32_t)0x00000080U) /*!< break interrupt */
/* TIMER interrupt flag */
#define TIMER_INT_FLAG_UP TIMER_INT_UP /*!< update interrupt */
#define TIMER_INT_FLAG_CH0 TIMER_INT_CH0 /*!< channel 0 interrupt */
#define TIMER_INT_FLAG_CH1 TIMER_INT_CH1 /*!< channel 1 interrupt */
#define TIMER_INT_FLAG_CH2 TIMER_INT_CH2 /*!< channel 2 interrupt */
#define TIMER_INT_FLAG_CH3 TIMER_INT_CH3 /*!< channel 3 interrupt */
#define TIMER_INT_FLAG_CMT TIMER_INT_CMT /*!< channel commutation interrupt flag */
#define TIMER_INT_FLAG_TRG TIMER_INT_TRG /*!< trigger interrupt */
#define TIMER_INT_FLAG_BRK TIMER_INT_BRK
/* TIMER flag */
#define TIMER_FLAG_UP ((uint32_t)0x00000001U) /*!< update flag */
#define TIMER_FLAG_CH0 ((uint32_t)0x00000002U) /*!< channel 0 flag */
#define TIMER_FLAG_CH1 ((uint32_t)0x00000004U) /*!< channel 1 flag */
#define TIMER_FLAG_CH2 ((uint32_t)0x00000008U) /*!< channel 2 flag */
#define TIMER_FLAG_CH3 ((uint32_t)0x00000010U) /*!< channel 3 flag */
#define TIMER_FLAG_CMT ((uint32_t)0x00000020U) /*!< channel control update flag */
#define TIMER_FLAG_TRG ((uint32_t)0x00000040U) /*!< trigger flag */
#define TIMER_FLAG_BRK ((uint32_t)0x00000080U) /*!< break flag */
#define TIMER_FLAG_CH0O ((uint32_t)0x00000200U) /*!< channel 0 overcapture flag */
#define TIMER_FLAG_CH1O ((uint32_t)0x00000400U) /*!< channel 1 overcapture flag */
#define TIMER_FLAG_CH2O ((uint32_t)0x00000800U) /*!< channel 2 overcapture flag */
#define TIMER_FLAG_CH3O ((uint32_t)0x00001000U) /*!< channel 3 overcapture flag */
/* TIMER DMA source enable */
#define TIMER_DMA_UPD ((uint16_t)0x0100U) /*!< update DMA enable */
#define TIMER_DMA_CH0D ((uint16_t)0x0200U) /*!< channel 0 DMA enable */
#define TIMER_DMA_CH1D ((uint16_t)0x0400U) /*!< channel 1 DMA enable */
#define TIMER_DMA_CH2D ((uint16_t)0x0800U) /*!< channel 2 DMA enable */
#define TIMER_DMA_CH3D ((uint16_t)0x1000U) /*!< channel 3 DMA enable */
#define TIMER_DMA_CMTD ((uint16_t)0x2000U) /*!< commutation DMA request enable */
#define TIMER_DMA_TRGD ((uint16_t)0x4000U) /*!< trigger DMA enable */
/* channel DMA request source selection */
#define TIMER_DMAREQUEST_UPDATEEVENT ((uint8_t)0x00U) /*!< DMA request of channel y is sent when update event occurs */
#define TIMER_DMAREQUEST_CHANNELEVENT ((uint8_t)0x01U) /*!< DMA request of channel y is sent when channel y event occurs */
/* DMA access base address */
#define DMACFG_DMATA(regval) (BITS(0, 4) & ((uint32_t)(regval) << 0U))
#define TIMER_DMACFG_DMATA_CTL0 DMACFG_DMATA(0) /*!< DMA transfer address is TIMER_CTL0 */
#define TIMER_DMACFG_DMATA_CTL1 DMACFG_DMATA(1) /*!< DMA transfer address is TIMER_CTL1 */
#define TIMER_DMACFG_DMATA_SMCFG DMACFG_DMATA(2) /*!< DMA transfer address is TIMER_SMCFG */
#define TIMER_DMACFG_DMATA_DMAINTEN DMACFG_DMATA(3) /*!< DMA transfer address is TIMER_DMAINTEN */
#define TIMER_DMACFG_DMATA_INTF DMACFG_DMATA(4) /*!< DMA transfer address is TIMER_INTF */
#define TIMER_DMACFG_DMATA_SWEVG DMACFG_DMATA(5) /*!< DMA transfer address is TIMER_SWEVG */
#define TIMER_DMACFG_DMATA_CHCTL0 DMACFG_DMATA(6) /*!< DMA transfer address is TIMER_CHCTL0 */
#define TIMER_DMACFG_DMATA_CHCTL1 DMACFG_DMATA(7) /*!< DMA transfer address is TIMER_CHCTL1 */
#define TIMER_DMACFG_DMATA_CHCTL2 DMACFG_DMATA(8) /*!< DMA transfer address is TIMER_CHCTL2 */
#define TIMER_DMACFG_DMATA_CNT DMACFG_DMATA(9) /*!< DMA transfer address is TIMER_CNT */
#define TIMER_DMACFG_DMATA_PSC DMACFG_DMATA(10) /*!< DMA transfer address is TIMER_PSC */
#define TIMER_DMACFG_DMATA_CAR DMACFG_DMATA(11) /*!< DMA transfer address is TIMER_CAR */
#define TIMER_DMACFG_DMATA_CREP DMACFG_DMATA(12) /*!< DMA transfer address is TIMER_CREP */
#define TIMER_DMACFG_DMATA_CH0CV DMACFG_DMATA(13) /*!< DMA transfer address is TIMER_CH0CV */
#define TIMER_DMACFG_DMATA_CH1CV DMACFG_DMATA(14) /*!< DMA transfer address is TIMER_CH1CV */
#define TIMER_DMACFG_DMATA_CH2CV DMACFG_DMATA(15) /*!< DMA transfer address is TIMER_CH2CV */
#define TIMER_DMACFG_DMATA_CH3CV DMACFG_DMATA(16) /*!< DMA transfer address is TIMER_CH3CV */
#define TIMER_DMACFG_DMATA_CCHP DMACFG_DMATA(17) /*!< DMA transfer address is TIMER_CCHP */
#define TIMER_DMACFG_DMATA_DMACFG DMACFG_DMATA(18) /*!< DMA transfer address is TIMER_DMACFG */
#define TIMER_DMACFG_DMATA_DMATB DMACFG_DMATA(19) /*!< DMA transfer address is TIMER_DMATB */
/* DMA access burst length */
#define DMACFG_DMATC(regval) (BITS(8, 12) & ((uint32_t)(regval) << 8U))
#define TIMER_DMACFG_DMATC_1TRANSFER DMACFG_DMATC(0) /*!< DMA transfer 1 time */
#define TIMER_DMACFG_DMATC_2TRANSFER DMACFG_DMATC(1) /*!< DMA transfer 2 times */
#define TIMER_DMACFG_DMATC_3TRANSFER DMACFG_DMATC(2) /*!< DMA transfer 3 times */
#define TIMER_DMACFG_DMATC_4TRANSFER DMACFG_DMATC(3) /*!< DMA transfer 4 times */
#define TIMER_DMACFG_DMATC_5TRANSFER DMACFG_DMATC(4) /*!< DMA transfer 5 times */
#define TIMER_DMACFG_DMATC_6TRANSFER DMACFG_DMATC(5) /*!< DMA transfer 6 times */
#define TIMER_DMACFG_DMATC_7TRANSFER DMACFG_DMATC(6) /*!< DMA transfer 7 times */
#define TIMER_DMACFG_DMATC_8TRANSFER DMACFG_DMATC(7) /*!< DMA transfer 8 times */
#define TIMER_DMACFG_DMATC_9TRANSFER DMACFG_DMATC(8) /*!< DMA transfer 9 times */
#define TIMER_DMACFG_DMATC_10TRANSFER DMACFG_DMATC(9) /*!< DMA transfer 10 times */
#define TIMER_DMACFG_DMATC_11TRANSFER DMACFG_DMATC(10) /*!< DMA transfer 11 times */
#define TIMER_DMACFG_DMATC_12TRANSFER DMACFG_DMATC(11) /*!< DMA transfer 12 times */
#define TIMER_DMACFG_DMATC_13TRANSFER DMACFG_DMATC(12) /*!< DMA transfer 13 times */
#define TIMER_DMACFG_DMATC_14TRANSFER DMACFG_DMATC(13) /*!< DMA transfer 14 times */
#define TIMER_DMACFG_DMATC_15TRANSFER DMACFG_DMATC(14) /*!< DMA transfer 15 times */
#define TIMER_DMACFG_DMATC_16TRANSFER DMACFG_DMATC(15) /*!< DMA transfer 16 times */
#define TIMER_DMACFG_DMATC_17TRANSFER DMACFG_DMATC(16) /*!< DMA transfer 17 times */
#define TIMER_DMACFG_DMATC_18TRANSFER DMACFG_DMATC(17) /*!< DMA transfer 18 times */
/* TIMER software event generation source */
#define TIMER_EVENT_SRC_UPG ((uint16_t)0x0001U) /*!< update event generation */
#define TIMER_EVENT_SRC_CH0G ((uint16_t)0x0002U) /*!< channel 0 capture or compare event generation */
#define TIMER_EVENT_SRC_CH1G ((uint16_t)0x0004U) /*!< channel 1 capture or compare event generation */
#define TIMER_EVENT_SRC_CH2G ((uint16_t)0x0008U) /*!< channel 2 capture or compare event generation */
#define TIMER_EVENT_SRC_CH3G ((uint16_t)0x0010U) /*!< channel 3 capture or compare event generation */
#define TIMER_EVENT_SRC_CMTG ((uint16_t)0x0020U) /*!< channel commutation event generation */
#define TIMER_EVENT_SRC_TRGG ((uint16_t)0x0040U) /*!< trigger event generation */
#define TIMER_EVENT_SRC_BRKG ((uint16_t)0x0080U) /*!< break event generation */
/* center-aligned mode selection */
#define CTL0_CAM(regval) ((uint16_t)(BITS(5, 6) & ((uint32_t)(regval) << 5U)))
#define TIMER_COUNTER_EDGE CTL0_CAM(0) /*!< edge-aligned mode */
#define TIMER_COUNTER_CENTER_DOWN CTL0_CAM(1) /*!< center-aligned and counting down assert mode */
#define TIMER_COUNTER_CENTER_UP CTL0_CAM(2) /*!< center-aligned and counting up assert mode */
#define TIMER_COUNTER_CENTER_BOTH CTL0_CAM(3) /*!< center-aligned and counting up/down assert mode */
/* TIMER prescaler reload mode */
#define TIMER_PSC_RELOAD_NOW ((uint8_t)0x00U) /*!< the prescaler is loaded right now */
#define TIMER_PSC_RELOAD_UPDATE ((uint8_t)0x01U) /*!< the prescaler is loaded at the next update event */
/* count direction */
#define TIMER_COUNTER_UP ((uint16_t)0x0000U) /*!< counter up direction */
#define TIMER_COUNTER_DOWN ((uint16_t)0x0010U) /*!< counter down direction */
/* specify division ratio between TIMER clock and dead-time and sampling clock */
#define CTL0_CKDIV(regval) ((uint16_t)(BITS(8, 9) & ((uint32_t)(regval) << 8U)))
#define TIMER_CKDIV_DIV1 CTL0_CKDIV(0) /*!< clock division value is 1,fDTS=fTIMER_CK */
#define TIMER_CKDIV_DIV2 CTL0_CKDIV(1) /*!< clock division value is 2,fDTS= fTIMER_CK/2 */
#define TIMER_CKDIV_DIV4 CTL0_CKDIV(2) /*!< clock division value is 4, fDTS= fTIMER_CK/4 */
/* single pulse mode */
#define TIMER_SP_MODE_SINGLE ((uint8_t)0x00U) /*!< single pulse mode */
#define TIMER_SP_MODE_REPETITIVE ((uint8_t)0x01U) /*!< repetitive pulse mode */
/* update source */
#define TIMER_UPDATE_SRC_REGULAR ((uint8_t)0x00U) /*!< update generate only by counter overflow/underflow */
#define TIMER_UPDATE_SRC_GLOBAL ((uint8_t)0x01U) /*!< update generate by setting of UPG bit or the counter overflow/underflow,or the slave mode controller trigger */
/* run mode off-state configure */
#define TIMER_ROS_STATE_ENABLE ((uint32_t)0x00000800U) /*!< when POEN bit is set, the channel output signals (CHx_O/CHx_ON) are enabled, with relationship to CHxEN/CHxNEN bits */
#define TIMER_ROS_STATE_DISABLE ((uint32_t)0x00000000U) /*!< when POEN bit is set, the channel output signals (CHx_O/CHx_ON) are disabled */
/* idle mode off-state configure */
#define TIMER_IOS_STATE_ENABLE ((uint16_t)0x0400U) /*!< when POEN bit is reset, he channel output signals (CHx_O/CHx_ON) are enabled, with relationship to CHxEN/CHxNEN bits */
#define TIMER_IOS_STATE_DISABLE ((uint16_t)0x0000U) /*!< when POEN bit is reset, the channel output signals (CHx_O/CHx_ON) are disabled */
/* break input polarity */
#define TIMER_BREAK_POLARITY_LOW ((uint16_t)0x0000U) /*!< break input polarity is low */
#define TIMER_BREAK_POLARITY_HIGH ((uint16_t)0x2000U) /*!< break input polarity is high */
/* output automatic enable */
#define TIMER_OUTAUTO_ENABLE ((uint16_t)0x4000U) /*!< output automatic enable */
#define TIMER_OUTAUTO_DISABLE ((uint16_t)0x0000U) /*!< output automatic disable */
/* complementary register protect control */
#define CCHP_PROT(regval) ((uint16_t)(BITS(8, 9) & ((uint32_t)(regval) << 8U)))
#define TIMER_CCHP_PROT_OFF CCHP_PROT(0) /*!< protect disable */
#define TIMER_CCHP_PROT_0 CCHP_PROT(1) /*!< PROT mode 0 */
#define TIMER_CCHP_PROT_1 CCHP_PROT(2) /*!< PROT mode 1 */
#define TIMER_CCHP_PROT_2 CCHP_PROT(3) /*!< PROT mode 2 */
/* break input enable */
#define TIMER_BREAK_ENABLE ((uint16_t)0x1000U) /*!< break input enable */
#define TIMER_BREAK_DISABLE ((uint16_t)0x0000U) /*!< break input disable */
/* TIMER channel y(y=0,1,2,3) */
#define TIMER_CH_0 ((uint16_t)0x0000U) /*!< TIMER channel 0(TIMERx(x=0..4,7..13)) */
#define TIMER_CH_1 ((uint16_t)0x0001U) /*!< TIMER channel 1(TIMERx(x=0..4,7,8,11)) */
#define TIMER_CH_2 ((uint16_t)0x0002U) /*!< TIMER channel 2(TIMERx(x=0..4,7)) */
#define TIMER_CH_3 ((uint16_t)0x0003U) /*!< TIMER channel 3(TIMERx(x=0..4,7)) */
/* channel enable state*/
#define TIMER_CCX_ENABLE ((uint32_t)0x00000001U) /*!< channel enable */
#define TIMER_CCX_DISABLE ((uint32_t)0x00000000U) /*!< channel disable */
/* channel complementary output enable state*/
#define TIMER_CCXN_ENABLE ((uint16_t)0x0004U) /*!< channel complementary enable */
#define TIMER_CCXN_DISABLE ((uint16_t)0x0000U) /*!< channel complementary disable */
/* channel output polarity */
#define TIMER_OC_POLARITY_HIGH ((uint16_t)0x0000U) /*!< channel output polarity is high */
#define TIMER_OC_POLARITY_LOW ((uint16_t)0x0002U) /*!< channel output polarity is low */
/* channel complementary output polarity */
#define TIMER_OCN_POLARITY_HIGH ((uint16_t)0x0000U) /*!< channel complementary output polarity is high */
#define TIMER_OCN_POLARITY_LOW ((uint16_t)0x0008U) /*!< channel complementary output polarity is low */
/* idle state of channel output */
#define TIMER_OC_IDLE_STATE_HIGH ((uint16_t)0x0100) /*!< idle state of channel output is high */
#define TIMER_OC_IDLE_STATE_LOW ((uint16_t)0x0000) /*!< idle state of channel output is low */
/* idle state of channel complementary output */
#define TIMER_OCN_IDLE_STATE_HIGH ((uint16_t)0x0200U) /*!< idle state of channel complementary output is high */
#define TIMER_OCN_IDLE_STATE_LOW ((uint16_t)0x0000U) /*!< idle state of channel complementary output is low */
/* channel output compare mode */
#define TIMER_OC_MODE_TIMING ((uint16_t)0x0000U) /*!< timing mode */
#define TIMER_OC_MODE_ACTIVE ((uint16_t)0x0010U) /*!< active mode */
#define TIMER_OC_MODE_INACTIVE ((uint16_t)0x0020U) /*!< inactive mode */
#define TIMER_OC_MODE_TOGGLE ((uint16_t)0x0030U) /*!< toggle mode */
#define TIMER_OC_MODE_LOW ((uint16_t)0x0040U) /*!< force low mode */
#define TIMER_OC_MODE_HIGH ((uint16_t)0x0050U) /*!< force high mode */
#define TIMER_OC_MODE_PWM0 ((uint16_t)0x0060U) /*!< PWM0 mode */
#define TIMER_OC_MODE_PWM1 ((uint16_t)0x0070U) /*!< PWM1 mode*/
/* channel output compare shadow enable */
#define TIMER_OC_SHADOW_ENABLE ((uint16_t)0x0008U) /*!< channel output shadow state enable */
#define TIMER_OC_SHADOW_DISABLE ((uint16_t)0x0000U) /*!< channel output shadow state disable */
/* channel output compare fast enable */
#define TIMER_OC_FAST_ENABLE ((uint16_t)0x0004) /*!< channel output fast function enable */
#define TIMER_OC_FAST_DISABLE ((uint16_t)0x0000) /*!< channel output fast function disable */
/* channel output compare clear enable. */
#define TIMER_OC_CLEAR_ENABLE ((uint16_t)0x0080U) /*!< channel output clear function enable */
#define TIMER_OC_CLEAR_DISABLE ((uint16_t)0x0000U) /*!< channel output clear function disable */
/* channel control shadow register update control */
#define TIMER_UPDATECTL_CCU ((uint8_t)0x00U) /*!< the shadow registers update by when CMTG bit is set */
#define TIMER_UPDATECTL_CCUTRI ((uint8_t)0x01U) /*!< the shadow registers update by when CMTG bit is set or an rising edge of TRGI occurs */
/* channel input capture polarity */
#define TIMER_IC_POLARITY_RISING ((uint16_t)0x0000U) /*!< input capture rising edge */
#define TIMER_IC_POLARITY_FALLING ((uint16_t)0x0002U) /*!< input capture falling edge */
#define TIMER_IC_POLARITY_BOTH_EDGE ((uint16_t)0x000AU) /*!< input capture both edge(not for timer1..6) */
/* timer input capture selection */
#define TIMER_IC_SELECTION_DIRECTTI ((uint16_t)0x0001U) /*!< channel y is configured as input and icy is mapped on CIy */
#define TIMER_IC_SELECTION_INDIRECTTI ((uint16_t)0x0002U) /*!< channel y is configured as input and icy is mapped on opposite input */
#define TIMER_IC_SELECTION_ITS ((uint16_t)0x0003U) /*!< channel y is configured as input and icy is mapped on ITS */
/* channel input capture prescaler */
#define TIMER_IC_PSC_DIV1 ((uint16_t)0x0000U) /*!< no prescaler */
#define TIMER_IC_PSC_DIV2 ((uint16_t)0x0004U) /*!< divided by 2 */
#define TIMER_IC_PSC_DIV4 ((uint16_t)0x0008U) /*!< divided by 4 */
#define TIMER_IC_PSC_DIV8 ((uint16_t)0x000CU) /*!< divided by 8 */
/* trigger selection */
#define SMCFG_TRGSEL(regval) (BITS(4, 6) & ((uint32_t)(regval) << 4U))
#define TIMER_SMCFG_TRGSEL_ITI0 SMCFG_TRGSEL(0) /*!< internal trigger 0 */
#define TIMER_SMCFG_TRGSEL_ITI1 SMCFG_TRGSEL(1) /*!< internal trigger 1 */
#define TIMER_SMCFG_TRGSEL_ITI2 SMCFG_TRGSEL(2) /*!< internal trigger 2 */
#define TIMER_SMCFG_TRGSEL_ITI3 SMCFG_TRGSEL(3) /*!< internal trigger 3 */
#define TIMER_SMCFG_TRGSEL_CI0F_ED SMCFG_TRGSEL(4) /*!< TI0 Edge Detector */
#define TIMER_SMCFG_TRGSEL_CI0FE0 SMCFG_TRGSEL(5) /*!< filtered TIMER input 0 */
#define TIMER_SMCFG_TRGSEL_CI1FE1 SMCFG_TRGSEL(6) /*!< filtered TIMER input 1 */
#define TIMER_SMCFG_TRGSEL_ETIFP SMCFG_TRGSEL(7) /*!< external trigger */
/* master mode control */
#define CTL1_MMC(regval) (BITS(4, 6) & ((uint32_t)(regval) << 4U))
#define TIMER_TRI_OUT_SRC_RESET CTL1_MMC(0) /*!< the UPG bit as trigger output */
#define TIMER_TRI_OUT_SRC_ENABLE CTL1_MMC(1) /*!< the counter enable signal TIMER_CTL0_CEN as trigger output */
#define TIMER_TRI_OUT_SRC_UPDATE CTL1_MMC(2) /*!< update event as trigger output */
#define TIMER_TRI_OUT_SRC_CC0 CTL1_MMC(3) /*!< a capture or a compare match occurred in channal0 as trigger output TRGO */
#define TIMER_TRI_OUT_SRC_O0CPRE CTL1_MMC(4) /*!< O0CPRE as trigger output */
#define TIMER_TRI_OUT_SRC_O1CPRE CTL1_MMC(5) /*!< O1CPRE as trigger output */
#define TIMER_TRI_OUT_SRC_O2CPRE CTL1_MMC(6) /*!< O2CPRE as trigger output */
#define TIMER_TRI_OUT_SRC_O3CPRE CTL1_MMC(7) /*!< O3CPRE as trigger output */
/* slave mode control */
#define SMCFG_SMC(regval) (BITS(0, 2) & ((uint32_t)(regval) << 0U))
#define TIMER_SLAVE_MODE_DISABLE SMCFG_SMC(0) /*!< slave mode disable */
#define TIMER_ENCODER_MODE0 SMCFG_SMC(1) /*!< encoder mode 0 */
#define TIMER_ENCODER_MODE1 SMCFG_SMC(2) /*!< encoder mode 1 */
#define TIMER_ENCODER_MODE2 SMCFG_SMC(3) /*!< encoder mode 2 */
#define TIMER_SLAVE_MODE_RESTART SMCFG_SMC(4) /*!< restart mode */
#define TIMER_SLAVE_MODE_PAUSE SMCFG_SMC(5) /*!< pause mode */
#define TIMER_SLAVE_MODE_EVENT SMCFG_SMC(6) /*!< event mode */
#define TIMER_SLAVE_MODE_EXTERNAL0 SMCFG_SMC(7) /*!< external clock mode 0 */
/* master slave mode selection */
#define TIMER_MASTER_SLAVE_MODE_ENABLE ((uint8_t)0x00U) /*!< master slave mode enable */
#define TIMER_MASTER_SLAVE_MODE_DISABLE ((uint8_t)0x01U) /*!< master slave mode disable */
/* external trigger prescaler */
#define SMCFG_ETPSC(regval) (BITS(12, 13) & ((uint32_t)(regval) << 12U))
#define TIMER_EXT_TRI_PSC_OFF SMCFG_ETPSC(0) /*!< no divided */
#define TIMER_EXT_TRI_PSC_DIV2 SMCFG_ETPSC(1) /*!< divided by 2 */
#define TIMER_EXT_TRI_PSC_DIV4 SMCFG_ETPSC(2) /*!< divided by 4 */
#define TIMER_EXT_TRI_PSC_DIV8 SMCFG_ETPSC(3) /*!< divided by 8 */
/* external trigger polarity */
#define TIMER_ETP_FALLING TIMER_SMCFG_ETP /*!< active low or falling edge active */
#define TIMER_ETP_RISING ((uint32_t)0x00000000U) /*!< active high or rising edge active */
/* channel 0 trigger input selection */
#define TIMER_HALLINTERFACE_ENABLE ((uint8_t)0x00U) /*!< TIMER hall sensor mode enable */
#define TIMER_HALLINTERFACE_DISABLE ((uint8_t)0x01U) /*!< TIMER hall sensor mode disable */
/* timerx(x=0,1,2,13,14,15,16) write cc register selection */
#define TIMER_CCSEL_DISABLE ((uint16_t)0x0000U) /*!< write CC register selection disable */
#define TIMER_CCSEL_ENABLE ((uint16_t)0x0002U) /*!< write CC register selection enable */
/* the output value selection */
#define TIMER_OUTSEL_DISABLE ((uint16_t)0x0000U) /*!< output value selection disable */
#define TIMER_OUTSEL_ENABLE ((uint16_t)0x0001U) /*!< output value selection enable */
/* function declarations */
/* TIMER timebase */
/* deinit a TIMER */
void timer_deinit(uint32_t timer_periph);
/* initialize TIMER counter */
void timer_init(uint32_t timer_periph, timer_parameter_struct* initpara);
/* enable a TIMER */
void timer_enable(uint32_t timer_periph);
/* disable a TIMER */
void timer_disable(uint32_t timer_periph);
/* enable the auto reload shadow function */
void timer_auto_reload_shadow_enable(uint32_t timer_periph);
/* disable the auto reload shadow function */
void timer_auto_reload_shadow_disable(uint32_t timer_periph);
/* enable the update event */
void timer_update_event_enable(uint32_t timer_periph);
/* disable the update event */
void timer_update_event_disable(uint32_t timer_periph);
/* set TIMER counter alignment mode */
void timer_counter_alignment(uint32_t timer_periph, uint16_t aligned);
/* set TIMER counter up direction */
void timer_counter_up_direction(uint32_t timer_periph);
/* set TIMER counter down direction */
void timer_counter_down_direction(uint32_t timer_periph);
/* configure TIMER prescaler */
void timer_prescaler_config(uint32_t timer_periph, uint16_t prescaler, uint8_t pscreload);
/* configure TIMER repetition register value */
void timer_repetition_value_config(uint32_t timer_periph, uint16_t repetition);
/* configure TIMER autoreload register value */
void timer_autoreload_value_config(uint32_t timer_periph, uint32_t autoreload);
/* configure TIMER counter register value */
void timer_counter_value_config(uint32_t timer_periph, uint32_t counter);
/* read TIMER counter value */
uint32_t timer_counter_read(uint32_t timer_periph);
/* read TIMER prescaler value */
uint16_t timer_prescaler_read(uint32_t timer_periph);
/* configure TIMER single pulse mode */
void timer_single_pulse_mode_config(uint32_t timer_periph, uint8_t spmode);
/* configure TIMER update source */
void timer_update_source_config(uint32_t timer_periph, uint8_t update);
/* TIMER interrupt and flag */
/* enable the TIMER interrupt */
void timer_interrupt_enable(uint32_t timer_periph, uint32_t interrupt);
/* disable the TIMER interrupt */
void timer_interrupt_disable(uint32_t timer_periph, uint32_t interrupt);
/* get timer interrupt flag */
FlagStatus timer_interrupt_flag_get(uint32_t timer_periph, uint32_t interrupt);
/* clear TIMER interrupt flag */
void timer_interrupt_flag_clear(uint32_t timer_periph, uint32_t interrupt);
/* get TIMER flags */
FlagStatus timer_flag_get(uint32_t timer_periph, uint32_t flag);
/* clear TIMER flags */
void timer_flag_clear(uint32_t timer_periph, uint32_t flag);
/* timer DMA and event */
/* enable the TIMER DMA */
void timer_dma_enable(uint32_t timer_periph, uint16_t dma);
/* disable the TIMER DMA */
void timer_dma_disable(uint32_t timer_periph, uint16_t dma);
/* channel DMA request source selection */
void timer_channel_dma_request_source_select(uint32_t timer_periph, uint8_t dma_request);
/* configure the TIMER DMA transfer */
void timer_dma_transfer_config(uint32_t timer_periph, uint32_t dma_baseaddr, uint32_t dma_lenth);
/* software generate events */
void timer_event_software_generate(uint32_t timer_periph, uint16_t event);
/* timer channel complementary protection */
/* configure TIMER break function */
void timer_break_config(uint32_t timer_periph, timer_break_parameter_struct* breakpara);
/* enable TIMER break function */
void timer_break_enable(uint32_t timer_periph);
/* disable TIMER break function */
void timer_break_disable(uint32_t timer_periph);
/* enable TIMER output automatic function */
void timer_automatic_output_enable(uint32_t timer_periph);
/* disable TIMER output automatic function */
void timer_automatic_output_disable(uint32_t timer_periph);
/* configure TIMER primary output function */
void timer_primary_output_config(uint32_t timer_periph, ControlStatus newvalue);
/* channel capture/compare control shadow register enable */
void timer_channel_control_shadow_config(uint32_t timer_periph, ControlStatus newvalue);
/* configure TIMER channel control shadow register update control */
void timer_channel_control_shadow_update_config(uint32_t timer_periph, uint8_t ccuctl);
/* TIMER channel output */
/* configure TIMER channel output function */
void timer_channel_output_config(uint32_t timer_periph, uint16_t channel, timer_oc_parameter_struct* ocpara);
/* configure TIMER channel output compare mode */
void timer_channel_output_mode_config(uint32_t timer_periph, uint16_t channel, uint16_t ocmode);
/* configure TIMER channel output pulse value */
void timer_channel_output_pulse_value_config(uint32_t timer_periph, uint16_t channel, uint32_t pulse);
/* configure TIMER channel output shadow function */
void timer_channel_output_shadow_config(uint32_t timer_periph, uint16_t channel, uint16_t ocshadow);
/* configure TIMER channel output fast function */
void timer_channel_output_fast_config(uint32_t timer_periph, uint16_t channel, uint16_t ocfast);
/* configure TIMER channel output clear function */
void timer_channel_output_clear_config(uint32_t timer_periph, uint16_t channel, uint16_t occlear);
/* configure TIMER channel output polarity */
void timer_channel_output_polarity_config(uint32_t timer_periph, uint16_t channel, uint16_t ocpolarity);
/* configure TIMER channel complementary output polarity */
void timer_channel_complementary_output_polarity_config(uint32_t timer_periph, uint16_t channel, uint16_t ocnpolarity);
/* configure TIMER channel enable state */
void timer_channel_output_state_config(uint32_t timer_periph, uint16_t channel, uint32_t state);
/* configure TIMER channel complementary output enable state */
void timer_channel_complementary_output_state_config(uint32_t timer_periph, uint16_t channel, uint16_t ocnstate);
/* TIMER channel input */
/* configure TIMER input capture parameter */
void timer_input_capture_config(uint32_t timer_periph, uint16_t channel, timer_ic_parameter_struct* icpara);
/* configure TIMER channel input capture prescaler value */
void timer_channel_input_capture_prescaler_config(uint32_t timer_periph, uint16_t channel, uint16_t prescaler);
/* read TIMER channel capture compare register value */
uint32_t timer_channel_capture_value_register_read(uint32_t timer_periph, uint16_t channel);
/* configure TIMER input pwm capture function */
void timer_input_pwm_capture_config(uint32_t timer_periph, uint16_t channel, timer_ic_parameter_struct* icpwm);
/* configure TIMER hall sensor mode */
void timer_hall_mode_config(uint32_t timer_periph, uint8_t hallmode);
/* TIMER master and slave */
/* select TIMER input trigger source */
void timer_input_trigger_source_select(uint32_t timer_periph, uint32_t intrigger);
/* select TIMER master mode output trigger source */
void timer_master_output_trigger_source_select(uint32_t timer_periph, uint32_t outrigger);
/* select TIMER slave mode */
void timer_slave_mode_select(uint32_t timer_periph, uint32_t slavemode);
/* configure TIMER master slave mode */
void timer_master_slave_mode_config(uint32_t timer_periph, uint8_t masterslave);
/* configure TIMER external trigger input */
void timer_external_trigger_config(uint32_t timer_periph, uint32_t extprescaler, uint32_t expolarity, uint32_t extfilter);
/* configure TIMER quadrature decoder mode */
void timer_quadrature_decoder_mode_config(uint32_t timer_periph, uint32_t decomode, uint16_t ic0polarity, uint16_t ic1polarity);
/* configure TIMER internal clock mode */
void timer_internal_clock_config(uint32_t timer_periph);
/* configure TIMER the internal trigger as external clock input */
void timer_internal_trigger_as_external_clock_config(uint32_t timer_periph, uint32_t intrigger);
/* configure TIMER the external trigger as external clock input */
void timer_external_trigger_as_external_clock_config(uint32_t timer_periph, uint32_t extrigger, uint16_t expolarity, uint32_t extfilter);
/* configure TIMER the external clock mode 0 */
void timer_external_clock_mode0_config(uint32_t timer_periph, uint32_t extprescaler, uint32_t expolarity, uint32_t extfilter);
/* configure TIMER the external clock mode 1 */
void timer_external_clock_mode1_config(uint32_t timer_periph, uint32_t extprescaler, uint32_t expolarity, uint32_t extfilter);
/* disable TIMER the external clock mode 1 */
void timer_external_clock_mode1_disable(uint32_t timer_periph);
/* TIMER configure */
/* configure TIMER write CHxVAL register selection */
void timer_write_cc_register_config(uint32_t timer_periph, uint16_t ccsel);
/* configure TIMER output value selection */
void timer_output_value_selection_config(uint32_t timer_periph, uint16_t outsel);
#endif /* GD32F30X_TIMER_H */

View File

@ -0,0 +1,418 @@
/*!
\file gd32f30x_usart.h
\brief definitions for GD32F30x
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#ifndef GD32F30X_USART_H
#define GD32F30X_USART_H
#include "gd32f30x.h"
/* USARTx(x=0,1,2)/UARTx(x=3,4) definitions */
#define USART1 USART_BASE /*!< USART1 base address */
#define USART2 (USART_BASE+0x00000400U) /*!< USART2 base address */
#define UART3 (USART_BASE+0x00000800U) /*!< UART3 base address */
#define UART4 (USART_BASE+0x00000C00U) /*!< UART4 base address */
#define USART0 (USART_BASE+0x0000F400U) /*!< USART0 base address */
/* registers definitions */
#define USART_STAT0(usartx) REG32((usartx) + 0x00U) /*!< USART status register 0 */
#define USART_DATA(usartx) REG32((usartx) + 0x04U) /*!< USART data register */
#define USART_BAUD(usartx) REG32((usartx) + 0x08U) /*!< USART baud rate register */
#define USART_CTL0(usartx) REG32((usartx) + 0x0CU) /*!< USART control register 0 */
#define USART_CTL1(usartx) REG32((usartx) + 0x10U) /*!< USART control register 1 */
#define USART_CTL2(usartx) REG32((usartx) + 0x14U) /*!< USART control register 2 */
#define USART_GP(usartx) REG32((usartx) + 0x18U) /*!< USART guard time and prescaler register */
#define USART_CTL3(usartx) REG32((usartx) + 0x80U) /*!< USART control register 3 */
#define USART_RT(usartx) REG32((usartx) + 0x84U) /*!< USART receiver timeout register */
#define USART_STAT1(usartx) REG32((usartx) + 0x88U) /*!< USART status register 1 */
/* bits definitions */
/* USARTx_STAT0 */
#define USART_STAT0_PERR BIT(0) /*!< parity error flag */
#define USART_STAT0_FERR BIT(1) /*!< frame error flag */
#define USART_STAT0_NERR BIT(2) /*!< noise error flag */
#define USART_STAT0_ORERR BIT(3) /*!< overrun error */
#define USART_STAT0_IDLEF BIT(4) /*!< IDLE frame detected flag */
#define USART_STAT0_RBNE BIT(5) /*!< read data buffer not empty */
#define USART_STAT0_TC BIT(6) /*!< transmission complete */
#define USART_STAT0_TBE BIT(7) /*!< transmit data buffer empty */
#define USART_STAT0_LBDF BIT(8) /*!< LIN break detected flag */
#define USART_STAT0_CTSF BIT(9) /*!< CTS change flag */
/* USARTx_DATA */
#define USART_DATA_DATA BITS(0,8) /*!< transmit or read data value */
/* USARTx_BAUD */
#define USART_BAUD_FRADIV BITS(0,3) /*!< fraction part of baud-rate divider */
#define USART_BAUD_INTDIV BITS(4,15) /*!< integer part of baud-rate divider */
/* USARTx_CTL0 */
#define USART_CTL0_SBKCMD BIT(0) /*!< send break command */
#define USART_CTL0_RWU BIT(1) /*!< receiver wakeup from mute mode */
#define USART_CTL0_REN BIT(2) /*!< receiver enable */
#define USART_CTL0_TEN BIT(3) /*!< transmitter enable */
#define USART_CTL0_IDLEIE BIT(4) /*!< idle line detected interrupt enable */
#define USART_CTL0_RBNEIE BIT(5) /*!< read data buffer not empty interrupt and overrun error interrupt enable */
#define USART_CTL0_TCIE BIT(6) /*!< transmission complete interrupt enable */
#define USART_CTL0_TBEIE BIT(7) /*!< transmitter buffer empty interrupt enable */
#define USART_CTL0_PERRIE BIT(8) /*!< parity error interrupt enable */
#define USART_CTL0_PM BIT(9) /*!< parity mode */
#define USART_CTL0_PCEN BIT(10) /*!< parity check function enable */
#define USART_CTL0_WM BIT(11) /*!< wakeup method in mute mode */
#define USART_CTL0_WL BIT(12) /*!< word length */
#define USART_CTL0_UEN BIT(13) /*!< USART enable */
/* USARTx_CTL1 */
#define USART_CTL1_ADDR BITS(0,3) /*!< address of USART */
#define USART_CTL1_LBLEN BIT(5) /*!< LIN break frame length */
#define USART_CTL1_LBDIE BIT(6) /*!< LIN break detected interrupt eanble */
#define USART_CTL1_CLEN BIT(8) /*!< CK length */
#define USART_CTL1_CPH BIT(9) /*!< CK phase */
#define USART_CTL1_CPL BIT(10) /*!< CK polarity */
#define USART_CTL1_CKEN BIT(11) /*!< CK pin enable */
#define USART_CTL1_STB BITS(12,13) /*!< STOP bits length */
#define USART_CTL1_LMEN BIT(14) /*!< LIN mode enable */
/* USARTx_CTL2 */
#define USART_CTL2_ERRIE BIT(0) /*!< error interrupt enable */
#define USART_CTL2_IREN BIT(1) /*!< IrDA mode enable */
#define USART_CTL2_IRLP BIT(2) /*!< IrDA low-power */
#define USART_CTL2_HDEN BIT(3) /*!< half-duplex enable */
#define USART_CTL2_NKEN BIT(4) /*!< NACK enable in smartcard mode */
#define USART_CTL2_SCEN BIT(5) /*!< smartcard mode enable */
#define USART_CTL2_DENR BIT(6) /*!< DMA request enable for reception */
#define USART_CTL2_DENT BIT(7) /*!< DMA request enable for transmission */
#define USART_CTL2_RTSEN BIT(8) /*!< RTS enable */
#define USART_CTL2_CTSEN BIT(9) /*!< CTS enable */
#define USART_CTL2_CTSIE BIT(10) /*!< CTS interrupt enable */
/* USARTx_GP */
#define USART_GP_PSC BITS(0,7) /*!< prescaler value for dividing the system clock */
#define USART_GP_GUAT BITS(8,15) /*!< guard time value in smartcard mode */
/* USARTx_CTL3 */
#define USART_CTL3_RTEN BIT(0) /*!< receiver timeout enable */
#define USART_CTL3_SCRTNUM BITS(1,3) /*!< smartcard auto-retry number */
#define USART_CTL3_RTIE BIT(4) /*!< interrupt enable bit of receive timeout event */
#define USART_CTL3_EBIE BIT(5) /*!< interrupt enable bit of end of block event */
#define USART_CTL3_RINV BIT(8) /*!< RX pin level inversion */
#define USART_CTL3_TINV BIT(9) /*!< TX pin level inversion */
#define USART_CTL3_DINV BIT(10) /*!< data bit level inversion */
#define USART_CTL3_MSBF BIT(11) /*!< most significant bit first */
/* USARTx_RT */
#define USART_RT_RT BITS(0,23) /*!< receiver timeout threshold */
#define USART_RT_BL BITS(24,31) /*!< block length */
/* USARTx_STAT1 */
#define USART_STAT1_RTF BIT(11) /*!< receiver timeout flag */
#define USART_STAT1_EBF BIT(12) /*!< end of block flag */
#define USART_STAT1_BSY BIT(16) /*!< busy flag */
/* constants definitions */
/* define the USART bit position and its register index offset */
#define USART_REGIDX_BIT(regidx, bitpos) (((uint32_t)(regidx) << 6) | (uint32_t)(bitpos))
#define USART_REG_VAL(usartx, offset) (REG32((usartx) + (((uint32_t)(offset) & 0xFFFFU) >> 6)))
#define USART_BIT_POS(val) ((uint32_t)(val) & 0x1FU)
#define USART_REGIDX_BIT2(regidx, bitpos, regidx2, bitpos2) (((uint32_t)(regidx2) << 22) | (uint32_t)((bitpos2) << 16)\
| (((uint32_t)(regidx) << 6) | (uint32_t)(bitpos)))
#define USART_REG_VAL2(usartx, offset) (REG32((usartx) + ((uint32_t)(offset) >> 22)))
#define USART_BIT_POS2(val) (((uint32_t)(val) & 0x1F0000U) >> 16)
/* register offset */
#define USART_STAT0_REG_OFFSET 0x00U /*!< STAT0 register offset */
#define USART_STAT1_REG_OFFSET 0x88U /*!< STAT1 register offset */
#define USART_CTL0_REG_OFFSET 0x0CU /*!< CTL0 register offset */
#define USART_CTL1_REG_OFFSET 0x10U /*!< CTL1 register offset */
#define USART_CTL2_REG_OFFSET 0x14U /*!< CTL2 register offset */
#define USART_CTL3_REG_OFFSET 0x80U /*!< CTL3 register offset */
/* USART flags */
typedef enum
{
/* flags in STAT0 register */
USART_FLAG_CTS = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 9U), /*!< CTS change flag */
USART_FLAG_LBD = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 8U), /*!< LIN break detected flag */
USART_FLAG_TBE = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 7U), /*!< transmit data buffer empty */
USART_FLAG_TC = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 6U), /*!< transmission complete */
USART_FLAG_RBNE = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 5U), /*!< read data buffer not empty */
USART_FLAG_IDLE = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 4U), /*!< IDLE frame detected flag */
USART_FLAG_ORERR = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 3U), /*!< overrun error */
USART_FLAG_NERR = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 2U), /*!< noise error flag */
USART_FLAG_FERR = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 1U), /*!< frame error flag */
USART_FLAG_PERR = USART_REGIDX_BIT(USART_STAT0_REG_OFFSET, 0U), /*!< parity error flag */
/* flags in STAT1 register */
USART_FLAG_BSY = USART_REGIDX_BIT(USART_STAT1_REG_OFFSET, 16U), /*!< busy flag */
USART_FLAG_EB = USART_REGIDX_BIT(USART_STAT1_REG_OFFSET, 12U), /*!< end of block flag */
USART_FLAG_RT = USART_REGIDX_BIT(USART_STAT1_REG_OFFSET, 11U), /*!< receiver timeout flag */
}usart_flag_enum;
/* USART interrupt flags */
typedef enum
{
/* interrupt flags in CTL0 register */
USART_INT_FLAG_PERR = USART_REGIDX_BIT2(USART_CTL0_REG_OFFSET, 8U, USART_STAT0_REG_OFFSET, 0U), /*!< parity error interrupt and flag */
USART_INT_FLAG_TBE = USART_REGIDX_BIT2(USART_CTL0_REG_OFFSET, 7U, USART_STAT0_REG_OFFSET, 7U), /*!< transmitter buffer empty interrupt and flag */
USART_INT_FLAG_TC = USART_REGIDX_BIT2(USART_CTL0_REG_OFFSET, 6U, USART_STAT0_REG_OFFSET, 6U), /*!< transmission complete interrupt and flag */
USART_INT_FLAG_RBNE = USART_REGIDX_BIT2(USART_CTL0_REG_OFFSET, 5U, USART_STAT0_REG_OFFSET, 5U), /*!< read data buffer not empty interrupt and flag */
USART_INT_FLAG_RBNE_ORERR = USART_REGIDX_BIT2(USART_CTL0_REG_OFFSET, 5U, USART_STAT0_REG_OFFSET, 3U), /*!< read data buffer not empty interrupt and overrun error flag */
USART_INT_FLAG_IDLE = USART_REGIDX_BIT2(USART_CTL0_REG_OFFSET, 4U, USART_STAT0_REG_OFFSET, 4U), /*!< IDLE line detected interrupt and flag */
/* interrupt flags in CTL1 register */
USART_INT_FLAG_LBD = USART_REGIDX_BIT2(USART_CTL1_REG_OFFSET, 6U, USART_STAT0_REG_OFFSET, 8U), /*!< LIN break detected interrupt and flag */
/* interrupt flags in CTL2 register */
USART_INT_FLAG_CTS = USART_REGIDX_BIT2(USART_CTL2_REG_OFFSET, 10U, USART_STAT0_REG_OFFSET, 9U), /*!< CTS interrupt and flag */
USART_INT_FLAG_ERR_ORERR = USART_REGIDX_BIT2(USART_CTL2_REG_OFFSET, 0U, USART_STAT0_REG_OFFSET, 3U), /*!< error interrupt and overrun error */
USART_INT_FLAG_ERR_NERR = USART_REGIDX_BIT2(USART_CTL2_REG_OFFSET, 0U, USART_STAT0_REG_OFFSET, 2U), /*!< error interrupt and noise error flag */
USART_INT_FLAG_ERR_FERR = USART_REGIDX_BIT2(USART_CTL2_REG_OFFSET, 0U, USART_STAT0_REG_OFFSET, 1U), /*!< error interrupt and frame error flag */
/* interrupt flags in CTL3 register */
USART_INT_FLAG_EB = USART_REGIDX_BIT2(USART_CTL3_REG_OFFSET, 5U, USART_STAT1_REG_OFFSET, 12U), /*!< interrupt enable bit of end of block event and flag */
USART_INT_FLAG_RT = USART_REGIDX_BIT2(USART_CTL3_REG_OFFSET, 4U, USART_STAT1_REG_OFFSET, 11U), /*!< interrupt enable bit of receive timeout event and flag */
}usart_interrupt_flag_enum;
/* USART interrupt enable or disable */
typedef enum
{
/* interrupt in CTL0 register */
USART_INT_PERR = USART_REGIDX_BIT(USART_CTL0_REG_OFFSET, 8U), /*!< parity error interrupt */
USART_INT_TBE = USART_REGIDX_BIT(USART_CTL0_REG_OFFSET, 7U), /*!< transmitter buffer empty interrupt */
USART_INT_TC = USART_REGIDX_BIT(USART_CTL0_REG_OFFSET, 6U), /*!< transmission complete interrupt */
USART_INT_RBNE = USART_REGIDX_BIT(USART_CTL0_REG_OFFSET, 5U), /*!< read data buffer not empty interrupt and overrun error interrupt */
USART_INT_IDLE = USART_REGIDX_BIT(USART_CTL0_REG_OFFSET, 4U), /*!< IDLE line detected interrupt */
/* interrupt in CTL1 register */
USART_INT_LBD = USART_REGIDX_BIT(USART_CTL1_REG_OFFSET, 6U), /*!< LIN break detected interrupt */
/* interrupt in CTL2 register */
USART_INT_CTS = USART_REGIDX_BIT(USART_CTL2_REG_OFFSET, 10U), /*!< CTS interrupt */
USART_INT_ERR = USART_REGIDX_BIT(USART_CTL2_REG_OFFSET, 0U), /*!< error interrupt */
/* interrupt in CTL3 register */
USART_INT_EB = USART_REGIDX_BIT(USART_CTL3_REG_OFFSET, 5U), /*!< end of block interrupt */
USART_INT_RT = USART_REGIDX_BIT(USART_CTL3_REG_OFFSET, 4U), /*!< receive timeout interrupt */
}usart_interrupt_enum;
/* USART invert configure */
typedef enum
{
/* data bit level inversion */
USART_DINV_ENABLE, /*!< data bit level inversion */
USART_DINV_DISABLE, /*!< data bit level not inversion */
/* TX pin level inversion */
USART_TXPIN_ENABLE, /*!< TX pin level inversion */
USART_TXPIN_DISABLE, /*!< TX pin level not inversion */
/* RX pin level inversion */
USART_RXPIN_ENABLE, /*!< RX pin level inversion */
USART_RXPIN_DISABLE, /*!< RX pin level not inversion */
}usart_invert_enum;
/* USART receiver configure */
#define CTL0_REN(regval) (BIT(2) & ((uint32_t)(regval) << 2))
#define USART_RECEIVE_ENABLE CTL0_REN(1) /*!< enable receiver */
#define USART_RECEIVE_DISABLE CTL0_REN(0) /*!< disable receiver */
/* USART transmitter configure */
#define CTL0_TEN(regval) (BIT(3) & ((uint32_t)(regval) << 3))
#define USART_TRANSMIT_ENABLE CTL0_TEN(1) /*!< enable transmitter */
#define USART_TRANSMIT_DISABLE CTL0_TEN(0) /*!< disable transmitter */
/* USART parity bits definitions */
#define CTL0_PM(regval) (BITS(9,10) & ((uint32_t)(regval) << 9))
#define USART_PM_NONE CTL0_PM(0) /*!< no parity */
#define USART_PM_EVEN CTL0_PM(2) /*!< even parity */
#define USART_PM_ODD CTL0_PM(3) /*!< odd parity */
/* USART wakeup method in mute mode */
#define CTL0_WM(regval) (BIT(11) & ((uint32_t)(regval) << 11))
#define USART_WM_IDLE CTL0_WM(0) /*!< idle line */
#define USART_WM_ADDR CTL0_WM(1) /*!< address match */
/* USART word length definitions */
#define CTL0_WL(regval) (BIT(12) & ((uint32_t)(regval) << 12))
#define USART_WL_8BIT CTL0_WL(0) /*!< 8 bits */
#define USART_WL_9BIT CTL0_WL(1) /*!< 9 bits */
/* USART stop bits definitions */
#define CTL1_STB(regval) (BITS(12,13) & ((uint32_t)(regval) << 12))
#define USART_STB_1BIT CTL1_STB(0) /*!< 1 bit */
#define USART_STB_0_5BIT CTL1_STB(1) /*!< 0.5 bit */
#define USART_STB_2BIT CTL1_STB(2) /*!< 2 bits */
#define USART_STB_1_5BIT CTL1_STB(3) /*!< 1.5 bits */
/* USART LIN break frame length */
#define CTL1_LBLEN(regval) (BIT(5) & ((uint32_t)(regval) << 5))
#define USART_LBLEN_10B CTL1_LBLEN(0) /*!< 10 bits */
#define USART_LBLEN_11B CTL1_LBLEN(1) /*!< 11 bits */
/* USART CK length */
#define CTL1_CLEN(regval) (BIT(8) & ((uint32_t)(regval) << 8))
#define USART_CLEN_NONE CTL1_CLEN(0) /*!< there are 7 CK pulses for an 8 bit frame and 8 CK pulses for a 9 bit frame */
#define USART_CLEN_EN CTL1_CLEN(1) /*!< there are 8 CK pulses for an 8 bit frame and 9 CK pulses for a 9 bit frame */
/* USART clock phase */
#define CTL1_CPH(regval) (BIT(9) & ((uint32_t)(regval) << 9))
#define USART_CPH_1CK CTL1_CPH(0) /*!< first clock transition is the first data capture edge */
#define USART_CPH_2CK CTL1_CPH(1) /*!< second clock transition is the first data capture edge */
/* USART clock polarity */
#define CTL1_CPL(regval) (BIT(10) & ((uint32_t)(regval) << 10))
#define USART_CPL_LOW CTL1_CPL(0) /*!< steady low value on CK pin */
#define USART_CPL_HIGH CTL1_CPL(1) /*!< steady high value on CK pin */
/* USART DMA request for receive configure */
#define CLT2_DENR(regval) (BIT(6) & ((uint32_t)(regval) << 6))
#define USART_DENR_ENABLE CLT2_DENR(1) /*!< DMA request enable for reception */
#define USART_DENR_DISABLE CLT2_DENR(0) /*!< DMA request disable for reception */
/* USART DMA request for transmission configure */
#define CLT2_DENT(regval) (BIT(7) & ((uint32_t)(regval) << 7))
#define USART_DENT_ENABLE CLT2_DENT(1) /*!< DMA request enable for transmission */
#define USART_DENT_DISABLE CLT2_DENT(0) /*!< DMA request disable for transmission */
/* USART RTS configure */
#define CLT2_RTSEN(regval) (BIT(8) & ((uint32_t)(regval) << 8))
#define USART_RTS_ENABLE CLT2_RTSEN(1) /*!< RTS enable */
#define USART_RTS_DISABLE CLT2_RTSEN(0) /*!< RTS disable */
/* USART CTS configure */
#define CLT2_CTSEN(regval) (BIT(9) & ((uint32_t)(regval) << 9))
#define USART_CTS_ENABLE CLT2_CTSEN(1) /*!< CTS enable */
#define USART_CTS_DISABLE CLT2_CTSEN(0) /*!< CTS disable */
/* USART IrDA low-power enable */
#define CTL2_IRLP(regval) (BIT(2) & ((uint32_t)(regval) << 2))
#define USART_IRLP_LOW CTL2_IRLP(1) /*!< low-power */
#define USART_IRLP_NORMAL CTL2_IRLP(0) /*!< normal */
/* USART data is transmitted/received with the LSB/MSB first */
#define CTL3_MSBF(regval) (BIT(11) & ((uint32_t)(regval) << 11))
#define USART_MSBF_LSB CTL3_MSBF(0) /*!< LSB first */
#define USART_MSBF_MSB CTL3_MSBF(1) /*!< MSB first */
/* function declarations */
/* initialization functions */
/* reset USART */
void usart_deinit(uint32_t usart_periph);
/* configure USART baud rate value */
void usart_baudrate_set(uint32_t usart_periph, uint32_t baudval);
/* configure USART parity function */
void usart_parity_config(uint32_t usart_periph, uint32_t paritycfg);
/* configure USART word length */
void usart_word_length_set(uint32_t usart_periph, uint32_t wlen);
/* configure USART stop bit length */
void usart_stop_bit_set(uint32_t usart_periph, uint32_t stblen);
/* USART normal mode communication */
/* enable USART */
void usart_enable(uint32_t usart_periph);
/* disable USART */
void usart_disable(uint32_t usart_periph);
/* configure USART transmitter */
void usart_transmit_config(uint32_t usart_periph, uint32_t txconfig);
/* configure USART receiver */
void usart_receive_config(uint32_t usart_periph, uint32_t rxconfig);
/* data is transmitted/received with the LSB/MSB first */
void usart_data_first_config(uint32_t usart_periph, uint32_t msbf);
/* configure USART inverted */
void usart_invert_config(uint32_t usart_periph, usart_invert_enum invertpara);
/* enable receiver timeout */
void usart_receiver_timeout_enable(uint32_t usart_periph);
/* disable receiver timeout */
void usart_receiver_timeout_disable(uint32_t usart_periph);
/* configure receiver timeout threshold */
void usart_receiver_timeout_threshold_config(uint32_t usart_periph, uint32_t rtimeout);
/* USART transmit data function */
void usart_data_transmit(uint32_t usart_periph, uint32_t data);
/* USART receive data function */
uint16_t usart_data_receive(uint32_t usart_periph);
/* multi-processor communication */
/* configure address of the USART */
void usart_address_config(uint32_t usart_periph, uint8_t addr);
/* enable mute mode */
void usart_mute_mode_enable(uint32_t usart_periph);
/* disable mute mode */
void usart_mute_mode_disable(uint32_t usart_periph);
/* configure wakeup method in mute mode */
void usart_mute_mode_wakeup_config(uint32_t usart_periph, uint32_t wmethod);
/* LIN mode communication */
/* LIN mode enable */
void usart_lin_mode_enable(uint32_t usart_periph);
/* LIN mode disable */
void usart_lin_mode_disable(uint32_t usart_periph);
/* LIN break detection length */
void usart_lin_break_dection_length_config(uint32_t usart_periph, uint32_t lblen);
/* send break frame */
void usart_send_break(uint32_t usart_periph);
/* half-duplex communication */
/* half-duplex enable */
void usart_halfduplex_enable(uint32_t usart_periph);
/* half-duplex disable */
void usart_halfduplex_disable(uint32_t usart_periph);
/* synchronous communication */
/* clock enable */
void usart_synchronous_clock_enable(uint32_t usart_periph);
/* clock disable */
void usart_synchronous_clock_disable(uint32_t usart_periph);
/* configure usart synchronous mode parameters */
void usart_synchronous_clock_config(uint32_t usart_periph, uint32_t clen, uint32_t cph, uint32_t cpl);
/* smartcard communication */
/* guard time value configure in smartcard mode */
void usart_guard_time_config(uint32_t usart_periph,uint32_t guat);
/* smartcard mode enable */
void usart_smartcard_mode_enable(uint32_t usart_periph);
/* smartcard mode disable */
void usart_smartcard_mode_disable(uint32_t usart_periph);
/* NACK enable in smartcard mode */
void usart_smartcard_mode_nack_enable(uint32_t usart_periph);
/* NACK disable in smartcard mode */
void usart_smartcard_mode_nack_disable(uint32_t usart_periph);
/* smartcard auto-retry number configure */
void usart_smartcard_autoretry_config(uint32_t usart_periph, uint32_t scrtnum);
/* block length configure */
void usart_block_length_config(uint32_t usart_periph, uint32_t bl);
/* IrDA communication */
/* enable IrDA mode */
void usart_irda_mode_enable(uint32_t usart_periph);
/* disable IrDA mode */
void usart_irda_mode_disable(uint32_t usart_periph);
/* configure the peripheral clock prescaler */
void usart_prescaler_config(uint32_t usart_periph, uint8_t psc);
/* configure IrDA low-power */
void usart_irda_lowpower_config(uint32_t usart_periph, uint32_t irlp);
/* hardware flow communication */
/* configure hardware flow control RTS */
void usart_hardware_flow_rts_config(uint32_t usart_periph, uint32_t rtsconfig);
/* configure hardware flow control CTS */
void usart_hardware_flow_cts_config(uint32_t usart_periph, uint32_t ctsconfig);
/* configure USART DMA for reception */
void usart_dma_receive_config(uint32_t usart_periph, uint32_t dmacmd);
/* configure USART DMA for transmission */
void usart_dma_transmit_config(uint32_t usart_periph, uint32_t dmacmd);
/* flag functions */
/* get flag in STAT0/STAT1 register */
FlagStatus usart_flag_get(uint32_t usart_periph, usart_flag_enum flag);
/* clear flag in STAT0/STAT1 register */
void usart_flag_clear(uint32_t usart_periph, usart_flag_enum flag);
/* interrupt functions */
/* enable USART interrupt */
void usart_interrupt_enable(uint32_t usart_periph, uint32_t int_flag);
/* disable USART interrupt */
void usart_interrupt_disable(uint32_t usart_periph, uint32_t int_flag);
/* get USART interrupt and flag status */
FlagStatus usart_interrupt_flag_get(uint32_t usart_periph, uint32_t int_flag);
/* clear interrupt flag in STAT0/STAT1 register */
void usart_interrupt_flag_clear(uint32_t usart_periph, uint32_t flag);
#endif /* GD32F30x_USART_H */

View File

@ -0,0 +1,63 @@
/*!
\file gd32f30x_wwdgt.h
\brief definitions for the WWDGT
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef GD32F30X_WWDGT_H
#define GD32F30X_WWDGT_H
#include "gd32f30x.h"
/* WWDGT definitions */
#define WWDGT WWDGT_BASE
/* registers definitions */
#define WWDGT_CTL REG32((WWDGT) + 0x00U) /*!< WWDGT control register */
#define WWDGT_CFG REG32((WWDGT) + 0x04U) /*!< WWDGT configuration register */
#define WWDGT_STAT REG32((WWDGT) + 0x08U) /*!< WWDGT status register */
/* bits definitions */
/* WWDGT_CTL */
#define WWDGT_CTL_CNT BITS(0,6) /*!< WWDGT counter value */
#define WWDGT_CTL_WDGTEN BIT(7) /*!< WWDGT counter enable */
/* WWDGT_CFG */
#define WWDGT_CFG_WIN BITS(0,6) /*!< WWDGT counter window value */
#define WWDGT_CFG_PSC BITS(7,8) /*!< WWDGT prescaler divider value */
#define WWDGT_CFG_EWIE BIT(9) /*!< early wakeup interrupt enable */
/* WWDGT_STAT */
#define WWDGT_STAT_EWIF BIT(0) /*!< early wakeup interrupt flag */
/* constants definitions */
#define CFG_PSC(regval) (BITS(7,8) & ((uint32_t)(regval) << 7)) /*!< write value to WWDGT_CFG_PSC bit field */
#define WWDGT_CFG_PSC_DIV1 CFG_PSC(0) /*!< the time base of WWDGT = (PCLK1/4096)/1 */
#define WWDGT_CFG_PSC_DIV2 CFG_PSC(1) /*!< the time base of WWDGT = (PCLK1/4096)/2 */
#define WWDGT_CFG_PSC_DIV4 CFG_PSC(2) /*!< the time base of WWDGT = (PCLK1/4096)/4 */
#define WWDGT_CFG_PSC_DIV8 CFG_PSC(3) /*!< the time base of WWDGT = (PCLK1/4096)/8 */
/* function declarations */
/* reset the window watchdog timer configuration */
void wwdgt_deinit(void);
/* start the window watchdog timer counter */
void wwdgt_enable(void);
/* configure the window watchdog timer counter value */
void wwdgt_counter_update(uint16_t counter_value);
/* configure counter value, window value, and prescaler divider value */
void wwdgt_config(uint16_t counter, uint16_t window, uint32_t prescaler);
/* enable early wakeup interrupt of WWDGT */
void wwdgt_interrupt_enable(void);
/* check early wakeup interrupt state of WWDGT */
FlagStatus wwdgt_flag_get(void);
/* clear early wakeup interrupt state of WWDGT */
void wwdgt_flag_clear(void);
#endif /* GD32F30X_WWDGT_H */

View File

@ -0,0 +1,915 @@
/*!
\file gd32f30x_adc.c
\brief ADC driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.2, firmware for GD32F30x
*/
#include "gd32f30x_adc.h"
/*!
\brief reset ADC
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[out] none
\retval none
*/
void adc_deinit(uint32_t adc_periph)
{
switch(adc_periph){
case ADC0:
rcu_periph_reset_enable(RCU_ADC0RST);
rcu_periph_reset_disable(RCU_ADC0RST);
break;
case ADC1:
rcu_periph_reset_enable(RCU_ADC1RST);
rcu_periph_reset_disable(RCU_ADC1RST);
break;
#if (defined(GD32F30X_HD) || defined(GD32F30X_XD))
case ADC2:
rcu_periph_reset_enable(RCU_ADC2RST);
rcu_periph_reset_disable(RCU_ADC2RST);
break;
#endif
default:
break;
}
}
/*!
\brief enable ADC interface
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[out] none
\retval none
*/
void adc_enable(uint32_t adc_periph)
{
if(RESET == (ADC_CTL1(adc_periph) & ADC_CTL1_ADCON)){
ADC_CTL1(adc_periph) |= (uint32_t)ADC_CTL1_ADCON;
}
}
/*!
\brief disable ADC interface
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[out] none
\retval none
*/
void adc_disable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ADCON);
}
/*!
\brief ADC calibration and reset calibration
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[out] none
\retval none
*/
void adc_calibration_enable(uint32_t adc_periph)
{
/* reset the selected ADC1 calibration registers */
ADC_CTL1(adc_periph) |= (uint32_t) ADC_CTL1_RSTCLB;
/* check the RSTCLB bit state */
while((ADC_CTL1(adc_periph) & ADC_CTL1_RSTCLB)){
}
/* enable ADC calibration process */
ADC_CTL1(adc_periph) |= ADC_CTL1_CLB;
/* check the CLB bit state */
while((ADC_CTL1(adc_periph) & ADC_CTL1_CLB)){
}
}
/*!
\brief enable DMA request
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[out] none
\retval none
*/
void adc_dma_mode_enable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) |= (uint32_t)(ADC_CTL1_DMA);
}
/*!
\brief disable DMA request
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[out] none
\retval none
*/
void adc_dma_mode_disable(uint32_t adc_periph)
{
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DMA);
}
/*!
\brief enable the temperature sensor and Vrefint channel
\param[in] none
\param[out] none
\retval none
*/
void adc_tempsensor_vrefint_enable(void)
{
/* enable the temperature sensor and Vrefint channel */
ADC_CTL1(ADC0) |= ADC_CTL1_TSVREN;
}
/*!
\brief disable the temperature sensor and Vrefint channel
\param[in] none
\param[out] none
\retval none
*/
void adc_tempsensor_vrefint_disable(void)
{
/* disable the temperature sensor and Vrefint channel */
ADC_CTL1(ADC0) &= ~ADC_CTL1_TSVREN;
}
/*!
\brief configure ADC resolution
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] resolution: ADC resolution
only one among these parameters can be selected
\arg ADC_RESOLUTION_12B: 12-bit ADC resolution
\arg ADC_RESOLUTION_10B: 10-bit ADC resolution
\arg ADC_RESOLUTION_8B: 8-bit ADC resolution
\arg ADC_RESOLUTION_6B: 6-bit ADC resolution
\param[out] none
\retval none
*/
void adc_resolution_config(uint32_t adc_periph , uint32_t resolution)
{
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)ADC_OVSAMPCTL_DRES);
ADC_OVSAMPCTL(adc_periph) |= (uint32_t)resolution;
}
/*!
\brief configure ADC discontinuous mode
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_channel_group: select the channel group
only one among these parameters can be selected
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\arg ADC_CHANNEL_DISCON_DISABLE: disable discontinuous mode of regular & inserted channel
\param[in] length: number of conversions in discontinuous mode,the number can be 1..8
for regular channel ,the number has no effect for inserted channel
\param[out] none
\retval none
*/
void adc_discontinuous_mode_config(uint32_t adc_periph, uint8_t adc_channel_group, uint8_t length)
{
ADC_CTL0(adc_periph) &= ~((uint32_t)( ADC_CTL0_DISRC | ADC_CTL0_DISIC ));
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
/* config the number of conversions in discontinuous mode */
ADC_CTL0(adc_periph) &= ~((uint32_t)ADC_CTL0_DISNUM);
ADC_CTL0(adc_periph) |= CTL0_DISNUM(((uint32_t)length - 1U));
ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISRC;
break;
case ADC_INSERTED_CHANNEL:
ADC_CTL0(adc_periph) |= (uint32_t)ADC_CTL0_DISIC;
break;
case ADC_CHANNEL_DISCON_DISABLE:
default:
break;
}
}
/*!
\brief configure the ADC sync mode
\param[in] mode: ADC mode
only one among these parameters can be selected
\arg ADC_MODE_FREE: all the ADCs work independently
\arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_PARALLEL: ADC0 and ADC1 work in combined regular parallel + inserted parallel mode
\arg ADC_DAUL_REGULAL_PARALLEL_INSERTED_ROTATION: ADC0 and ADC1 work in combined regular parallel + trigger rotation mode
\arg ADC_DAUL_INSERTED_PARALLEL_REGULAL_FOLLOWUP_FAST: ADC0 and ADC1 work in combined inserted parallel + follow-up fast mode
\arg ADC_DAUL_INSERTED_PARALLEL_REGULAL_FOLLOWUP_SLOW: ADC0 and ADC1 work in combined inserted parallel + follow-up slow mode
\arg ADC_DAUL_INSERTED_PARALLEL: ADC0 and ADC1 work in inserted parallel mode only
\arg ADC_DAUL_REGULAL_PARALLEL: ADC0 and ADC1 work in regular parallel mode only
\arg ADC_DAUL_REGULAL_FOLLOWUP_FAST: ADC0 and ADC1 work in follow-up fast mode only
\arg ADC_DAUL_REGULAL_FOLLOWUP_SLOW: ADC0 and ADC1 work in follow-up slow mode only
\arg ADC_DAUL_INSERTED_TRRIGGER_ROTATION: ADC0 and ADC1 work in trigger rotation mode only
\param[out] none
\retval none
*/
void adc_mode_config(uint32_t mode)
{
ADC_CTL0(ADC0) &= ~(ADC_CTL0_SYNCM);
ADC_CTL0(ADC0) |= mode;
}
/*!
\brief enable or disable ADC special function
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] function: the function to config
one or more parameters can be selected below
\arg ADC_SCAN_MODE: scan mode select
\arg ADC_INSERTED_CHANNEL_AUTO: inserted channel group convert automatically
\arg ADC_CONTINUOUS_MODE: continuous mode select
\param[in] newvalue: ENABLE or DISABLE
\param[out] none
\retval none
*/
void adc_special_function_config(uint32_t adc_periph , uint32_t function , ControlStatus newvalue)
{
if(newvalue){
if(0U != (function & ADC_SCAN_MODE)){
ADC_CTL0(adc_periph) |= ADC_SCAN_MODE;
}
if(0U != (function & ADC_INSERTED_CHANNEL_AUTO)){
ADC_CTL0(adc_periph) |= ADC_INSERTED_CHANNEL_AUTO;
}
if(0U != (function & ADC_CONTINUOUS_MODE)){
ADC_CTL1(adc_periph) |= ADC_CONTINUOUS_MODE;
}
}else{
if(0U != (function & ADC_SCAN_MODE)){
ADC_CTL0(adc_periph) &= ~ADC_SCAN_MODE;
}
if(0U != (function & ADC_INSERTED_CHANNEL_AUTO)){
ADC_CTL0(adc_periph) &= ~ADC_INSERTED_CHANNEL_AUTO;
}
if(0U != (function & ADC_CONTINUOUS_MODE)){
ADC_CTL1(adc_periph) &= ~ADC_CONTINUOUS_MODE;
}
}
}
/*!
\brief configure ADC data alignment
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] data_alignment: data alignment select
only one parameter can be selected
\arg ADC_DATAALIGN_RIGHT: LSB alignment
\arg ADC_DATAALIGN_LEFT: MSB alignment
\param[out] none
\retval none
*/
void adc_data_alignment_config(uint32_t adc_periph , uint32_t data_alignment)
{
if(ADC_DATAALIGN_RIGHT != data_alignment){
ADC_CTL1(adc_periph) |= ADC_CTL1_DAL;
}else{
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_DAL);
}
}
/*!
\brief configure the length of regular channel group or inserted channel group
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_channel_group: select the channel group
only one parameter can be selected
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] length: the length of the channel
regular channel 1-16
inserted channel 1-4
\param[out] none
\retval none
*/
void adc_channel_length_config(uint32_t adc_periph, uint8_t adc_channel_group, uint32_t length)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
ADC_RSQ0(adc_periph) &= ~((uint32_t)ADC_RSQ0_RL);
ADC_RSQ0(adc_periph) |= RSQ0_RL((uint32_t)(length-1U));
break;
case ADC_INSERTED_CHANNEL:
ADC_ISQ(adc_periph) &= ~((uint32_t)ADC_ISQ_IL);
ADC_ISQ(adc_periph) |= ISQ_IL((uint32_t)(length-1U));
break;
default:
break;
}
}
/*!
\brief configure ADC regular channel
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] rank: the regular group sequence rank,this parameter must be between 0 to 15
\param[in] adc_channel: the selected ADC channel
only one among these parameters can be selected
\arg ADC_CHANNEL_x(x=0..17)(x=16 and x=17 are only for ADC0): ADC Channelx
\param[in] sample_time: the sample time value
only one parameter can be selected
\arg ADC_SAMPLETIME_1POINT5: 1.5 cycles
\arg ADC_SAMPLETIME_7POINT5: 7.5 cycles
\arg ADC_SAMPLETIME_13POINT5: 13.5 cycles
\arg ADC_SAMPLETIME_28POINT5: 28.5 cycles
\arg ADC_SAMPLETIME_41POINT5: 41.5 cycles
\arg ADC_SAMPLETIME_55POINT5: 55.5 cycles
\arg ADC_SAMPLETIME_71POINT5: 71.5 cycles
\arg ADC_SAMPLETIME_239POINT5: 239.5 cycles
\param[out] none
\retval none
*/
void adc_regular_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint32_t sample_time)
{
uint32_t rsq,sampt;
/* ADC regular sequence config */
if(rank < 6U){
rsq = ADC_RSQ2(adc_periph);
rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (5U*rank)));
rsq |= ((uint32_t)adc_channel << (5U*rank));
ADC_RSQ2(adc_periph) = rsq;
}else if(rank < 12U){
rsq = ADC_RSQ1(adc_periph);
rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (5U*(rank-6U))));
rsq |= ((uint32_t)adc_channel << (5U*(rank-6U)));
ADC_RSQ1(adc_periph) = rsq;
}else if(rank < 16U){
rsq = ADC_RSQ0(adc_periph);
rsq &= ~((uint32_t)(ADC_RSQX_RSQN << (5U*(rank-12U))));
rsq |= ((uint32_t)adc_channel << (5U*(rank-12U)));
ADC_RSQ0(adc_periph) = rsq;
}else{
}
/* ADC sampling time config */
if(adc_channel < 10U){
sampt = ADC_SAMPT1(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*adc_channel)));
sampt |= (uint32_t)(sample_time << (3U*adc_channel));
ADC_SAMPT1(adc_periph) = sampt;
}else if(adc_channel < 18U){
sampt = ADC_SAMPT0(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*(adc_channel-10U))));
sampt |= (uint32_t)(sample_time << (3U*(adc_channel-10U)));
ADC_SAMPT0(adc_periph) = sampt;
}else{
}
}
/*!
\brief configure ADC inserted channel
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] rank: the inserted group sequencer rank,this parameter must be between 0 to 3
\param[in] adc_channel: the selected ADC channel
only one among these parameters can be selected
\arg ADC_CHANNEL_x(x=0..17)(x=16 and x=17 are only for ADC0): ADC Channelx
\param[in] sample_time: The sample time value
only one parameter can be selected
\arg ADC_SAMPLETIME_1POINT5: 1.5 cycles
\arg ADC_SAMPLETIME_7POINT5: 7.5 cycles
\arg ADC_SAMPLETIME_13POINT5: 13.5 cycles
\arg ADC_SAMPLETIME_28POINT5: 28.5 cycles
\arg ADC_SAMPLETIME_41POINT5: 41.5 cycles
\arg ADC_SAMPLETIME_55POINT5: 55.5 cycles
\arg ADC_SAMPLETIME_71POINT5: 71.5 cycles
\arg ADC_SAMPLETIME_239POINT5: 239.5 cycles
\param[out] none
\retval none
*/
void adc_inserted_channel_config(uint32_t adc_periph , uint8_t rank , uint8_t adc_channel , uint32_t sample_time)
{
uint8_t inserted_length;
uint32_t isq,sampt;
inserted_length = (uint8_t)GET_BITS(ADC_ISQ(adc_periph) , 20U , 21U);
isq = ADC_ISQ(adc_periph);
isq &= ~((uint32_t)(ADC_ISQ_ISQN << (15U-(inserted_length-rank)*5U)));
isq |= ((uint32_t)adc_channel << (15U-(inserted_length-rank)*5U));
ADC_ISQ(adc_periph) = isq;
/* ADC sampling time config */
if(adc_channel < 10U){
sampt = ADC_SAMPT1(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*adc_channel)));
sampt |= (uint32_t) sample_time << (3U*adc_channel);
ADC_SAMPT1(adc_periph) = sampt;
}else if(adc_channel < 18U){
sampt = ADC_SAMPT0(adc_periph);
sampt &= ~((uint32_t)(ADC_SAMPTX_SPTN << (3U*(adc_channel-10U))));
sampt |= ((uint32_t)sample_time << (3U*(adc_channel-10U)));
ADC_SAMPT0(adc_periph) = sampt;
}else{
}
}
/*!
\brief configure ADC inserted channel offset
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] inserted_channel : insert channel select
only one parameter can be selected
\arg ADC_INSERTED_CHANNEL_0: inserted channel0
\arg ADC_INSERTED_CHANNEL_1: inserted channel1
\arg ADC_INSERTED_CHANNEL_2: inserted channel2
\arg ADC_INSERTED_CHANNEL_3: inserted channel3
\param[in] offset : the offset data
\param[out] none
\retval none
*/
void adc_inserted_channel_offset_config(uint32_t adc_periph , uint8_t inserted_channel , uint16_t offset)
{
uint8_t inserted_length;
uint32_t num = 0U;
inserted_length = (uint8_t)GET_BITS(ADC_ISQ(adc_periph) , 20U , 21U);
num = 3U - (inserted_length - inserted_channel);
if(num <= 3U){
/* calculate the offset of the register */
num = num * 4U;
/* config the offset of the selected channels */
REG32((adc_periph) + 0x14U + num) = IOFFX_IOFF((uint32_t)offset);
}
}
/*!
\brief enable ADC external trigger
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_channel_group: select the channel group
one or more parameters can be selected
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] newvalue: ENABLE or DISABLE
\param[out] none
\retval none
*/
void adc_external_trigger_config(uint32_t adc_periph, uint8_t adc_channel_group, ControlStatus newvalue)
{
if(newvalue){
if(0U != (adc_channel_group & ADC_REGULAR_CHANNEL)){
ADC_CTL1(adc_periph) |= ADC_CTL1_ETERC;
}
if(0U != (adc_channel_group & ADC_INSERTED_CHANNEL)){
ADC_CTL1(adc_periph) |= ADC_CTL1_ETEIC;
}
}else{
if(0U != (adc_channel_group & ADC_REGULAR_CHANNEL)){
ADC_CTL1(adc_periph) &= ~ADC_CTL1_ETERC;
}
if(0U != (adc_channel_group & ADC_INSERTED_CHANNEL)){
ADC_CTL1(adc_periph) &= ~ADC_CTL1_ETEIC;
}
}
}
/*!
\brief configure ADC external trigger source
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_channel_group: select the channel group
only one parameter can be selected
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[in] external_trigger_source: regular or inserted group trigger source
only one parameter can be selected
for regular channel:
\arg ADC0_1_EXTTRIG_REGULAR_T0_CH0: timer 0 CC0 event select
\arg ADC0_1_EXTTRIG_REGULAR_T0_CH1: timer 0 CC1 event select
\arg ADC0_1_EXTTRIG_REGULAR_T0_CH2: timer 0 CC2 event select
\arg ADC0_1_EXTTRIG_REGULAR_T1_CH1: timer 1 CC1 event select
\arg ADC0_1_EXTTRIG_REGULAR_T2_TRGO: timer 2 TRGO event select
\arg ADC0_1_EXTTRIG_REGULAR_T3_CH3: timer 3 CC3 event select
\arg ADC0_1_EXTTRIG_REGULAR_T7_TRGO: timer 7 TRGO event select
\arg ADC0_1_EXTTRIG_REGULAR_EXTI_11 : external interrupt line 11
\arg ADC2_EXTTRIG_REGULAR_T2_CH0: timer 2 CC0 event select
\arg ADC2_EXTTRIG_REGULAR_T1_CH2: timer 1 CC2 event select
\arg ADC2_EXTTRIG_REGULAR_T0_CH2: timer 0 CC2 event select
\arg ADC2_EXTTRIG_REGULAR_T7_CH0: timer 7 CC0 event select
\arg ADC2_EXTTRIG_REGULAR_T7_TRGO: timer 7 TRGO event select
\arg ADC2_EXTTRIG_REGULAR_T4_CH0: timer 4 CC0 event select
\arg ADC2_EXTTRIG_REGULAR_T4_CH2: timer 4 CC2 event select
\arg ADC0_1_2_EXTTRIG_REGULAR_NONE: software trigger
for inserted channel:
\arg ADC0_1_EXTTRIG_INSERTED_T0_TRGO: timer 0 TRGO event select
\arg ADC0_1_EXTTRIG_INSERTED_T0_CH3: timer 0 CC3 event select
\arg ADC0_1_EXTTRIG_INSERTED_T1_TRGO: timer 1 TRGO event select
\arg ADC0_1_EXTTRIG_INSERTED_T1_CH0: timer 1 CC0 event select
\arg ADC0_1_EXTTRIG_INSERTED_T2_CH3: timer 2 CC3 event select
\arg ADC0_1_EXTTRIG_INSERTED_T3_TRGO: timer 3 TRGO event select
\arg ADC0_1_EXTTRIG_INSERTED_EXTI_15: external interrupt line 15
\arg ADC0_1_EXTTRIG_INSERTED_T7_CH3: timer 7 CC3 event select
\arg ADC2_EXTTRIG_INSERTED_T0_TRGO: timer 0 TRGO event select
\arg ADC2_EXTTRIG_INSERTED_T0_CH3: timer 0 CC3 event select
\arg ADC2_EXTTRIG_INSERTED_T3_CH2: timer 3 CC2 event select
\arg ADC2_EXTTRIG_INSERTED_T7_CH1: timer 7 CC1 event select
\arg ADC2_EXTTRIG_INSERTED_T7_CH3: timer 7 CC3 event select
\arg ADC2_EXTTRIG_INSERTED_T4_TRGO: timer 4 TRGO event select
\arg ADC2_EXTTRIG_INSERTED_T4_CH3: timer 4 CC3 event select
\arg ADC0_1_2_EXTTRIG_INSERTED_NONE: software trigger
\param[out] none
\retval none
*/
void adc_external_trigger_source_config(uint32_t adc_periph, uint8_t adc_channel_group, uint32_t external_trigger_source)
{
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSRC);
ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source;
break;
case ADC_INSERTED_CHANNEL:
ADC_CTL1(adc_periph) &= ~((uint32_t)ADC_CTL1_ETSIC);
ADC_CTL1(adc_periph) |= (uint32_t)external_trigger_source;
break;
default:
break;
}
}
/*!
\brief enable ADC software trigger
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_channel_group: select the channel group
one or more parameters can be selected
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\param[out] none
\retval none
*/
void adc_software_trigger_enable(uint32_t adc_periph , uint8_t adc_channel_group)
{
if(0U != (adc_channel_group & ADC_REGULAR_CHANNEL)){
ADC_CTL1(adc_periph) |= ADC_CTL1_SWRCST;
}
if(0U != (adc_channel_group & ADC_INSERTED_CHANNEL)){
ADC_CTL1(adc_periph) |= ADC_CTL1_SWICST;
}
}
/*!
\brief read ADC regular group data register
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] none
\param[out] none
\retval the conversion value
*/
uint16_t adc_regular_data_read(uint32_t adc_periph)
{
return (uint16_t)(ADC_RDATA(adc_periph));
}
/*!
\brief read ADC inserted group data register
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] inserted_channel : insert channel select
only one parameter can be selected
\arg ADC_INSERTED_CHANNEL_0: inserted Channel0
\arg ADC_INSERTED_CHANNEL_1: inserted channel1
\arg ADC_INSERTED_CHANNEL_2: inserted Channel2
\arg ADC_INSERTED_CHANNEL_3: inserted Channel3
\param[out] none
\retval the conversion value
*/
uint16_t adc_inserted_data_read(uint32_t adc_periph , uint8_t inserted_channel)
{
uint32_t idata;
/* read the data of the selected channel */
switch(inserted_channel){
case ADC_INSERTED_CHANNEL_0:
idata = ADC_IDATA0(adc_periph);
break;
case ADC_INSERTED_CHANNEL_1:
idata = ADC_IDATA1(adc_periph);
break;
case ADC_INSERTED_CHANNEL_2:
idata = ADC_IDATA2(adc_periph);
break;
case ADC_INSERTED_CHANNEL_3:
idata = ADC_IDATA3(adc_periph);
break;
default:
idata = 0U;
break;
}
return (uint16_t)idata;
}
/*!
\brief read the last ADC0 and ADC1 conversion result data in sync mode
\param[in] none
\param[out] none
\retval the conversion value
*/
uint32_t adc_sync_mode_convert_value_read(void)
{
/* return conversion value */
return ADC_RDATA(ADC0);
}
/*!
\brief get the ADC flag bits
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_flag: the adc flag bits
only one parameter can be selected
\arg ADC_FLAG_WDE: analog watchdog event flag
\arg ADC_FLAG_EOC: end of group conversion flag
\arg ADC_FLAG_EOIC: end of inserted group conversion flag
\arg ADC_FLAG_STIC: start flag of inserted channel group
\arg ADC_FLAG_STRC: start flag of regular channel group
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus adc_flag_get(uint32_t adc_periph , uint32_t adc_flag)
{
FlagStatus reval = RESET;
if(ADC_STAT(adc_periph) & adc_flag){
reval = SET;
}
return reval;
}
/*!
\brief clear the ADC flag bits
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_flag: the adc flag bits
one or more parameters can be selected
\arg ADC_FLAG_WDE: analog watchdog event flag
\arg ADC_FLAG_EOC: end of group conversion flag
\arg ADC_FLAG_EOIC: end of inserted group conversion flag
\arg ADC_FLAG_STIC: start flag of inserted channel group
\arg ADC_FLAG_STRC: start flag of regular channel group
\param[out] none
\retval none
*/
void adc_flag_clear(uint32_t adc_periph , uint32_t adc_flag)
{
ADC_STAT(adc_periph) &= ~((uint32_t)adc_flag);
}
/*!
\brief get the ADC interrupt bits
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_interrupt: the adc interrupt bits
only oneparameter can be selected
\arg ADC_INT_FLAG_WDE: analog watchdog interrupt
\arg ADC_INT_FLAG_EOC: end of group conversion interrupt
\arg ADC_INT_FLAG_EOIC: end of inserted group conversion interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus adc_interrupt_flag_get(uint32_t adc_periph , uint32_t adc_interrupt)
{
FlagStatus interrupt_flag = RESET;
uint32_t state;
/* check the interrupt bits */
switch(adc_interrupt){
case ADC_INT_FLAG_WDE:
state = ADC_STAT(adc_periph) & ADC_STAT_WDE;
if((ADC_CTL0(adc_periph) & ADC_CTL0_WDEIE) && state){
interrupt_flag = SET;
}
break;
case ADC_INT_FLAG_EOC:
state = ADC_STAT(adc_periph) & ADC_STAT_EOC;
if((ADC_CTL0(adc_periph) & ADC_CTL0_EOCIE) && state){
interrupt_flag = SET;
}
break;
case ADC_INT_FLAG_EOIC:
state = ADC_STAT(adc_periph) & ADC_STAT_EOIC;
if((ADC_CTL0(adc_periph) & ADC_CTL0_EOICIE) && state){
interrupt_flag = SET;
}
break;
default:
break;
}
return interrupt_flag;
}
/*!
\brief clear the ADC flag
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_interrupt: the adc status flag
one or more parameters can be selected
\arg ADC_INT_FLAG_WDE: analog watchdog interrupt
\arg ADC_INT_FLAG_EOC: end of group conversion interrupt
\arg ADC_INT_FLAG_EOIC: end of inserted group conversion interrupt
\param[out] none
\retval none
*/
void adc_interrupt_flag_clear(uint32_t adc_periph , uint32_t adc_interrupt)
{
ADC_STAT(adc_periph) &= ~((uint32_t)adc_interrupt);
}
/*!
\brief enable ADC interrupt
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_interrupt: the adc interrupt
one or more parameters can be selected
\arg ADC_INT_WDE: analog watchdog interrupt flag
\arg ADC_INT_EOC: end of group conversion interrupt flag
\arg ADC_INT_EOIC: end of inserted group conversion interrupt flag
\param[out] none
\retval none
*/
void adc_interrupt_enable(uint32_t adc_periph , uint32_t adc_interrupt)
{
if(0U != (adc_interrupt & ADC_INT_WDE)){
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_WDEIE;
}
if(0U != (adc_interrupt & ADC_INT_EOC)){
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOCIE;
}
if(0U != (adc_interrupt & ADC_INT_EOIC)){
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_EOICIE;
}
}
/*!
\brief disable ADC interrupt
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_interrupt: the adc interrupt flag
one or more parameters can be selected
\arg ADC_INT_WDE: analog watchdog interrupt flag
\arg ADC_INT_EOC: end of group conversion interrupt flag
\arg ADC_INT_EOIC: end of inserted group conversion interrupt flag
\param[out] none
\retval none
*/
void adc_interrupt_disable(uint32_t adc_periph, uint32_t adc_interrupt)
{
if(0U != (adc_interrupt & ADC_INT_WDE)){
ADC_CTL0(adc_periph) &= ~(uint32_t) ADC_CTL0_WDEIE;
}
if(0U != (adc_interrupt & ADC_INT_EOC)){
ADC_CTL0(adc_periph) &= ~(uint32_t) ADC_CTL0_EOCIE;
}
if(0U != (adc_interrupt & ADC_INT_EOIC)){
ADC_CTL0(adc_periph) &= ~(uint32_t) ADC_CTL0_EOICIE;
}
}
/*!
\brief configure ADC analog watchdog single channel
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_channel: the selected ADC channel
only one among these parameters can be selected
\arg ADC_CHANNEL_x: ADC Channelx(x=0..17)(x=16 and x=17 are only for ADC0)
\param[out] none
\retval none
*/
void adc_watchdog_single_channel_enable(uint32_t adc_periph, uint8_t adc_channel)
{
ADC_CTL0(adc_periph) &= (uint32_t)~(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC | ADC_CTL0_WDCHSEL);
ADC_CTL0(adc_periph) |= (uint32_t)adc_channel;
ADC_CTL0(adc_periph) |= (uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC);
}
/*!
\brief configure ADC analog watchdog group channel
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] adc_channel_group: the channel group use analog watchdog
only one parameter can be selected
\arg ADC_REGULAR_CHANNEL: regular channel group
\arg ADC_INSERTED_CHANNEL: inserted channel group
\arg ADC_REGULAR_INSERTED_CHANNEL: both regular and inserted group
\param[out] none
\retval none
*/
void adc_watchdog_group_channel_enable(uint32_t adc_periph, uint8_t adc_channel_group)
{
ADC_CTL0(adc_periph) &= (uint32_t)~(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC);
/* select the group */
switch(adc_channel_group){
case ADC_REGULAR_CHANNEL:
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_RWDEN;
break;
case ADC_INSERTED_CHANNEL:
ADC_CTL0(adc_periph) |= (uint32_t) ADC_CTL0_IWDEN;
break;
case ADC_REGULAR_INSERTED_CHANNEL:
ADC_CTL0(adc_periph) |= (uint32_t)(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN);
break;
default:
break;
}
}
/*!
\brief disable ADC analog watchdog
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[out] none
\retval none
*/
void adc_watchdog_disable(uint32_t adc_periph)
{
ADC_CTL0(adc_periph) &= (uint32_t)~(ADC_CTL0_RWDEN | ADC_CTL0_IWDEN | ADC_CTL0_WDSC | ADC_CTL0_WDCHSEL);
}
/*!
\brief configure ADC analog watchdog threshold
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] low_threshold: analog watchdog low threshold,0..4095
\param[in] high_threshold: analog watchdog high threshold,0..4095
\param[out] none
\retval none
*/
void adc_watchdog_threshold_config(uint32_t adc_periph , uint16_t low_threshold , uint16_t high_threshold)
{
ADC_WDLT(adc_periph) = (uint32_t)WDLT_WDLT(low_threshold);
ADC_WDHT(adc_periph) = (uint32_t)WDHT_WDHT(high_threshold);
}
/*!
\brief configure ADC oversample mode
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[in] mode: ADC oversampling mode
only oneparameter can be selected
\arg ADC_OVERSAMPLING_ALL_CONVERT: all oversampled conversions for a channel are done consecutively after a trigger
\arg ADC_OVERSAMPLING_ONE_CONVERT: each oversampled conversion for a channel needs a trigger
\param[in] shift: ADC oversampling shift
only oneparameter can be selected
\arg ADC_OVERSAMPLING_SHIFT_NONE: no oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_1B: 1-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_2B: 2-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_3B: 3-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_4B: 3-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_5B: 5-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_6B: 6-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_7B: 7-bit oversampling shift
\arg ADC_OVERSAMPLING_SHIFT_8B: 8-bit oversampling shift
\param[in] ratio: ADC oversampling ratio
only oneparameter can be selected
\arg ADC_OVERSAMPLING_RATIO_MUL2: oversampling ratio multiple 2
\arg ADC_OVERSAMPLING_RATIO_MUL4: oversampling ratio multiple 4
\arg ADC_OVERSAMPLING_RATIO_MUL8: oversampling ratio multiple 8
\arg ADC_OVERSAMPLING_RATIO_MUL16: oversampling ratio multiple 16
\arg ADC_OVERSAMPLING_RATIO_MUL32: oversampling ratio multiple 32
\arg ADC_OVERSAMPLING_RATIO_MUL64: oversampling ratio multiple 64
\arg ADC_OVERSAMPLING_RATIO_MUL128: oversampling ratio multiple 128
\arg ADC_OVERSAMPLING_RATIO_MUL256: oversampling ratio multiple 256
\param[out] none
\retval none
*/
void adc_oversample_mode_config(uint32_t adc_periph, uint8_t mode, uint16_t shift, uint8_t ratio)
{
if(ADC_OVERSAMPLING_ONE_CONVERT == mode){
ADC_OVSAMPCTL(adc_periph) |= (uint32_t)ADC_OVSAMPCTL_TOVS;
}else{
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)ADC_OVSAMPCTL_TOVS);
}
/* config the shift and ratio */
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)(ADC_OVSAMPCTL_OVSR | ADC_OVSAMPCTL_OVSS));
ADC_OVSAMPCTL(adc_periph) |= ((uint32_t)shift | (uint32_t)ratio);
}
/*!
\brief enable ADC oversample mode
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[out] none
\retval none
*/
void adc_oversample_mode_enable(uint32_t adc_periph)
{
ADC_OVSAMPCTL(adc_periph) |= ADC_OVSAMPCTL_OVSEN;
}
/*!
\brief disable ADC oversample mode
\param[in] adc_periph: ADCx,x=0,1,2
only one among these parameters can be selected
\param[out] none
\retval none
*/
void adc_oversample_mode_disable(uint32_t adc_periph)
{
ADC_OVSAMPCTL(adc_periph) &= ~((uint32_t)ADC_OVSAMPCTL_OVSEN);
}

View File

@ -0,0 +1,302 @@
/*!
\file gd32f30x_bkp.c
\brief BKP driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.2, firmware for GD32F30x
*/
#include "gd32f30x_bkp.h"
#define TAMPER_FLAG_SHIFT ((uint8_t)8U)
/*!
\brief reset BKP registers
\param[in] none
\param[out] none
\retval none
*/
void bkp_deinit(void)
{
/* reset BKP domain register*/
rcu_bkp_reset_enable();
rcu_bkp_reset_disable();
}
/*!
\brief write BKP data register
\param[in] register_number: refer to bkp_data_register_enum, only one parameter can be selected
\arg BKP_DATA_x(x = 0..41): bkp data register number x
\param[in] data: the data to be write in BKP data register
\param[out] none
\retval none
*/
void bkp_write_data(bkp_data_register_enum register_number, uint16_t data)
{
if((register_number >= BKP_DATA_10) && (register_number <= BKP_DATA_41)){
BKP_DATA10_41(register_number-1U) = data;
}else if((register_number >= BKP_DATA_0) && (register_number <= BKP_DATA_9)){
BKP_DATA0_9(register_number-1U) = data;
}else{
/* illegal parameters */
}
}
/*!
\brief read BKP data register
\param[in] register_number: refer to bkp_data_register_enum, only one parameter can be selected
\arg BKP_DATA_x(x = 0..41): bkp data register number x
\param[out] none
\retval data of BKP data register
*/
uint16_t bkp_read_data(bkp_data_register_enum register_number)
{
uint16_t data = 0U;
/* get the data from the BKP data register */
if((register_number >= BKP_DATA_10) && (register_number <= BKP_DATA_41)){
data = BKP_DATA10_41(register_number-1U);
}else if((register_number >= BKP_DATA_0) && (register_number <= BKP_DATA_9)){
data = BKP_DATA0_9(register_number-1U);
}else{
/* illegal parameters */
}
return data;
}
/*!
\brief enable RTC clock calibration output
\param[in] none
\param[out] none
\retval none
*/
void bkp_rtc_calibration_output_enable(void)
{
BKP_OCTL |= (uint16_t)BKP_OCTL_COEN;
}
/*!
\brief disable RTC clock calibration output
\param[in] none
\param[out] none
\retval none
*/
void bkp_rtc_calibration_output_disable(void)
{
BKP_OCTL &= (uint16_t)~BKP_OCTL_COEN;
}
/*!
\brief enable RTC alarm or second signal output
\param[in] none
\param[out] none
\retval none
*/
void bkp_rtc_signal_output_enable(void)
{
BKP_OCTL |= (uint16_t)BKP_OCTL_ASOEN;
}
/*!
\brief disable RTC alarm or second signal output
\param[in] none
\param[out] none
\retval none
*/
void bkp_rtc_signal_output_disable(void)
{
BKP_OCTL &= (uint16_t)~BKP_OCTL_ASOEN;
}
/*!
\brief select RTC output
\param[in] outputsel: RTC output selection
\arg RTC_OUTPUT_ALARM_PULSE: RTC alarm pulse is selected as the RTC output
\arg RTC_OUTPUT_SECOND_PULSE: RTC second pulse is selected as the RTC output
\param[out] none
\retval none
*/
void bkp_rtc_output_select(uint16_t outputsel)
{
uint16_t ctl = 0U;
ctl = BKP_OCTL;
ctl &= (uint16_t)~BKP_OCTL_ROSEL;
ctl |= outputsel;
BKP_OCTL = ctl;
}
/*!
\brief select RTC clock output
\param[in] clocksel: RTC clock output selection
\arg RTC_CLOCK_DIV_64: RTC clock div 64
\arg RTC_CLOCK_DIV_1: RTC clock
\param[out] none
\retval none
*/
void bkp_rtc_clock_output_select(uint16_t clocksel)
{
uint16_t ctl = 0U;
ctl = BKP_OCTL;
ctl &= (uint16_t)~BKP_OCTL_CCOSEL;
ctl |= clocksel;
BKP_OCTL = ctl;
}
/*!
\brief RTC clock calibration direction
\param[in] direction: RTC clock calibration direction
\arg RTC_CLOCK_SLOWED_DOWN: RTC clock slow down
\arg RTC_CLOCK_SPEED_UP: RTC clock speed up
\param[out] none
\retval none
*/
void bkp_rtc_clock_calibration_direction(uint16_t direction)
{
uint16_t ctl = 0U;
ctl = BKP_OCTL;
ctl &= (uint16_t)~BKP_OCTL_CALDIR;
ctl |= direction;
BKP_OCTL = ctl;
}
/*!
\brief set RTC clock calibration value
\param[in] value: RTC clock calibration value
\arg 0x00 - 0x7F
\param[out] none
\retval none
*/
void bkp_rtc_calibration_value_set(uint8_t value)
{
uint16_t ctl;
ctl = BKP_OCTL;
ctl &= (uint16_t)OCTL_RCCV(0);
ctl |= (uint16_t)OCTL_RCCV(value);
BKP_OCTL = ctl;
}
/*!
\brief enable tamper detection
\param[in] none
\param[out] none
\retval none
*/
void bkp_tamper_detection_enable(void)
{
BKP_TPCTL |= (uint16_t)BKP_TPCTL_TPEN;
}
/*!
\brief disable tamper detection
\param[in] none
\param[out] none
\retval none
*/
void bkp_tamper_detection_disable(void)
{
BKP_TPCTL &= (uint16_t)~BKP_TPCTL_TPEN;
}
/*!
\brief set tamper pin active level
\param[in] level: tamper active level
\arg TAMPER_PIN_ACTIVE_HIGH: the tamper pin is active high
\arg TAMPER_PIN_ACTIVE_LOW: the tamper pin is active low
\param[out] none
\retval none
*/
void bkp_tamper_active_level_set(uint16_t level)
{
uint16_t ctl = 0U;
ctl = BKP_TPCTL;
ctl &= (uint16_t)~BKP_TPCTL_TPAL;
ctl |= level;
BKP_TPCTL = ctl;
}
/*!
\brief enable tamper interrupt
\param[in] none
\param[out] none
\retval none
*/
void bkp_tamper_interrupt_enable(void)
{
BKP_TPCS |= (uint16_t)BKP_TPCS_TPIE;
}
/*!
\brief disable tamper interrupt
\param[in] none
\param[out] none
\retval none
*/
void bkp_tamper_interrupt_disable(void)
{
BKP_TPCS &= (uint16_t)~BKP_TPCS_TPIE;
}
/*!
\brief get bkp flag state
\param[in] flag
\arg BKP_FLAG_TAMPER: tamper event flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus bkp_flag_get(uint16_t flag)
{
if(RESET != (BKP_TPCS & flag)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear bkp flag state
\param[in] flag
\arg BKP_FLAG_TAMPER: tamper event flag
\param[out] none
\retval none
*/
void bkp_flag_clear(uint16_t flag)
{
BKP_TPCS |= (uint16_t)(flag >> TAMPER_FLAG_SHIFT);
}
/*!
\brief get bkp interrupt flag state
\param[in] flag
\arg BKP_INT_FLAG_TAMPER: tamper interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus bkp_interrupt_flag_get(uint16_t flag)
{
if(RESET != (BKP_TPCS & flag)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear bkp interrupt flag state
\param[in] flag
\arg BKP_INT_FLAG_TAMPER: tamper interrupt flag
\param[out] none
\retval none
*/
void bkp_interrupt_flag_clear(uint16_t flag)
{
BKP_TPCS |= (uint16_t)(flag >> TAMPER_FLAG_SHIFT);
}

View File

@ -0,0 +1,846 @@
/*!
\file gd32f30x_can.c
\brief CAN driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_can.h"
/*!
\brief deinitialize CAN
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_deinit(uint32_t can_periph)
{
#ifdef GD32F30X_CL
if(CAN0 == can_periph){
rcu_periph_reset_enable(RCU_CAN0RST);
rcu_periph_reset_disable(RCU_CAN0RST);
}else{
rcu_periph_reset_enable(RCU_CAN1RST);
rcu_periph_reset_disable(RCU_CAN1RST);
}
#else
if(CAN0 == can_periph){
rcu_periph_reset_enable(RCU_CAN0RST);
rcu_periph_reset_disable(RCU_CAN0RST);
}
#endif
}
/*!
\brief initialize CAN
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] can_parameter_init: parameters for CAN initializtion
\arg working_mode: CAN_NORMAL_MODE, CAN_LOOPBACK_MODE, CAN_SILENT_MODE, CAN_SILENT_LOOPBACK_MODE
\arg resync_jump_width: CAN_BT_SJW_xTQ(x=1, 2, 3, 4)
\arg time_segment_1: CAN_BT_BS1_xTQ(1..16)
\arg time_segment_2: CAN_BT_BS2_xTQ(1..8)
\arg time_triggered: ENABLE or DISABLE
\arg auto_bus_off_recovery: ENABLE or DISABLE
\arg auto_wake_up: ENABLE or DISABLE
\arg auto_retrans: ENABLE or DISABLE
\arg rec_fifo_overwrite: ENABLE or DISABLE
\arg trans_fifo_order: ENABLE or DISABLE
\arg prescaler: 0x0001 - 0x03FF
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_init(uint32_t can_periph, can_parameter_struct* can_parameter_init)
{
uint32_t timeout = CAN_TIMEOUT;
ErrStatus flag = ERROR;
/* disable sleep mode */
CAN_CTL(can_periph) &= ~CAN_CTL_SLPWMOD;
/* enable initialize mode */
CAN_CTL(can_periph) |= CAN_CTL_IWMOD;
/* wait ACK */
while((CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (timeout)){
timeout--;
}
/* check initialize working success */
if(CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)){
flag = ERROR;
}else{
/* set the bit timing register */
CAN_BT(can_periph) = (BT_MODE((uint32_t)can_parameter_init->working_mode) | \
BT_SJW((uint32_t)can_parameter_init->resync_jump_width) | \
BT_BS1((uint32_t)can_parameter_init->time_segment_1) | \
BT_BS2((uint32_t)can_parameter_init->time_segment_2) | \
BT_BAUDPSC(((uint32_t)(can_parameter_init->prescaler) - 1U)));
/* time trigger communication mode */
if(ENABLE == can_parameter_init->time_triggered){
CAN_CTL(can_periph) |= CAN_CTL_TTC;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_TTC;
}
/* automatic bus-off managment */
if(ENABLE == can_parameter_init->auto_bus_off_recovery){
CAN_CTL(can_periph) |= CAN_CTL_ABOR;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_ABOR;
}
/* automatic wakeup mode */
if(ENABLE == can_parameter_init->auto_wake_up){
CAN_CTL(can_periph) |= CAN_CTL_AWU;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_AWU;
}
/* automatic retransmission mode */
if(ENABLE == can_parameter_init->auto_retrans){
CAN_CTL(can_periph) |= CAN_CTL_ARD;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_ARD;
}
/* receive fifo overwrite mode */
if(ENABLE == can_parameter_init->rec_fifo_overwrite){
CAN_CTL(can_periph) |= CAN_CTL_RFOD;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_RFOD;
}
/* transmit fifo order */
if(ENABLE == can_parameter_init->trans_fifo_order){
CAN_CTL(can_periph) |= CAN_CTL_TFO;
}else{
CAN_CTL(can_periph) &= ~CAN_CTL_TFO;
}
/* disable initialize mode */
CAN_CTL(can_periph) &= ~CAN_CTL_IWMOD;
timeout = CAN_TIMEOUT;
/* wait the ACK */
while((CAN_STAT_IWS == (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (timeout)){
timeout--;
}
/* check exit initialize mode */
if(CAN_STAT_IWS == (CAN_STAT(can_periph) & CAN_STAT_IWS)){
flag = SUCCESS;
}
}
return flag;
}
/*!
\brief initialize CAN filter
\param[in] can_filter_parameter_init: struct for CAN filter initialization
\arg filter_list_high: 0x0000 - 0xFFFF
\arg filter_list_low: 0x0000 - 0xFFFF
\arg filter_mask_high: 0x0000 - 0xFFFF
\arg filter_mask_low: 0x0000 - 0xFFFF
\arg filter_fifo_number: CAN_FIFO0, CAN_FIFO1
\arg filter_number: 0 - 27
\arg filter_mode: CAN_FILTERMODE_MASK, CAN_FILTERMODE_LIST
\arg filter_bits: CAN_FILTERBITS_32BIT, CAN_FILTERBITS_16BIT
\arg filter_enable: ENABLE or DISABLE
\param[out] none
\retval none
*/
void can_filter_init(can_filter_parameter_struct* can_filter_parameter_init)
{
uint32_t val = 0U;
val = ((uint32_t)1) << (can_filter_parameter_init->filter_number);
/* filter lock disable */
CAN_FCTL(CAN0) |= CAN_FCTL_FLD;
/* disable filter */
CAN_FW(CAN0) &= ~(uint32_t)val;
/* filter 16 bits */
if(CAN_FILTERBITS_16BIT == can_filter_parameter_init->filter_bits){
/* set filter 16 bits */
CAN_FSCFG(CAN0) &= ~(uint32_t)val;
/* first 16 bits list and first 16 bits mask or first 16 bits list and second 16 bits list */
CAN_FDATA0(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_low) & CAN_FILTER_MASK_16BITS) | \
FDATA_MASK_LOW((can_filter_parameter_init->filter_list_low) & CAN_FILTER_MASK_16BITS);
/* second 16 bits list and second 16 bits mask or third 16 bits list and fourth 16 bits list */
CAN_FDATA1(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_high) & CAN_FILTER_MASK_16BITS) | \
FDATA_MASK_LOW((can_filter_parameter_init->filter_list_high) & CAN_FILTER_MASK_16BITS);
}
/* filter 32 bits */
if(CAN_FILTERBITS_32BIT == can_filter_parameter_init->filter_bits){
/* set filter 32 bits */
CAN_FSCFG(CAN0) |= (uint32_t)val;
/* 32 bits list or first 32 bits list */
CAN_FDATA0(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_list_high) & CAN_FILTER_MASK_16BITS) |
FDATA_MASK_LOW((can_filter_parameter_init->filter_list_low) & CAN_FILTER_MASK_16BITS);
/* 32 bits mask or second 32 bits list */
CAN_FDATA1(CAN0, can_filter_parameter_init->filter_number) = \
FDATA_MASK_HIGH((can_filter_parameter_init->filter_mask_high) & CAN_FILTER_MASK_16BITS) |
FDATA_MASK_LOW((can_filter_parameter_init->filter_mask_low) & CAN_FILTER_MASK_16BITS);
}
/* filter mode */
if(CAN_FILTERMODE_MASK == can_filter_parameter_init->filter_mode){
/* mask mode */
CAN_FMCFG(CAN0) &= ~(uint32_t)val;
}else{
/* list mode */
CAN_FMCFG(CAN0) |= (uint32_t)val;
}
/* filter FIFO */
if(CAN_FIFO0 == (can_filter_parameter_init->filter_fifo_number)){
/* FIFO0 */
CAN_FAFIFO(CAN0) &= ~(uint32_t)val;
}else{
/* FIFO1 */
CAN_FAFIFO(CAN0) |= (uint32_t)val;
}
/* filter working */
if(ENABLE == can_filter_parameter_init->filter_enable){
CAN_FW(CAN0) |= (uint32_t)val;
}
/* filter lock enable */
CAN_FCTL(CAN0) &= ~CAN_FCTL_FLD;
}
/*!
\brief set CAN1 fliter start bank number
\param[in] start_bank: CAN1 start bank number
\arg (1..27)
\param[out] none
\retval none
*/
void can1_filter_start_bank(uint8_t start_bank)
{
/* filter lock disable */
CAN_FCTL(CAN0) |= CAN_FCTL_FLD;
/* set CAN1 filter start number */
CAN_FCTL(CAN0) &= ~(uint32_t)CAN_FCTL_HBC1F;
CAN_FCTL(CAN0) |= FCTL_HBC1F(start_bank);
/* filter lock enaable */
CAN_FCTL(CAN0) &= ~CAN_FCTL_FLD;
}
/*!
\brief enable CAN debug freeze
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_debug_freeze_enable(uint32_t can_periph)
{
CAN_CTL(can_periph) |= CAN_CTL_DFZ;
#ifdef GD32F30X_CL
if(CAN0 == can_periph){
dbg_periph_enable(DBG_CAN0_HOLD);
}else{
dbg_periph_enable(DBG_CAN1_HOLD);
}
#else
if(CAN0 == can_periph){
dbg_periph_enable(DBG_CAN0_HOLD);
}
#endif
}
/*!
\brief disable CAN debug freeze
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_debug_freeze_disable(uint32_t can_periph)
{
CAN_CTL(can_periph) |= CAN_CTL_DFZ;
#ifdef GD32F30X_CL
if(CAN0 == can_periph){
dbg_periph_disable(DBG_CAN0_HOLD);
}else{
dbg_periph_disable(DBG_CAN1_HOLD);
}
#else
if(CAN0 == can_periph){
dbg_periph_enable(DBG_CAN0_HOLD);
}
#endif
}
/*!
\brief enable CAN time trigger mode
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_time_trigger_mode_enable(uint32_t can_periph)
{
uint8_t mailbox_number;
/* enable the tcc mode */
CAN_CTL(can_periph) |= CAN_CTL_TTC;
/* enable time stamp */
for(mailbox_number=0U; mailbox_number<3U; mailbox_number++){
CAN_TMP(can_periph, mailbox_number) |= CAN_TMP_TSEN;
}
}
/*!
\brief disable CAN time trigger mode
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval none
*/
void can_time_trigger_mode_disable(uint32_t can_periph)
{
uint8_t mailbox_number;
/* disable the TCC mode */
CAN_CTL(can_periph) &= ~CAN_CTL_TTC;
/* reset TSEN bits */
for(mailbox_number=0U; mailbox_number<3U; mailbox_number++){
CAN_TMP(can_periph, mailbox_number) &= ~CAN_TMP_TSEN;
}
}
/*!
\brief transmit CAN message
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] transmit_message: struct for CAN transmit message
\arg tx_sfid: 0x00000000 - 0x000007FF
\arg tx_efid: 0x00000000 - 0x1FFFFFFF
\arg tx_ff: CAN_FF_STANDARD, CAN_FF_EXTENDED
\arg tx_ft: CAN_FT_DATA, CAN_FT_REMOTE
\arg tx_dlenc: 1 - 7
\arg tx_data[]: 0x00 - 0xFF
\param[out] none
\retval mailbox_number
*/
uint8_t can_message_transmit(uint32_t can_periph, can_trasnmit_message_struct* transmit_message)
{
uint8_t mailbox_number = CAN_MAILBOX0;
/* select one empty mailbox */
if(CAN_TSTAT_TME0 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME0)){
mailbox_number = CAN_MAILBOX0;
}else if(CAN_TSTAT_TME1 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME1)){
mailbox_number = CAN_MAILBOX1;
}else if(CAN_TSTAT_TME2 == (CAN_TSTAT(can_periph)&CAN_TSTAT_TME2)){
mailbox_number = CAN_MAILBOX2;
}else{
mailbox_number = CAN_NOMAILBOX;
}
if(CAN_NOMAILBOX == mailbox_number){
return CAN_NOMAILBOX;
}
CAN_TMI(can_periph, mailbox_number) &= CAN_TMI_TEN;
if(CAN_FF_STANDARD == transmit_message->tx_ff){
/* set transmit mailbox standard identifier */
CAN_TMI(can_periph, mailbox_number) |= (uint32_t)(TMI_SFID(transmit_message->tx_sfid) | \
transmit_message->tx_ft);
}else{
/* set transmit mailbox extended identifier */
CAN_TMI(can_periph, mailbox_number) |= (uint32_t)(TMI_EFID(transmit_message->tx_efid) | \
transmit_message->tx_ff | \
transmit_message->tx_ft);
}
/* set the data length */
CAN_TMP(can_periph, mailbox_number) &= ((uint32_t)~CAN_TMP_DLENC);
CAN_TMP(can_periph, mailbox_number) |= transmit_message->tx_dlen;
/* set the data */
CAN_TMDATA0(can_periph, mailbox_number) = TMDATA0_DB3(transmit_message->tx_data[3]) | \
TMDATA0_DB2(transmit_message->tx_data[2]) | \
TMDATA0_DB1(transmit_message->tx_data[1]) | \
TMDATA0_DB0(transmit_message->tx_data[0]);
CAN_TMDATA1(can_periph, mailbox_number) = TMDATA1_DB7(transmit_message->tx_data[7]) | \
TMDATA1_DB6(transmit_message->tx_data[6]) | \
TMDATA1_DB5(transmit_message->tx_data[5]) | \
TMDATA1_DB4(transmit_message->tx_data[4]);
/* enable transmission */
CAN_TMI(can_periph, mailbox_number) |= CAN_TMI_TEN;
return mailbox_number;
}
/*!
\brief get CAN transmit state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] mailbox_number
\arg CAN_MAILBOX(x=0,1,2)
\param[out] none
\retval can_transmit_state_enum
*/
can_transmit_state_enum can_transmit_states(uint32_t can_periph, uint8_t mailbox_number)
{
can_transmit_state_enum state = CAN_TRANSMIT_FAILED;
uint32_t val = 0U;
switch(mailbox_number){
case CAN_MAILBOX0:
val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF0 | CAN_TSTAT_MTFNERR0 | CAN_TSTAT_TME0);
break;
case CAN_MAILBOX1:
val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF1 | CAN_TSTAT_MTFNERR1 | CAN_TSTAT_TME1);
break;
case CAN_MAILBOX2:
val = CAN_TSTAT(can_periph) & (CAN_TSTAT_MTF2 | CAN_TSTAT_MTFNERR2 | CAN_TSTAT_TME2);
break;
default:
val = CAN_TRANSMIT_FAILED;
break;
}
switch(val){
/* transmit pending */
case (CAN_STATE_PENDING):
state = CAN_TRANSMIT_PENDING;
break;
/* transmit succeeded */
case (CAN_TSTAT_MTF0 | CAN_TSTAT_MTFNERR0 | CAN_TSTAT_TME0):
state = CAN_TRANSMIT_OK;
break;
case (CAN_TSTAT_MTF1 | CAN_TSTAT_MTFNERR1 | CAN_TSTAT_TME1):
state = CAN_TRANSMIT_OK;
break;
case (CAN_TSTAT_MTF2 | CAN_TSTAT_MTFNERR2 | CAN_TSTAT_TME2):
state = CAN_TRANSMIT_OK;
break;
default:
state = CAN_TRANSMIT_FAILED;
break;
}
return state;
}
/*!
\brief stop CAN transmission
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] mailbox_number
only one parameter can be selected which is shown as below:
\arg CAN_MAILBOXx(x=0,1,2)
\param[out] none
\retval none
*/
void can_transmission_stop(uint32_t can_periph, uint8_t mailbox_number)
{
if(CAN_MAILBOX0 == mailbox_number){
CAN_TSTAT(can_periph) |= CAN_TSTAT_MST0;
}else if(CAN_MAILBOX1 == mailbox_number){
CAN_TSTAT(can_periph) |= CAN_TSTAT_MST1;
}else if(CAN_MAILBOX2 == mailbox_number){
CAN_TSTAT(can_periph) |= CAN_TSTAT_MST2;
}else{
/* illegal parameters */
}
}
/*!
\brief CAN receive message
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] fifo_number
\arg CAN_FIFOx(x=0,1)
\param[out] receive_message: struct for CAN receive message
\arg rx_sfid: 0x00000000 - 0x000007FF
\arg rx_efid: 0x00000000 - 0x1FFFFFFF
\arg rx_ff: CAN_FF_STANDARD, CAN_FF_EXTENDED
\arg rx_ft: CAN_FT_DATA, CAN_FT_REMOTE
\arg rx_dlenc: 1 - 7
\arg rx_data[]: 0x00 - 0xFF
\arg rx_fi: 0 - 27
\retval none
*/
void can_message_receive(uint32_t can_periph, uint8_t fifo_number, can_receive_message_struct* receive_message)
{
/* get the frame format */
receive_message->rx_ff = (uint8_t)(CAN_RFIFOMI_FF & CAN_RFIFOMI(can_periph, fifo_number));
if(CAN_FF_STANDARD == receive_message->rx_ff){
/* get standard identifier */
receive_message -> rx_sfid = (uint32_t)(RFIFOMI_SFID(CAN_RFIFOMI(can_periph, fifo_number)));
}else{
/* get extended identifier */
receive_message -> rx_efid = (uint32_t)(RFIFOMI_EFID(CAN_RFIFOMI(can_periph, fifo_number)));
}
/* get frame type */
receive_message -> rx_ft = (uint8_t)(CAN_RFIFOMI_FT & CAN_RFIFOMI(can_periph, fifo_number));
/* get recevie data length */
receive_message -> rx_dlen = (uint8_t)(RFIFOMP_DLENC(CAN_RFIFOMP(can_periph, fifo_number)));
/* filtering index */
receive_message -> rx_fi = (uint8_t)(RFIFOMP_FI(CAN_RFIFOMP(can_periph, fifo_number)));
/* receive data */
receive_message -> rx_data[0] = (uint8_t)(RFIFOMDATA0_DB0(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[1] = (uint8_t)(RFIFOMDATA0_DB1(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[2] = (uint8_t)(RFIFOMDATA0_DB2(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[3] = (uint8_t)(RFIFOMDATA0_DB3(CAN_RFIFOMDATA0(can_periph, fifo_number)));
receive_message -> rx_data[4] = (uint8_t)(RFIFOMDATA1_DB4(CAN_RFIFOMDATA1(can_periph, fifo_number)));
receive_message -> rx_data[5] = (uint8_t)(RFIFOMDATA1_DB5(CAN_RFIFOMDATA1(can_periph, fifo_number)));
receive_message -> rx_data[6] = (uint8_t)(RFIFOMDATA1_DB6(CAN_RFIFOMDATA1(can_periph, fifo_number)));
receive_message -> rx_data[7] = (uint8_t)(RFIFOMDATA1_DB7(CAN_RFIFOMDATA1(can_periph, fifo_number)));
/* release FIFO */
if(CAN_FIFO0 == fifo_number){
CAN_RFIFO0(can_periph) |= CAN_RFIFO0_RFD0;
}else{
CAN_RFIFO1(can_periph) |= CAN_RFIFO1_RFD1;
}
}
/*!
\brief release FIFO0
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] fifo_number
\arg CAN_FIFOx(x=0,1)
\param[out] none
\retval none
*/
void can_fifo_release(uint32_t can_periph, uint8_t fifo_number)
{
if(CAN_FIFO0 == fifo_number){
CAN_RFIFO0(can_periph) |= CAN_RFIFO0_RFD0;
}else if(CAN_FIFO1 == fifo_number){
CAN_RFIFO1(can_periph) |= CAN_RFIFO1_RFD1;
}else{
/* illegal parameters */
}
}
/*!
\brief CAN receive message length
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] fifo_number
\arg CAN_FIFOx(x=0,1)
\param[out] none
\retval message length
*/
uint8_t can_receive_message_length_get(uint32_t can_periph, uint8_t fifo_number)
{
uint8_t val = 0U;
if(CAN_FIFO0 == fifo_number){
val = (uint8_t)(CAN_RFIFO0(can_periph) & CAN_RFIF_RFL_MASK);
}else if(CAN_FIFO1 == fifo_number){
val = (uint8_t)(CAN_RFIFO1(can_periph) & CAN_RFIF_RFL_MASK);
}else{
/* illegal parameters */
}
return val;
}
/*!
\brief set CAN working mode
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] can_working_mode
\arg CAN_MODE_INITIALIZE
\arg CAN_MODE_NORMAL
\arg CAN_MODE_SLEEP
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_working_mode_set(uint32_t can_periph, uint8_t working_mode)
{
ErrStatus flag = ERROR;
/* timeout for IWS or also for SLPWS bits */
uint32_t timeout = CAN_TIMEOUT;
if(CAN_MODE_INITIALIZE == working_mode){
/* disable sleep mode */
CAN_CTL(can_periph) &= (~(uint32_t)CAN_CTL_SLPWMOD);
/* set initialize mode */
CAN_CTL(can_periph) |= (uint8_t)CAN_CTL_IWMOD;
/* wait the acknowledge */
while((CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)) && (0U != timeout)){
timeout--;
}
if(CAN_STAT_IWS != (CAN_STAT(can_periph) & CAN_STAT_IWS)){
flag = ERROR;
}else{
flag = SUCCESS;
}
}else if(CAN_MODE_NORMAL == working_mode){
/* enter normal mode */
CAN_CTL(can_periph) &= ~(uint32_t)(CAN_CTL_SLPWMOD | CAN_CTL_IWMOD);
/* wait the acknowledge */
while((0U != (CAN_STAT(can_periph) & (CAN_STAT_IWS | CAN_STAT_SLPWS))) && (0U != timeout)){
timeout--;
}
if(0U != (CAN_STAT(can_periph) & (CAN_STAT_IWS | CAN_STAT_SLPWS))){
flag = ERROR;
}else{
flag = SUCCESS;
}
}else if(CAN_MODE_SLEEP == working_mode){
/* disable initialize mode */
CAN_CTL(can_periph) &= (~(uint32_t)CAN_CTL_IWMOD);
/* set sleep mode */
CAN_CTL(can_periph) |= (uint8_t)CAN_CTL_SLPWMOD;
/* wait the acknowledge */
while((CAN_STAT_SLPWS != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)) && (0U != timeout)){
timeout--;
}
if(CAN_STAT_SLPWS != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)){
flag = ERROR;
}else{
flag = SUCCESS;
}
}else{
flag = ERROR;
}
return flag;
}
/*!
\brief wake up CAN
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval ErrStatus: SUCCESS or ERROR
*/
ErrStatus can_wakeup(uint32_t can_periph)
{
ErrStatus flag = ERROR;
uint32_t timeout = CAN_TIMEOUT;
/* wakeup */
CAN_CTL(can_periph) &= ~CAN_CTL_SLPWMOD;
while((0U != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)) && (0x00U != timeout)){
timeout--;
}
if(0U != (CAN_STAT(can_periph) & CAN_STAT_SLPWS)){
flag = ERROR;
}else{
flag = SUCCESS;
}
return flag;
}
/*!
\brief get CAN error type
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval can_error_enum
*/
can_error_enum can_error_get(uint32_t can_periph)
{
can_error_enum error;
error = CAN_ERROR_NONE;
/* get error type */
error = (can_error_enum)((CAN_ERR(can_periph) & CAN_ERR_ERRN) >> 4U);
return error;
}
/*!
\brief get CAN receive error number
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval error number
*/
uint8_t can_receive_error_number_get(uint32_t can_periph)
{
uint8_t val;
val = (uint8_t)((CAN_ERR(can_periph) & CAN_ERR_RECNT) >> 24U);
return val;
}
/*!
\brief get CAN transmit error number
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[out] none
\retval error number
*/
uint8_t can_transmit_error_number_get(uint32_t can_periph)
{
uint8_t val;
val = (uint8_t)((CAN_ERR(can_periph) & CAN_ERR_TECNT) >> 16U);
return val;
}
/*!
\brief enable CAN interrupt
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] interrupt
\arg CAN_INT_TME: transmit mailbox empty interrupt enable
\arg CAN_INT_RFNE0: receive FIFO0 not empty interrupt enable
\arg CAN_INT_RFF0: receive FIFO0 full interrupt enable
\arg CAN_INT_RFO0: receive FIFO0 overfull interrupt enable
\arg CAN_INT_RFNE1: receive FIFO1 not empty interrupt enable
\arg CAN_INT_RFF1: receive FIFO1 full interrupt enable
\arg CAN_INT_RFO1: receive FIFO1 overfull interrupt enable
\arg CAN_INT_WERR: warning error interrupt enable
\arg CAN_INT_PERR: passive error interrupt enable
\arg CAN_INT_BO: bus-off interrupt enable
\arg CAN_INT_ERRN: error number interrupt enable
\arg CAN_INT_ERR: error interrupt enable
\arg CAN_INT_WU: wakeup interrupt enable
\arg CAN_INT_SLPW: sleep working interrupt enable
\param[out] none
\retval none
*/
void can_interrupt_enable(uint32_t can_periph, uint32_t interrupt)
{
CAN_INTEN(can_periph) |= interrupt;
}
/*!
\brief disable CAN interrupt
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] interrupt
\arg CAN_INT_TME: transmit mailbox empty interrupt enable
\arg CAN_INT_RFNE0: receive FIFO0 not empty interrupt enable
\arg CAN_INT_RFF0: receive FIFO0 full interrupt enable
\arg CAN_INT_RFO0: receive FIFO0 overfull interrupt enable
\arg CAN_INT_RFNE1: receive FIFO1 not empty interrupt enable
\arg CAN_INT_RFF1: receive FIFO1 full interrupt enable
\arg CAN_INT_RFO1: receive FIFO1 overfull interrupt enable
\arg CAN_INT_WERR: warning error interrupt enable
\arg CAN_INT_PERR: passive error interrupt enable
\arg CAN_INT_BO: bus-off interrupt enable
\arg CAN_INT_ERRN: error number interrupt enable
\arg CAN_INT_ERR: error interrupt enable
\arg CAN_INT_WU: wakeup interrupt enable
\arg CAN_INT_SLPW: sleep working interrupt enable
\param[out] none
\retval none
*/
void can_interrupt_disable(uint32_t can_periph, uint32_t interrupt)
{
CAN_INTEN(can_periph) &= ~interrupt;
}
/*!
\brief get CAN flag state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] flag: CAN flags, refer to can_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_FLAG_MTE2: mailbox 2 transmit error
\arg CAN_FLAG_MTE1: mailbox 1 transmit error
\arg CAN_FLAG_MTE0: mailbox 0 transmit error
\arg CAN_FLAG_MTF2: mailbox 2 transmit finished
\arg CAN_FLAG_MTF1: mailbox 1 transmit finished
\arg CAN_FLAG_MTF0: mailbox 0 transmit finished
\arg CAN_FLAG_RFO0: receive FIFO0 overfull
\arg CAN_FLAG_RFF0: receive FIFO0 full
\arg CAN_FLAG_RFO1: receive FIFO1 overfull
\arg CAN_FLAG_RFF1: receive FIFO1 full
\arg CAN_FLAG_BOERR: bus-off error
\arg CAN_FLAG_PERR: passive error
\arg CAN_FLAG_WERR: warning error
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus can_flag_get(uint32_t can_periph, can_flag_enum flag)
{
if(RESET != (CAN_REG_VAL(can_periph, flag) & BIT(CAN_BIT_POS(flag)))){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CAN flag state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] flag: CAN flags, refer to can_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_FLAG_MTE2: mailbox 2 transmit error
\arg CAN_FLAG_MTE1: mailbox 1 transmit error
\arg CAN_FLAG_MTE0: mailbox 0 transmit error
\arg CAN_FLAG_MTF2: mailbox 2 transmit finished
\arg CAN_FLAG_MTF1: mailbox 1 transmit finished
\arg CAN_FLAG_MTF0: mailbox 0 transmit finished
\arg CAN_FLAG_RFO0: receive FIFO0 overfull
\arg CAN_FLAG_RFF0: receive FIFO0 full
\arg CAN_FLAG_RFO1: receive FIFO1 overfull
\arg CAN_FLAG_RFF1: receive FIFO1 full
\param[out] none
\retval none
*/
void can_flag_clear(uint32_t can_periph, can_flag_enum flag)
{
CAN_REG_VAL(can_periph, flag) |= BIT(CAN_BIT_POS(flag));
}
/*!
\brief get CAN interrupt flag state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] flag: CAN interrupt flags, refer to can_interrupt_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_INT_FLAG_SLPIF: status change interrupt flag of sleep working mode entering
\arg CAN_INT_FLAG_WUIF: status change interrupt flag of wakeup from sleep working mode
\arg CAN_INT_FLAG_ERRIF: error interrupt flag
\arg CAN_INT_FLAG_MTF2: mailbox 2 transmit finished interrupt flag
\arg CAN_INT_FLAG_MTF1: mailbox 1 transmit finished interrupt flag
\arg CAN_INT_FLAG_MTF0: mailbox 0 transmit finished interrupt flag
\arg CAN_INT_FLAG_RFO0: receive FIFO0 overfull interrupt flag
\arg CAN_INT_FLAG_RFF0: receive FIFO0 full interrupt flag
\arg CAN_INT_FLAG_RFO1: receive FIFO1 overfull interrupt flag
\arg CAN_INT_FLAG_RFF1: receive FIFO1 full interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus can_interrupt_flag_get(uint32_t can_periph, can_interrupt_flag_enum flag)
{
FlagStatus ret1 = RESET;
FlagStatus ret2 = RESET;
/* get the staus of interrupt flag */
ret1 = (FlagStatus)(CAN_REG_VALS(can_periph, flag) & BIT(CAN_BIT_POS0(flag)));
/* get the staus of interrupt enale bit */
ret2 = (FlagStatus)(CAN_INTEN(can_periph) & BIT(CAN_BIT_POS1(flag)));
if(ret1 && ret2){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CAN interrupt flag state
\param[in] can_periph
\arg CANx(x=0,1),the CAN1 only for GD32F30X_CL
\param[in] flag: CAN interrupt flags, refer to can_interrupt_flag_enum
only one parameter can be selected which is shown as below:
\arg CAN_INT_FLAG_SLPIF: status change interrupt flag of sleep working mode entering
\arg CAN_INT_FLAG_WUIF: status change interrupt flag of wakeup from sleep working mode
\arg CAN_INT_FLAG_ERRIF: error interrupt flag
\arg CAN_INT_FLAG_MTF2: mailbox 2 transmit finished interrupt flag
\arg CAN_INT_FLAG_MTF1: mailbox 1 transmit finished interrupt flag
\arg CAN_INT_FLAG_MTF0: mailbox 0 transmit finished interrupt flag
\arg CAN_INT_FLAG_RFO0: receive FIFO0 overfull interrupt flag
\arg CAN_INT_FLAG_RFF0: receive FIFO0 full interrupt flag
\arg CAN_INT_FLAG_RFO1: receive FIFO1 overfull interrupt flag
\arg CAN_INT_FLAG_RFF1: receive FIFO1 full interrupt flag
\param[out] none
\retval none
*/
void can_interrupt_flag_clear(uint32_t can_periph, can_interrupt_flag_enum flag)
{
CAN_REG_VALS(can_periph, flag) |= BIT(CAN_BIT_POS0(flag));
}

View File

@ -0,0 +1,101 @@
/*!
\file gd32f30x_crc.c
\brief CRC driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "gd32f30x_crc.h"
/*!
\brief deinit CRC calculation unit
\param[in] none
\param[out] none
\retval none
*/
void crc_deinit(void)
{
CRC_DATA = (uint32_t)0xFFFFFFFFU;
CRC_FDATA = (uint32_t)0x00000000U;
CRC_CTL = (uint32_t)CRC_CTL_RST;
}
/*!
\brief reset data register to the value of initializaiton data register
\param[in] none
\param[out] none
\retval none
*/
void crc_data_register_reset(void)
{
CRC_CTL |= (uint32_t)CRC_CTL_RST;
}
/*!
\brief read the data register
\param[in] none
\param[out] none
\retval 32-bit value of the data register
*/
uint32_t crc_data_register_read(void)
{
uint32_t data;
data = CRC_DATA;
return (data);
}
/*!
\brief read the free data register
\param[in] none
\param[out] none
\retval 8-bit value of the free data register
*/
uint8_t crc_free_data_register_read(void)
{
uint8_t fdata;
fdata = (uint8_t)CRC_FDATA;
return (fdata);
}
/*!
\brief write the free data register
\param[in] free_data: specify 8-bit data
\param[out] none
\retval none
*/
void crc_free_data_register_write(uint8_t free_data)
{
CRC_FDATA = (uint32_t)free_data;
}
/*!
\brief CRC calculate a 32-bit data
\param[in] sdata: specify 32-bit data
\param[out] none
\retval 32-bit CRC calculate value
*/
uint32_t crc_single_data_calculate(uint32_t sdata)
{
CRC_DATA = sdata;
return (CRC_DATA);
}
/*!
\brief CRC calculate a 32-bit data array
\param[in] array: pointer to an array of 32 bit data words
\param[in] size: size of the array
\param[out] none
\retval 32-bit CRC calculate value
*/
uint32_t crc_block_data_calculate(uint32_t array[], uint32_t size)
{
uint32_t index;
for(index = 0U; index < size; index++){
CRC_DATA = array[index];
}
return (CRC_DATA);
}

View File

@ -0,0 +1,344 @@
/*!
\file gd32f30x_ctc.c
\brief CTC driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_ctc.h"
#define CTC_FLAG_MASK ((uint32_t)0x00000700U)
/*!
\brief reset CTC clock trim controller
\param[in] none
\param[out] none
\retval none
*/
void ctc_deinit(void)
{
/* reset CTC */
rcu_periph_reset_enable(RCU_CTCRST);
rcu_periph_reset_disable(RCU_CTCRST);
}
/*!
\brief configure the IRC48M trim value
\param[in] ctc_trim_value: 8-bit IRC48M trim value
\param[out] none
\retval none
*/
void ctc_irc48m_trim_value_config(uint8_t ctc_trim_value)
{
/* clear TRIMVALUE bits */
CTC_CTL0 &= (~(uint32_t)CTC_CTL0_TRIMVALUE);
/* set TRIMVALUE bits */
CTC_CTL0 |= ((uint32_t)ctc_trim_value << 8);
}
/*!
\brief generate software reference source sync pulse
\param[in] none
\param[out] none
\retval none
*/
void ctc_software_refsource_pulse_generate(void)
{
CTC_CTL0 |= (uint32_t)CTC_CTL0_SWREFPUL;
}
/*!
\brief configure hardware automatically trim mode
\param[in] ctc_hardmode:
\arg CTC_HARDWARE_TRIM_MODE_ENABLE: hardware automatically trim mode enable
\arg CTC_HARDWARE_TRIM_MODE_DISABLE: hardware automatically trim mode disable
\param[out] none
\retval none
*/
void ctc_hardware_trim_mode_config(uint32_t ctc_hardmode)
{
CTC_CTL0 &= (uint32_t)(~CTC_CTL0_AUTOTRIM);
CTC_CTL0 |= (uint32_t)ctc_hardmode;
}
/*!
\brief enable CTC trim counter
\param[in] none
\param[out] none
\retval none
*/
void ctc_counter_enable(void)
{
CTC_CTL0 |= (uint32_t)CTC_CTL0_CNTEN;
}
/*!
\brief disable CTC trim counter
\param[in] none
\param[out] none
\retval none
*/
void ctc_counter_disable(void)
{
CTC_CTL0 &= (uint32_t)(~CTC_CTL0_CNTEN);
}
/*!
\brief configure reference signal source polarity
\param[in] ctc_polarity:
\arg CTC_REFSOURCE_POLARITY_FALLING: reference signal source polarity is falling edge
\arg CTC_REFSOURCE_POLARITY_RISING: reference signal source polarity is rising edge
\param[out] none
\retval none
*/
void ctc_refsource_polarity_config(uint32_t ctc_polarity)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_REFPOL);
CTC_CTL1 |= (uint32_t)ctc_polarity;
}
/*!
\brief select reference signal source
\param[in] ctc_refs:
\arg CTC_REFSOURCE_GPIO: GPIO is selected
\arg CTC_REFSOURCE_LXTAL: LXTAL is clock selected
\arg CTC_REFSOURCE_USBSOF: USBSOF is selected
\param[out] none
\retval none
*/
void ctc_refsource_signal_select(uint32_t ctc_refs)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_REFSEL);
CTC_CTL1 |= (uint32_t)ctc_refs;
}
/*!
\brief configure reference signal source prescaler
\param[in] ctc_prescaler:
\arg CTC_REFSOURCE_PSC_OFF: reference signal not divided
\arg CTC_REFSOURCE_PSC_DIV2: reference signal divided by 2
\arg CTC_REFSOURCE_PSC_DIV4: reference signal divided by 4
\arg CTC_REFSOURCE_PSC_DIV8: reference signal divided by 8
\arg CTC_REFSOURCE_PSC_DIV16: reference signal divided by 16
\arg CTC_REFSOURCE_PSC_DIV32: reference signal divided by 32
\arg CTC_REFSOURCE_PSC_DIV64: reference signal divided by 64
\arg CTC_REFSOURCE_PSC_DIV128: reference signal divided by 128
\param[out] none
\retval none
*/
void ctc_refsource_prescaler_config(uint32_t ctc_prescaler)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_REFPSC);
CTC_CTL1 |= (uint32_t)ctc_prescaler;
}
/*!
\brief configure clock trim base limit value
\param[in] ctc_limit_value: 8-bit clock trim base limit value
\param[out] none
\retval none
*/
void ctc_clock_limit_value_config(uint8_t ctc_limit_value)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_CKLIM);
CTC_CTL1 |= (uint32_t)((uint32_t)ctc_limit_value << 16);
}
/*!
\brief configure CTC counter reload value
\param[in] ctc_reload_value: 16-bit CTC counter reload value
\param[out] none
\retval none
*/
void ctc_counter_reload_value_config(uint16_t ctc_reload_value)
{
CTC_CTL1 &= (uint32_t)(~CTC_CTL1_RLVALUE);
CTC_CTL1 |= (uint32_t)ctc_reload_value;
}
/*!
\brief read CTC counter capture value when reference sync pulse occurred
\param[in] none
\param[out] none
\retval the 16-bit CTC counter capture value
*/
uint16_t ctc_counter_capture_value_read(void)
{
uint16_t capture_value = 0U;
capture_value = (uint16_t)((CTC_STAT & CTC_STAT_REFCAP)>> 16);
return (capture_value);
}
/*!
\brief read CTC trim counter direction when reference sync pulse occurred
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
\arg SET: CTC trim counter direction is down-counting
\arg RESET: CTC trim counter direction is up-counting
*/
FlagStatus ctc_counter_direction_read(void)
{
if(RESET != (CTC_STAT & CTC_STAT_REFDIR)){
return SET;
}else{
return RESET;
}
}
/*!
\brief read CTC counter reload value
\param[in] none
\param[out] none
\retval the 16-bit CTC counter reload value
*/
uint16_t ctc_counter_reload_value_read(void)
{
uint16_t reload_value = 0U;
reload_value = (uint16_t)(CTC_CTL1 & CTC_CTL1_RLVALUE);
return (reload_value);
}
/*!
\brief read the IRC48M trim value
\param[in] none
\param[out] none
\retval the 8-bit IRC48M trim value
*/
uint8_t ctc_irc48m_trim_value_read(void)
{
uint8_t trim_value = 0U;
trim_value = (uint8_t)((CTC_CTL0 & CTC_CTL0_TRIMVALUE) >> 8);
return (trim_value);
}
/*!
\brief enable the CTC interrupt
\param[in] ctc_interrupt: CTC interrupt enable
\arg CTC_INT_CKOK: clock trim OK interrupt enable
\arg CTC_INT_CKWARN: clock trim warning interrupt enable
\arg CTC_INT_ERR: error interrupt enable
\arg CTC_INT_EREF: expect reference interrupt enable
\param[out] none
\retval none
*/
void ctc_interrupt_enable(uint32_t ctc_interrupt)
{
CTC_CTL0 |= (uint32_t)ctc_interrupt;
}
/*!
\brief disable the CTC interrupt
\param[in] ctc_interrupt: CTC interrupt enable source
\arg CTC_INT_CKOK: clock trim OK interrupt enable
\arg CTC_INT_CKWARN: clock trim warning interrupt enable
\arg CTC_INT_ERR: error interrupt enable
\arg CTC_INT_EREF: expect reference interrupt enable
\param[out] none
\retval none
*/
void ctc_interrupt_disable(uint32_t ctc_interrupt)
{
CTC_CTL0 &= (uint32_t)(~ctc_interrupt);
}
/*!
\brief get CTC interrupt flag
\param[in] ctc_interrupt: the CTC interrupt flag
\arg CTC_INT_FLAG_CKOK: clock trim OK interrupt
\arg CTC_INT_FLAG_CKWARN: clock trim warning interrupt
\arg CTC_INT_FLAG_ERR: error interrupt
\arg CTC_INT_FLAG_EREF: expect reference interrupt
\arg CTC_INT_FLAG_CKERR: clock trim error bit interrupt
\arg CTC_INT_FLAG_REFMISS: reference sync pulse miss interrupt
\arg CTC_INT_FLAG_TRIMERR: trim value error interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus ctc_interrupt_flag_get(uint32_t ctc_interrupt)
{
uint32_t interrupt = 0U, intenable = 0U;
if(ctc_interrupt & CTC_FLAG_MASK){
intenable = CTC_CTL0 & CTC_CTL0_ERRIE;
}else{
intenable = CTC_CTL0 & ctc_interrupt;
}
interrupt = CTC_STAT & ctc_interrupt;
if(interrupt && intenable){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CTC interrupt flag
\param[in] ctc_interrupt: the CTC interrupt flag
\arg CTC_INT_FLAG_CKOK: clock trim OK interrupt
\arg CTC_INT_FLAG_CKWARN: clock trim warning interrupt
\arg CTC_INT_FLAG_ERR: error interrupt
\arg CTC_INT_FLAG_EREF: expect reference interrupt
\arg CTC_INT_FLAG_CKERR: clock trim error bit interrupt
\arg CTC_INT_FLAG_REFMISS: reference sync pulse miss interrupt
\arg CTC_INT_FLAG_TRIMERR: trim value error interrupt
\param[out] none
\retval none
*/
void ctc_interrupt_flag_clear(uint32_t ctc_interrupt)
{
if(ctc_interrupt & CTC_FLAG_MASK){
CTC_INTC |= CTC_INTC_ERRIC;
}else{
CTC_INTC |= ctc_interrupt;
}
}
/*!
\brief get CTC flag
\param[in] ctc_flag: the CTC flag
\arg CTC_FLAG_CKOK: clock trim OK flag
\arg CTC_FLAG_CKWARN: clock trim warning flag
\arg CTC_FLAG_ERR: error flag
\arg CTC_FLAG_EREF: expect reference flag
\arg CTC_FLAG_CKERR: clock trim error bit
\arg CTC_FLAG_REFMISS: reference sync pulse miss
\arg CTC_FLAG_TRIMERR: trim value error bit
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus ctc_flag_get(uint32_t ctc_flag)
{
if(RESET != (CTC_STAT & ctc_flag)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear CTC flag
\param[in] ctc_flag: the CTC flag
\arg CTC_FLAG_CKOK: clock trim OK flag
\arg CTC_FLAG_CKWARN: clock trim warning flag
\arg CTC_FLAG_ERR: error flag
\arg CTC_FLAG_EREF: expect reference flag
\arg CTC_FLAG_CKERR: clock trim error bit
\arg CTC_FLAG_REFMISS: reference sync pulse miss
\arg CTC_FLAG_TRIMERR: trim value error bit
\param[out] none
\retval none
*/
void ctc_flag_clear(uint32_t ctc_flag)
{
if(ctc_flag & CTC_FLAG_MASK){
CTC_INTC |= CTC_INTC_ERRIC;
}else{
CTC_INTC |= ctc_flag;
}
}

View File

@ -0,0 +1,508 @@
/*!
\file gd32f30x_dac.c
\brief DAC driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "gd32f30x_dac.h"
/*!
\brief deinitialize DAC
\param[in] none
\param[out] none
\retval none
*/
void dac_deinit(void)
{
rcu_periph_reset_enable(RCU_DACRST);
rcu_periph_reset_disable(RCU_DACRST);
}
/*!
\brief enable DAC
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL |= DAC_CTL_DEN0;
}else{
DAC_CTL |= DAC_CTL_DEN1;
}
}
/*!
\brief disable DAC
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DEN0;
}else{
DAC_CTL &= ~DAC_CTL_DEN1;
}
}
/*!
\brief enable DAC DMA function
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval none
*/
void dac_dma_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL |= DAC_CTL_DDMAEN0;
}else{
DAC_CTL |= DAC_CTL_DDMAEN1;
}
}
/*!
\brief disable DAC DMA function
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval none
*/
void dac_dma_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DDMAEN0;
}else{
DAC_CTL &= ~DAC_CTL_DDMAEN1;
}
}
/*!
\brief enable DAC output buffer
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_output_buffer_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DBOFF0;
}else{
DAC_CTL &= ~DAC_CTL_DBOFF1;
}
}
/*!
\brief disable DAC output buffer
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_output_buffer_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL |= DAC_CTL_DBOFF0;
}else{
DAC_CTL |= DAC_CTL_DBOFF1;
}
}
/*!
\brief enable DAC trigger
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_trigger_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL |= DAC_CTL_DTEN0;
}else{
DAC_CTL |= DAC_CTL_DTEN1;
}
}
/*!
\brief disable DAC trigger
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_trigger_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DTEN0;
}else{
DAC_CTL &= ~DAC_CTL_DTEN1;
}
}
/*!
\brief enable DAC software trigger
\param[in] dac_periph
\arg DACx(x =0,1)
\retval none
*/
void dac_software_trigger_enable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_SWT |= DAC_SWT_SWTR0;
}else{
DAC_SWT |= DAC_SWT_SWTR1;
}
}
/*!
\brief disable DAC software trigger
\param[in] dac_periph
\arg DACx(x =0,1)
\param[out] none
\retval none
*/
void dac_software_trigger_disable(uint32_t dac_periph)
{
if(DAC0 == dac_periph){
DAC_SWT &= ~DAC_SWT_SWTR0;
}else{
DAC_SWT &= ~DAC_SWT_SWTR1;
}
}
/*!
\brief set DAC trigger source
\param[in] dac_periph
\arg DACx(x =0,1)
\param[in] triggersource: external triggers of DAC
\arg DAC_TRIGGER_T1_TRGO: TIMER1 TRGO
\arg DAC_TRIGGER_T2_TRGO: TIMER2 TRGO (for GD32F30X_CL)
\arg DAC_TRIGGER_T3_TRGO: TIMER3 TRGO
\arg DAC_TRIGGER_T4_TRGO: TIMER4 TRGO
\arg DAC_TRIGGER_T5_TRGO: TIMER5 TRGO
\arg DAC_TRIGGER_T6_TRGO: TIMER6 TRGO
\arg DAC_TRIGGER_T7_TRGO: TIMER7 TRGO (for GD32F30X_HD and GD32F30X_XD)
\arg DAC_TRIGGER_EXTI_9: EXTI interrupt line9 event
\arg DAC_TRIGGER_SOFTWARE: software trigger
\param[out] none
\retval none
*/
void dac_trigger_source_config(uint32_t dac_periph,uint32_t triggersource)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DTSEL0;
DAC_CTL |= triggersource;
}else{
DAC_CTL &= ~DAC_CTL_DTSEL1;
DAC_CTL |= (triggersource << 16);
}
}
/*!
\brief configure DAC wave mode
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] wave_mode
\arg DAC_WAVE_DISABLE: wave disable
\arg DAC_WAVE_MODE_LFSR: LFSR noise mode
\arg DAC_WAVE_MODE_TRIANGLE: triangle noise mode
\param[out] none
\retval none
*/
void dac_wave_mode_config(uint32_t dac_periph, uint32_t wave_mode)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DWM0;
DAC_CTL |= wave_mode;
}else{
DAC_CTL &= ~DAC_CTL_DWM1;
DAC_CTL |= wave_mode << 16;
}
}
/*!
\brief configure DAC wave bit width
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] bit_width
\arg DAC_WAVE_BIT_WIDTH_1: bit width of the wave signal is 1
\arg DAC_WAVE_BIT_WIDTH_2: bit width of the wave signal is 2
\arg DAC_WAVE_BIT_WIDTH_3: bit width of the wave signal is 3
\arg DAC_WAVE_BIT_WIDTH_4: bit width of the wave signal is 4
\arg DAC_WAVE_BIT_WIDTH_5: bit width of the wave signal is 5
\arg DAC_WAVE_BIT_WIDTH_6: bit width of the wave signal is 6
\arg DAC_WAVE_BIT_WIDTH_7: bit width of the wave signal is 7
\arg DAC_WAVE_BIT_WIDTH_8: bit width of the wave signal is 8
\arg DAC_WAVE_BIT_WIDTH_9: bit width of the wave signal is 9
\arg DAC_WAVE_BIT_WIDTH_10: bit width of the wave signal is 10
\arg DAC_WAVE_BIT_WIDTH_11: bit width of the wave signal is 11
\arg DAC_WAVE_BIT_WIDTH_12: bit width of the wave signal is 12
\param[out] none
\retval none
*/
void dac_wave_bit_width_config(uint32_t dac_periph, uint32_t bit_width)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DWBW0;
DAC_CTL |= bit_width;
}else{
DAC_CTL &= ~DAC_CTL_DWBW1;
DAC_CTL |= bit_width << 16;
}
}
/*!
\brief configure DAC LFSR noise mode
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] unmask_bits
\arg DAC_LFSR_BIT0: unmask the LFSR bit0
\arg DAC_LFSR_BITS1_0: unmask the LFSR bits[1:0]
\arg DAC_LFSR_BITS2_0: unmask the LFSR bits[2:0]
\arg DAC_LFSR_BITS3_0: unmask the LFSR bits[3:0]
\arg DAC_LFSR_BITS4_0: unmask the LFSR bits[4:0]
\arg DAC_LFSR_BITS5_0: unmask the LFSR bits[5:0]
\arg DAC_LFSR_BITS6_0: unmask the LFSR bits[6:0]
\arg DAC_LFSR_BITS7_0: unmask the LFSR bits[7:0]
\arg DAC_LFSR_BITS8_0: unmask the LFSR bits[8:0]
\arg DAC_LFSR_BITS9_0: unmask the LFSR bits[9:0]
\arg DAC_LFSR_BITS10_0: unmask the LFSR bits[10:0]
\arg DAC_LFSR_BITS11_0: unmask the LFSR bits[11:0]
\param[out] none
\retval none
*/
void dac_lfsr_noise_config(uint32_t dac_periph, uint32_t unmask_bits)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DWBW0;
DAC_CTL |= unmask_bits;
}else{
DAC_CTL &= ~DAC_CTL_DWBW1;
DAC_CTL |= unmask_bits << 16;
}
}
/*!
\brief configure DAC triangle noise mode
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] amplitude
\arg DAC_TRIANGLE_AMPLITUDE_1: triangle amplitude is 1
\arg DAC_TRIANGLE_AMPLITUDE_3: triangle amplitude is 3
\arg DAC_TRIANGLE_AMPLITUDE_7: triangle amplitude is 7
\arg DAC_TRIANGLE_AMPLITUDE_15: triangle amplitude is 15
\arg DAC_TRIANGLE_AMPLITUDE_31: triangle amplitude is 31
\arg DAC_TRIANGLE_AMPLITUDE_63: triangle amplitude is 63
\arg DAC_TRIANGLE_AMPLITUDE_127: triangle amplitude is 127
\arg DAC_TRIANGLE_AMPLITUDE_255: triangle amplitude is 255
\arg DAC_TRIANGLE_AMPLITUDE_511: triangle amplitude is 511
\arg DAC_TRIANGLE_AMPLITUDE_1023: triangle amplitude is 1023
\arg DAC_TRIANGLE_AMPLITUDE_2047: triangle amplitude is 2047
\arg DAC_TRIANGLE_AMPLITUDE_4095: triangle amplitude is 4095
\param[out] none
\retval none
*/
void dac_triangle_noise_config(uint32_t dac_periph, uint32_t amplitude)
{
if(DAC0 == dac_periph){
DAC_CTL &= ~DAC_CTL_DWBW0;
DAC_CTL |= amplitude;
}else{
DAC_CTL &= ~DAC_CTL_DWBW1;
DAC_CTL |= amplitude << 16;
}
}
/*!
\brief get DAC output value
\param[in] dac_periph
\arg DACx(x=0,1)
\param[out] none
\retval DAC output data
*/
uint16_t dac_output_value_get(uint32_t dac_periph)
{
uint16_t data = 0U;
if(DAC0 == dac_periph){
data = (uint16_t)DAC0_DO;
}else{
data = (uint16_t)DAC1_DO;
}
return data;
}
/*!
\brief enable DAC concurrent mode
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_enable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DEN0 | DAC_CTL_DEN1;
DAC_CTL |= (ctl);
}
/*!
\brief disable DAC concurrent mode
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_disable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DEN0 | DAC_CTL_DEN1;
DAC_CTL &= (~ctl);
}
/*!
\brief enable DAC concurrent software trigger function
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_software_trigger_enable(void)
{
uint32_t swt = 0U;
swt = DAC_SWT_SWTR0 | DAC_SWT_SWTR1;
DAC_SWT |= (swt);
}
/*!
\brief disable DAC concurrent software trigger function
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_software_trigger_disable(void)
{
uint32_t swt = 0U;
swt = DAC_SWT_SWTR0 | DAC_SWT_SWTR1;
DAC_SWT &= (~swt);
}
/*!
\brief enable DAC concurrent buffer function
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_output_buffer_enable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DBOFF0 | DAC_CTL_DBOFF1;
DAC_CTL &= (~ctl);
}
/*!
\brief disable DAC concurrent buffer function
\param[in] none
\param[out] none
\retval none
*/
void dac_concurrent_output_buffer_disable(void)
{
uint32_t ctl = 0U;
ctl = DAC_CTL_DBOFF0 | DAC_CTL_DBOFF1;
DAC_CTL |= (ctl);
}
/*!
\brief set the DAC specified data holding register value
\param[in] dac_periph
\arg DACx(x=0,1)
\param[in] dac_align
\arg DAC_ALIGN_8B_R: data right 8b alignment
\arg DAC_ALIGN_12B_R: data right 12b alignment
\arg DAC_ALIGN_12B_L: data left 12b alignment
\param[in] data: data to be loaded
\param[out] none
\retval none
*/
void dac_data_set(uint32_t dac_periph, uint32_t dac_align, uint16_t data)
{
if(DAC0 == dac_periph){
switch(dac_align){
/* data right 12b alignment */
case DAC_ALIGN_12B_R:
DAC0_R12DH = data;
break;
/* data left 12b alignment */
case DAC_ALIGN_12B_L:
DAC0_L12DH = data;
break;
/* data right 8b alignment */
case DAC_ALIGN_8B_R:
DAC0_R8DH = data;
break;
default:
break;
}
}else{
switch(dac_align){
/* data right 12b alignment */
case DAC_ALIGN_12B_R:
DAC1_R12DH = data;
break;
/* data left 12b alignment */
case DAC_ALIGN_12B_L:
DAC1_L12DH = data;
break;
/* data right 8b alignment */
case DAC_ALIGN_8B_R:
DAC1_R8DH = data;
break;
default:
break;
}
}
}
/*!
\brief set DAC concurrent mode data holding register value
\param[in] dac_align
\arg DAC_ALIGN_8B_R: data right 8b alignment
\arg DAC_ALIGN_12B_R: data right 12b alignment
\arg DAC_ALIGN_12B_L: data left 12b alignment
\param[in] data0: data to be loaded
\param[in] data1: data to be loaded
\param[out] none
\retval none
*/
void dac_concurrent_data_set(uint32_t dac_align, uint16_t data0, uint16_t data1)
{
uint32_t data = 0U;
switch(dac_align){
/* data right 12b alignment */
case DAC_ALIGN_12B_R:
data = ((uint32_t)data1 << 16) | data0;
DACC_R12DH = data;
break;
/* data left 12b alignment */
case DAC_ALIGN_12B_L:
data = ((uint32_t)data1 << 16) | data0;
DACC_L12DH = data;
break;
/* data right 8b alignment */
case DAC_ALIGN_8B_R:
data = ((uint32_t)data1 << 8) | data0;
DACC_R8DH = data;
break;
default:
break;
}
}

View File

@ -0,0 +1,125 @@
/*!
\file gd32f30x_dbg.c
\brief DBG driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "gd32f30x_dbg.h"
/*!
\brief read DBG_ID code register
\param[in] none
\param[out] none
\retval DBG_ID code
*/
uint32_t dbg_id_get(void)
{
return DBG_ID;
}
/*!
\brief enable low power behavior when the mcu is in debug mode
\param[in] dbg_low_power:
this parameter can be any combination of the following values:
\arg DBG_LOW_POWER_SLEEP: keep debugger connection during sleep mode
\arg DBG_LOW_POWER_DEEPSLEEP: keep debugger connection during deepsleep mode
\arg DBG_LOW_POWER_STANDBY: keep debugger connection during standby mode
\param[out] none
\retval none
*/
void dbg_low_power_enable(uint32_t dbg_low_power)
{
DBG_CTL0 |= dbg_low_power;
}
/*!
\brief disable low power behavior when the mcu is in debug mode
\param[in] dbg_low_power:
this parameter can be any combination of the following values:
\arg DBG_LOW_POWER_SLEEP: donot keep debugger connection during sleep mode
\arg DBG_LOW_POWER_DEEPSLEEP: donot keep debugger connection during deepsleep mode
\arg DBG_LOW_POWER_STANDBY: donot keep debugger connection during standby mode
\param[out] none
\retval none
*/
void dbg_low_power_disable(uint32_t dbg_low_power)
{
DBG_CTL0 &= ~dbg_low_power;
}
/*!
\brief enable peripheral behavior when the mcu is in debug mode
\param[in] dbg_periph: refer to dbg_periph_enum
only one parameter can be selected which is shown as below:
\arg DBG_FWDGT_HOLD : debug FWDGT kept when core is halted
\arg DBG_WWDGT_HOLD : debug WWDGT kept when core is halted
\arg DBG_CANx_HOLD (x=0,1,CAN1 is only available for CL series): hold CANx counter when core is halted
\arg DBG_I2Cx_HOLD (x=0,1): hold I2Cx smbus when core is halted
\arg DBG_TIMERx_HOLD (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13,TIMER8..13 are not available for HD series): hold TIMERx counter when core is halted
\param[out] none
\retval none
*/
void dbg_periph_enable(dbg_periph_enum dbg_periph)
{
DBG_CTL0 |= (uint32_t)dbg_periph;
}
/*!
\brief disable peripheral behavior when the mcu is in debug mode
\param[in] dbg_periph: refer to dbg_periph_enum
only one parameter can be selected which is shown as below:
\arg DBG_FWDGT_HOLD : debug FWDGT kept when core is halted
\arg DBG_WWDGT_HOLD : debug WWDGT kept when core is halted
\arg DBG_CANx_HOLD (x=0,1,CAN1 is only available for CL series): hold CAN0 counter when core is halted
\arg DBG_I2Cx_HOLD (x=0,1): hold I2Cx smbus when core is halted
\arg DBG_TIMERx_HOLD (x=0,1,2,3,4,5,6,7,8,9,10,11,12,13,TIMER8..13 are not available for HD series): hold TIMERx counter when core is halted
\param[out] none
\retval none
*/
void dbg_periph_disable(dbg_periph_enum dbg_periph)
{
DBG_CTL0 &= ~(uint32_t)dbg_periph;
}
/*!
\brief enable trace pin assignment
\param[in] none
\param[out] none
\retval none
*/
void dbg_trace_pin_enable(void)
{
DBG_CTL0 |= DBG_CTL0_TRACE_IOEN;
}
/*!
\brief disable trace pin assignment
\param[in] none
\param[out] none
\retval none
*/
void dbg_trace_pin_disable(void)
{
DBG_CTL0 &= ~DBG_CTL0_TRACE_IOEN;
}
/*!
\brief trace pin mode selection
\param[in] trace_mode:
\arg TRACE_MODE_ASYNC: trace pin used for async mode
\arg TRACE_MODE_SYNC_DATASIZE_1: trace pin used for sync mode and data size is 1
\arg TRACE_MODE_SYNC_DATASIZE_2: trace pin used for sync mode and data size is 2
\arg TRACE_MODE_SYNC_DATASIZE_4: trace pin used for sync mode and data size is 4
\param[out] none
\retval none
*/
void dbg_trace_pin_mode_set(uint32_t trace_mode)
{
DBG_CTL0 &= ~DBG_CTL0_TRACE_MODE;
DBG_CTL0 |= trace_mode;
}

View File

@ -0,0 +1,651 @@
/*!
\file gd32f30x_dma.c
\brief DMA driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_dma.h"
#define DMA_WRONG_HANDLE while(1){}
static ErrStatus dma_periph_and_channel_check(uint32_t dma_periph, dma_channel_enum channelx);
/*!
\brief deinitialize DMA a channel registers
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel is deinitialized
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_deinit(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
/* disable DMA a channel */
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_CHEN;
/* reset DMA channel registers */
DMA_CHCTL(dma_periph, channelx) = DMA_CHCTL_RESET_VALUE;
DMA_CHCNT(dma_periph, channelx) = DMA_CHCNT_RESET_VALUE;
DMA_CHPADDR(dma_periph, channelx) = DMA_CHPADDR_RESET_VALUE;
DMA_CHMADDR(dma_periph, channelx) = DMA_CHMADDR_RESET_VALUE;
DMA_INTC(dma_periph) |= DMA_FLAG_ADD(DMA_CHINTF_RESET_VALUE, channelx);
}
/*!
\brief initialize DMA channel
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel is initialized
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] init_struct: the data needed to initialize DMA channel
periph_addr: peripheral base address
periph_width: DMA_PERIPHERAL_WIDTH_8BIT, DMA_PERIPHERAL_WIDTH_16BIT, DMA_PERIPHERAL_WIDTH_32BIT
periph_inc: DMA_PERIPH_INCREASE_ENABLE, DMA_PERIPH_INCREASE_DISABLE
memory_addr: memory base address
memory_width: DMA_MEMORY_WIDTH_8BIT, DMA_MEMORY_WIDTH_16BIT, DMA_MEMORY_WIDTH_32BIT
memory_inc: DMA_MEMORY_INCREASE_ENABLE, DMA_MEMORY_INCREASE_DISABLE
direction: DMA_PERIPHERAL_TO_MEMORY, DMA_MEMORY_TO_PERIPHERAL
number: the number of remaining data to be transferred by the DMA
priority: DMA_PRIORITY_LOW, DMA_PRIORITY_MEDIUM, DMA_PRIORITY_HIGH, DMA_PRIORITY_ULTRA_HIGH
\param[out] none
\retval none
*/
void dma_init(uint32_t dma_periph, dma_channel_enum channelx, dma_parameter_struct init_struct)
{
uint32_t ctl;
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
/* configure peripheral base address */
DMA_CHPADDR(dma_periph, channelx) = init_struct.periph_addr;
/* configure memory base address */
DMA_CHMADDR(dma_periph, channelx) = init_struct.memory_addr;
/* configure the number of remaining data to be transferred */
DMA_CHCNT(dma_periph, channelx) = (init_struct.number & DMA_CHANNEL_CNT_MASK);
/* configure peripheral transfer width,memory transfer width, */
ctl = DMA_CHCTL(dma_periph, channelx);
ctl &= ~(DMA_CHXCTL_PWIDTH | DMA_CHXCTL_MWIDTH | DMA_CHXCTL_PRIO);
ctl |= (init_struct.periph_width | init_struct.memory_width | init_struct.priority);
DMA_CHCTL(dma_periph, channelx) = ctl;
/* configure peripheral increasing mode */
if(DMA_PERIPH_INCREASE_ENABLE == init_struct.periph_inc){
DMA_CHCTL(dma_periph, channelx) |= DMA_CHXCTL_PNAGA;
}else{
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_PNAGA;
}
/* configure memory increasing mode */
if(DMA_MEMORY_INCREASE_ENABLE == init_struct.memory_inc){
DMA_CHCTL(dma_periph, channelx) |= DMA_CHXCTL_MNAGA;
}else{
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_MNAGA;
}
/* configure the direction of data transfer */
if(DMA_PERIPHERAL_TO_MEMORY == init_struct.direction){
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_DIR;
}else{
DMA_CHCTL(dma_periph, channelx) |= DMA_CHXCTL_DIR;
}
}
/*!
\brief enable DMA circulation mode
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_circulation_enable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) |= DMA_CHXCTL_CMEN;
}
/*!
\brief disable DMA circulation mode
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_circulation_disable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_CMEN;
}
/*!
\brief enable memory to memory mode
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_memory_to_memory_enable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) |= DMA_CHXCTL_M2M;
}
/*!
\brief disable memory to memory mode
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_memory_to_memory_disable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_M2M;
}
/*!
\brief enable DMA channel
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_channel_enable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) |= DMA_CHXCTL_CHEN;
}
/*!
\brief disable DMA channel
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_channel_disable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_CHEN;
}
/*!
\brief set DMA peripheral base address
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to set peripheral base address
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] address: peripheral base address
\param[out] none
\retval none
*/
void dma_periph_address_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t address)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHPADDR(dma_periph, channelx) = address;
}
/*!
\brief set DMA memory base address
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to set memory base address
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] address: memory base address
\param[out] none
\retval none
*/
void dma_memory_address_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t address)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHMADDR(dma_periph, channelx) = address;
}
/*!
\brief set the number of remaining data to be transferred by the DMA
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to set number
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] number: the number of remaining data to be transferred by the DMA
\param[out] none
\retval none
*/
void dma_transfer_number_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t number)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCNT(dma_periph, channelx) = (number & DMA_CHANNEL_CNT_MASK);
}
/*!
\brief get the number of remaining data to be transferred by the DMA
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to set number
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval uint32_t: the number of remaining data to be transferred by the DMA
*/
uint32_t dma_transfer_number_get(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
return (uint32_t)DMA_CHCNT(dma_periph, channelx);
}
/*!
\brief configure priority level of DMA channel
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] priority: priority Level of this channel
\arg DMA_PRIORITY_LOW: low priority
\arg DMA_PRIORITY_MEDIUM: medium priority
\arg DMA_PRIORITY_HIGH: high priority
\arg DMA_PRIORITY_ULTRA_HIGH: ultra high priority
\param[out] none
\retval none
*/
void dma_priority_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t priority)
{
uint32_t ctl;
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph, channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_PRIO;
ctl |= priority;
DMA_CHCTL(dma_periph, channelx) = ctl;
}
/*!
\brief configure transfer data size of memory
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] mwidth: transfer data width of memory
\arg DMA_MEMORY_WIDTH_8BIT: transfer data width of memory is 8-bit
\arg DMA_MEMORY_WIDTH_16BIT: transfer data width of memory is 16-bit
\arg DMA_MEMORY_WIDTH_32BIT: transfer data width of memory is 32-bit
\param[out] none
\retval none
*/
void dma_memory_width_config (uint32_t dma_periph, dma_channel_enum channelx, uint32_t mwidth)
{
uint32_t ctl;
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph, channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_MWIDTH;
ctl |= mwidth;
DMA_CHCTL(dma_periph, channelx) = ctl;
}
/*!
\brief configure transfer data size of peripheral
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] pwidth: transfer data width of peripheral
\arg DMA_PERIPHERAL_WIDTH_8BIT: transfer data width of peripheral is 8-bit
\arg DMA_PERIPHERAL_WIDTH_16BIT: transfer data width of peripheral is 16-bit
\arg DMA_PERIPHERAL_WIDTH_32BIT: transfer data width of peripheral is 32-bit
\param[out] none
\retval none
*/
void dma_periph_width_config (uint32_t dma_periph, dma_channel_enum channelx, uint32_t pwidth)
{
uint32_t ctl;
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
/* acquire DMA_CHxCTL register */
ctl = DMA_CHCTL(dma_periph, channelx);
/* assign regiser */
ctl &= ~DMA_CHXCTL_PWIDTH;
ctl |= pwidth;
DMA_CHCTL(dma_periph, channelx) = ctl;
}
/*!
\brief enable next address increasement algorithm of memory
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_memory_increase_enable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) |= DMA_CHXCTL_MNAGA;
}
/*!
\brief disable next address increasement algorithm of memory
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_memory_increase_disable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_MNAGA;
}
/*!
\brief enable next address increasement algorithm of peripheral
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_periph_increase_enable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) |= DMA_CHXCTL_PNAGA;
}
/*!
\brief disable next address increasement algorithm of peripheral
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[out] none
\retval none
*/
void dma_periph_increase_disable(uint32_t dma_periph, dma_channel_enum channelx)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_PNAGA;
}
/*!
\brief configure the direction of data transfer on the channel
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] direction: specify the direction of data transfer
\arg DMA_PERIPHERAL_TO_MEMORY: read from peripheral and write to memory
\arg DMA_MEMORY_TO_PERIPHERAL: read from memory and write to peripheral
\param[out] none
\retval none
*/
void dma_transfer_direction_config(uint32_t dma_periph, dma_channel_enum channelx, uint32_t direction)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
if(DMA_PERIPHERAL_TO_MEMORY == direction){
DMA_CHCTL(dma_periph, channelx) &= ~DMA_CHXCTL_DIR;
} else {
DMA_CHCTL(dma_periph, channelx) |= DMA_CHXCTL_DIR;
}
}
/*!
\brief check DMA flag is set or not
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to get flag
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] flag: specify get which flag
only one parameter can be selected which is shown as below:
\arg DMA_FLAG_G: global interrupt flag of channel
\arg DMA_FLAG_FTF: full transfer finish flag of channel
\arg DMA_FLAG_HTF: half transfer finish flag of channel
\arg DMA_FLAG_ERR: error flag of channel
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus dma_flag_get(uint32_t dma_periph, dma_channel_enum channelx, uint32_t flag)
{
FlagStatus reval;
if(RESET != (DMA_INTF(dma_periph) & DMA_FLAG_ADD(flag, channelx))){
reval = SET;
}else{
reval = RESET;
}
return reval;
}
/*!
\brief clear DMA a channel flag
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to clear flag
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] flag: specify get which flag
only one parameter can be selected which is shown as below:
\arg DMA_FLAG_G: global interrupt flag of channel
\arg DMA_FLAG_FTF: full transfer finish flag of channel
\arg DMA_FLAG_HTF: half transfer finish flag of channel
\arg DMA_FLAG_ERR: error flag of channel
\param[out] none
\retval none
*/
void dma_flag_clear(uint32_t dma_periph, dma_channel_enum channelx, uint32_t flag)
{
DMA_INTC(dma_periph) |= DMA_FLAG_ADD(flag, channelx);
}
/*!
\brief check DMA flag and interrupt enable bit is set or not
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to get flag
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] flag: specify get which flag
only one parameter can be selected which is shown as below:
\arg DMA_INT_FLAG_FTF: full transfer finish interrupt flag of channel
\arg DMA_INT_FLAG_HTF: half transfer finish interrupt flag of channel
\arg DMA_INT_FLAG_ERR: error interrupt flag of channel
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus dma_interrupt_flag_get(uint32_t dma_periph, dma_channel_enum channelx, uint32_t flag)
{
uint32_t interrupt_enable = 0U, interrupt_flag = 0U;
switch(flag){
case DMA_INT_FLAG_FTF:
interrupt_flag = DMA_INTF(dma_periph) & DMA_FLAG_ADD(flag, channelx);
interrupt_enable = DMA_CHCTL(dma_periph, channelx) & DMA_CHXCTL_FTFIE;
break;
case DMA_INT_FLAG_HTF:
interrupt_flag = DMA_INTF(dma_periph) & DMA_FLAG_ADD(flag, channelx);
interrupt_enable = DMA_CHCTL(dma_periph, channelx) & DMA_CHXCTL_HTFIE;
break;
case DMA_INT_FLAG_ERR:
interrupt_flag = DMA_INTF(dma_periph) & DMA_FLAG_ADD(flag, channelx);
interrupt_enable = DMA_CHCTL(dma_periph, channelx) & DMA_CHXCTL_ERRIE;
break;
default:
DMA_WRONG_HANDLE
}
if(interrupt_flag && interrupt_enable){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear DMA a channel flag
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel to clear flag
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] flag: specify get which flag
only one parameter can be selected which is shown as below:
\arg DMA_INT_FLAG_G: global interrupt flag of channel
\arg DMA_INT_FLAG_FTF: full transfer finish interrupt flag of channel
\arg DMA_INT_FLAG_HTF: half transfer finish interrupt flag of channel
\arg DMA_INT_FLAG_ERR: error interrupt flag of channel
\param[out] none
\retval none
*/
void dma_interrupt_flag_clear(uint32_t dma_periph, dma_channel_enum channelx, uint32_t flag)
{
DMA_INTC(dma_periph) |= DMA_FLAG_ADD(flag, channelx);
}
/*!
\brief enable DMA interrupt
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] source: specify which interrupt to enbale
one or more parameters can be selected which are shown as below
\arg DMA_INT_FTF: channel full transfer finish interrupt
\arg DMA_INT_HTF: channel half transfer finish interrupt
\arg DMA_INT_ERR: channel error interrupt
\param[out] none
\retval none
*/
void dma_interrupt_enable(uint32_t dma_periph, dma_channel_enum channelx, uint32_t source)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) |= source;
}
/*!
\brief disable DMA interrupt
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA0: DMA_CHx(x=0..6), DMA1: DMA_CHx(x=0..4)
\param[in] source: specify which interrupt to disbale
one or more parameters can be selected which are shown as below
\arg DMA_INT_FTF: channel full transfer finish interrupt
\arg DMA_INT_HTF: channel half transfer finish interrupt
\arg DMA_INT_ERR: channel error interrupt
\param[out] none
\retval none
*/
void dma_interrupt_disable(uint32_t dma_periph, dma_channel_enum channelx, uint32_t source)
{
if(ERROR == dma_periph_and_channel_check(dma_periph, channelx)){
DMA_WRONG_HANDLE
}
DMA_CHCTL(dma_periph, channelx) &= ~source;
}
/*!
\brief check whether peripheral and channels match
\param[in] dma_periph: DMAx(x=0,1)
\arg DMAx(x=0,1)
\param[in] channelx: specify which DMA channel
\arg DMA_CHx(x=0..6)
\param[out] none
\retval none
*/
static ErrStatus dma_periph_and_channel_check(uint32_t dma_periph, dma_channel_enum channelx)
{
ErrStatus val = SUCCESS;
if(DMA1 == dma_periph){
if(channelx > DMA_CH4){
val = ERROR;
}
}
return val;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,629 @@
/*!
\file gd32f30x_exmc.c
\brief EXMC driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_exmc.h"
/* EXMC bank0 register reset value */
#define BANK0_SNCTL_REGION0_RESET ((uint32_t)0x000030DBU)
#define BANK0_SNCTL_REGION1_2_3_RESET ((uint32_t)0x000030D2U)
#define BANK0_SNTCFG_RESET ((uint32_t)0x0FFFFFFFU)
#define BANK0_SNWTCFG_RESET ((uint32_t)0x0FFFFFFFU)
/* EXMC bank1/2 register reset mask*/
#define BANK1_2_NPCTL_RESET ((uint32_t)0x00000018U)
#define BANK1_2_NPINTEN_RESET ((uint32_t)0x00000040U)
#define BANK1_2_NPCTCFG_RESET ((uint32_t)0xFCFCFCFCU)
#define BANK1_2_NPATCFG_RESET ((uint32_t)0xFCFCFCFCU)
/* EXMC bank3 register reset mask*/
#define BANK3_NPCTL_RESET ((uint32_t)0x00000018U)
#define BANK3_NPINTEN_RESET ((uint32_t)0x00000040U)
#define BANK3_NPCTCFG_RESET ((uint32_t)0xFCFCFCFCU)
#define BANK3_NPATCFG_RESET ((uint32_t)0xFCFCFCFCU)
#define BANK3_PIOTCFG3_RESET ((uint32_t)0xFCFCFCFCU)
/* EXMC register bit offset */
#define SNCTL_NRMUX_OFFSET ((uint32_t)1U)
#define SNCTL_SBRSTEN_OFFSET ((uint32_t)8U)
#define SNCTL_WRAPEN_OFFSET ((uint32_t)10U)
#define SNCTL_WREN_OFFSET ((uint32_t)12U)
#define SNCTL_NRWTEN_OFFSET ((uint32_t)13U)
#define SNCTL_EXMODEN_OFFSET ((uint32_t)14U)
#define SNCTL_ASYNCWAIT_OFFSET ((uint32_t)15U)
#define SNTCFG_AHLD_OFFSET ((uint32_t)4U)
#define SNTCFG_DSET_OFFSET ((uint32_t)8U)
#define SNTCFG_BUSLAT_OFFSET ((uint32_t)16U)
#define SNWTCFG_WAHLD_OFFSET ((uint32_t)4U)
#define SNWTCFG_WDSET_OFFSET ((uint32_t)8U)
#define SNWTCFG_WBUSLAT_OFFSET ((uint32_t)16U)
#define NPCTL_NDWTEN_OFFSET ((uint32_t)1U)
#define NPCTL_ECCEN_OFFSET ((uint32_t)6U)
#define NPCTCFG_COMWAIT_OFFSET ((uint32_t)8U)
#define NPCTCFG_COMHLD_OFFSET ((uint32_t)16U)
#define NPCTCFG_COMHIZ_OFFSET ((uint32_t)24U)
#define NPATCFG_ATTWAIT_OFFSET ((uint32_t)8U)
#define NPATCFG_ATTHLD_OFFSET ((uint32_t)16U)
#define NPATCFG_ATTHIZ_OFFSET ((uint32_t)24U)
#define PIOTCFG_IOWAIT_OFFSET ((uint32_t)8U)
#define PIOTCFG_IOHLD_OFFSET ((uint32_t)16U)
#define PIOTCFG_IOHIZ_OFFSET ((uint32_t)24U)
#define INTEN_INTS_OFFSET ((uint32_t)3U)
/*!
\brief deinitialize EXMC NOR/SRAM region
\param[in] exmc_norsram_region: select the region of bank0
\arg EXMC_BANK0_NORSRAM_REGIONx(x=0..3)
\param[out] none
\retval none
*/
void exmc_norsram_deinit(uint32_t exmc_norsram_region)
{
/* reset the registers */
if(EXMC_BANK0_NORSRAM_REGION0 == exmc_norsram_region){
EXMC_SNCTL(exmc_norsram_region) = BANK0_SNCTL_REGION0_RESET;
}else{
EXMC_SNCTL(exmc_norsram_region) = BANK0_SNCTL_REGION1_2_3_RESET;
}
EXMC_SNTCFG(exmc_norsram_region) = BANK0_SNTCFG_RESET;
EXMC_SNWTCFG(exmc_norsram_region) = BANK0_SNWTCFG_RESET;
}
/*!
\brief initialize EXMC NOR/SRAM region
\param[in] exmc_norsram_parameter_struct: configure the EXMC NOR/SRAM parameter
norsram_region: EXMC_BANK0_NORSRAM_REGIONx,x=0..3
write_mode: EXMC_ASYN_WRITE,EXMC_SYN_WRITE
extended_mode: ENABLE or DISABLE
asyn_wait: ENABLE or DISABLE
nwait_signal: ENABLE or DISABLE
memory_write: ENABLE or DISABLE
nwait_config: EXMC_NWAIT_CONFIG_BEFORE,EXMC_NWAIT_CONFIG_DURING
wrap_burst_mode: ENABLE or DISABLE
nwait_polarity: EXMC_NWAIT_POLARITY_LOW,EXMC_NWAIT_POLARITY_HIGH
burst_mode: ENABLE or DISABLE
databus_width: EXMC_NOR_DATABUS_WIDTH_8B,EXMC_NOR_DATABUS_WIDTH_16B
memory_type: EXMC_MEMORY_TYPE_SRAM,EXMC_MEMORY_TYPE_PSRAM,EXMC_MEMORY_TYPE_NOR
address_data_mux: ENABLE or DISABLE
read_write_timing: struct exmc_norsram_timing_parameter_struct set the time
write_timing: struct exmc_norsram_timing_parameter_struct set the time
\param[out] none
\retval none
*/
void exmc_norsram_init(exmc_norsram_parameter_struct* exmc_norsram_init_struct)
{
uint32_t snctl = 0x00000000U,sntcfg = 0x00000000U,snwtcfg = 0x00000000U;
/* get the register value */
snctl = EXMC_SNCTL(exmc_norsram_init_struct->norsram_region);
/* clear relative bits */
snctl &= ((uint32_t)~(EXMC_SNCTL_NRMUX | EXMC_SNCTL_NRTP | EXMC_SNCTL_NRW | EXMC_SNCTL_SBRSTEN |
EXMC_SNCTL_NREN | EXMC_SNCTL_NRWTPOL | EXMC_SNCTL_WRAPEN | EXMC_SNCTL_NRWTCFG |
EXMC_SNCTL_WREN | EXMC_SNCTL_NRWTEN | EXMC_SNCTL_EXMODEN | EXMC_SNCTL_ASYNCWAIT |
EXMC_SNCTL_SYNCWR ));
snctl |= (uint32_t)(exmc_norsram_init_struct->address_data_mux << SNCTL_NRMUX_OFFSET) |
exmc_norsram_init_struct->memory_type |
exmc_norsram_init_struct->databus_width |
(exmc_norsram_init_struct->burst_mode << SNCTL_SBRSTEN_OFFSET) |
exmc_norsram_init_struct->nwait_polarity |
(exmc_norsram_init_struct->wrap_burst_mode << SNCTL_WRAPEN_OFFSET) |
exmc_norsram_init_struct->nwait_config |
(exmc_norsram_init_struct->memory_write << SNCTL_WREN_OFFSET) |
(exmc_norsram_init_struct->nwait_signal << SNCTL_NRWTEN_OFFSET) |
(exmc_norsram_init_struct->extended_mode << SNCTL_EXMODEN_OFFSET) |
(exmc_norsram_init_struct->asyn_wait << SNCTL_ASYNCWAIT_OFFSET) |
exmc_norsram_init_struct->write_mode;
sntcfg = (uint32_t)((exmc_norsram_init_struct->read_write_timing->asyn_address_setuptime - 1U ) & EXMC_SNTCFG_ASET )|
(((exmc_norsram_init_struct->read_write_timing->asyn_address_holdtime - 1U ) << SNTCFG_AHLD_OFFSET ) & EXMC_SNTCFG_AHLD ) |
(((exmc_norsram_init_struct->read_write_timing->asyn_data_setuptime - 1U ) << SNTCFG_DSET_OFFSET ) & EXMC_SNTCFG_DSET ) |
(((exmc_norsram_init_struct->read_write_timing->bus_latency - 1U ) << SNTCFG_BUSLAT_OFFSET ) & EXMC_SNTCFG_BUSLAT )|
exmc_norsram_init_struct->read_write_timing->syn_clk_division |
exmc_norsram_init_struct->read_write_timing->syn_data_latency |
exmc_norsram_init_struct->read_write_timing->asyn_access_mode;
/* nor flash access enable */
if(EXMC_MEMORY_TYPE_NOR == exmc_norsram_init_struct->memory_type){
snctl |= (uint32_t)EXMC_SNCTL_NREN;
}
/* extended mode configure */
if(ENABLE == exmc_norsram_init_struct->extended_mode){
snwtcfg = (uint32_t)((exmc_norsram_init_struct->write_timing->asyn_address_setuptime - 1U) & EXMC_SNWTCFG_WASET ) |
(((exmc_norsram_init_struct->write_timing->asyn_address_holdtime -1U ) << SNWTCFG_WAHLD_OFFSET ) & EXMC_SNWTCFG_WAHLD )|
(((exmc_norsram_init_struct->write_timing->asyn_data_setuptime -1U ) << SNWTCFG_WDSET_OFFSET ) & EXMC_SNWTCFG_WDSET )|
(((exmc_norsram_init_struct->write_timing->bus_latency - 1U ) << SNWTCFG_WBUSLAT_OFFSET ) & EXMC_SNWTCFG_WBUSLAT ) |
exmc_norsram_init_struct->write_timing->asyn_access_mode;
}else{
snwtcfg = BANK0_SNWTCFG_RESET;
}
/* configure the registers */
EXMC_SNCTL(exmc_norsram_init_struct->norsram_region) = snctl;
EXMC_SNTCFG(exmc_norsram_init_struct->norsram_region) = sntcfg;
EXMC_SNWTCFG(exmc_norsram_init_struct->norsram_region) = snwtcfg;
}
/*!
\brief initialize the struct exmc_norsram_parameter_struct
\param[in] none
\param[out] exmc_norsram_init_struct: the initialized struct exmc_norsram_parameter_struct pointer
\retval none
*/
void exmc_norsram_parameter_init(exmc_norsram_parameter_struct* exmc_norsram_init_struct)
{
/* configure the structure with default value */
exmc_norsram_init_struct->norsram_region = EXMC_BANK0_NORSRAM_REGION0;
exmc_norsram_init_struct->address_data_mux = ENABLE;
exmc_norsram_init_struct->memory_type = EXMC_MEMORY_TYPE_SRAM;
exmc_norsram_init_struct->databus_width = EXMC_NOR_DATABUS_WIDTH_8B;
exmc_norsram_init_struct->burst_mode = DISABLE;
exmc_norsram_init_struct->nwait_polarity = EXMC_NWAIT_POLARITY_LOW;
exmc_norsram_init_struct->wrap_burst_mode = DISABLE;
exmc_norsram_init_struct->nwait_config = EXMC_NWAIT_CONFIG_BEFORE;
exmc_norsram_init_struct->memory_write = ENABLE;
exmc_norsram_init_struct->nwait_signal = ENABLE;
exmc_norsram_init_struct->extended_mode = DISABLE;
exmc_norsram_init_struct->asyn_wait = DISABLE;
exmc_norsram_init_struct->write_mode = EXMC_ASYN_WRITE;
/* read/write timing configure */
exmc_norsram_init_struct->read_write_timing->asyn_address_setuptime = 0xFU;
exmc_norsram_init_struct->read_write_timing->asyn_address_holdtime = 0xFU;
exmc_norsram_init_struct->read_write_timing->asyn_data_setuptime = 0xFFU;
exmc_norsram_init_struct->read_write_timing->bus_latency = 0xFU;
exmc_norsram_init_struct->read_write_timing->syn_clk_division = EXMC_SYN_CLOCK_RATIO_16_CLK;
exmc_norsram_init_struct->read_write_timing->syn_data_latency = EXMC_DATALAT_17_CLK;
exmc_norsram_init_struct->read_write_timing->asyn_access_mode = EXMC_ACCESS_MODE_A;
/* write timing configure, when extended mode is used */
exmc_norsram_init_struct->write_timing->asyn_address_setuptime = 0xFU;
exmc_norsram_init_struct->write_timing->asyn_address_holdtime = 0xFU;
exmc_norsram_init_struct->write_timing->asyn_data_setuptime = 0xFFU;
exmc_norsram_init_struct->write_timing->bus_latency = 0xFU;
exmc_norsram_init_struct->write_timing->asyn_access_mode = EXMC_ACCESS_MODE_A;
}
/*!
\brief CRAM page size configure
\param[in] exmc_norsram_region: specifie the region of NOR/PSRAM bank
\arg EXMC_BANK0_NORSRAM_REGIONx(x=0..3)
\param[in] page_size: CRAM page size
\arg EXMC_CRAM_AUTO_SPLIT: the clock is generated only during synchronous access
\arg EXMC_CRAM_PAGE_SIZE_128_BYTES: page size is 128 bytes
\arg EXMC_CRAM_PAGE_SIZE_256_BYTES: page size is 256 bytes
\arg EXMC_CRAM_PAGE_SIZE_512_BYTES: page size is 512 bytes
\arg EXMC_CRAM_PAGE_SIZE_1024_BYTES: page size is 1024 bytes
\param[out] none
\retval none
*/
void exmc_norsram_page_size_config(uint32_t exmc_norsram_region, uint32_t page_size)
{
/* reset the bits */
EXMC_SNCTL(exmc_norsram_region) &= ~EXMC_SNCTL_CPS;
/* set the CPS bits */
EXMC_SNCTL(exmc_norsram_region) |= page_size;
}
/*!
\brief enable EXMC NOR/PSRAM bank region
\param[in] exmc_norsram_region: specifie the region of NOR/PSRAM bank
\arg EXMC_BANK0_NORSRAM_REGIONx(x=0..3)
\param[out] none
\retval none
*/
void exmc_norsram_enable(uint32_t exmc_norsram_region)
{
EXMC_SNCTL(exmc_norsram_region) |= (uint32_t)EXMC_SNCTL_NRBKEN;
}
/*!
\brief disable EXMC NOR/PSRAM bank region
\param[in] exmc_norsram_region: specifie the region of NOR/PSRAM Bank
\arg EXMC_BANK0_NORSRAM_REGIONx(x=0..3)
\param[out] none
\retval none
*/
void exmc_norsram_disable(uint32_t exmc_norsram_region)
{
EXMC_SNCTL(exmc_norsram_region) &= ~(uint32_t)EXMC_SNCTL_NRBKEN;
}
/*!
\brief deinitialize EXMC NAND bank
\param[in] exmc_nand_bank: select the bank of NAND
\arg EXMC_BANKx_NAND(x=1..2)
\param[out] none
\retval none
*/
void exmc_nand_deinit(uint32_t exmc_nand_bank)
{
/* EXMC_BANK1_NAND or EXMC_BANK2_NAND */
EXMC_NPCTL(exmc_nand_bank) = BANK1_2_NPCTL_RESET;
EXMC_NPINTEN(exmc_nand_bank) = BANK1_2_NPINTEN_RESET;
EXMC_NPCTCFG(exmc_nand_bank) = BANK1_2_NPCTCFG_RESET;
EXMC_NPATCFG(exmc_nand_bank) = BANK1_2_NPATCFG_RESET;
}
/*!
\brief initialize EXMC NAND bank
\param[in] exmc_nand_parameter_struct: configure the EXMC NAND parameter
nand_bank: EXMC_BANK1_NAND,EXMC_BANK2_NAND
ecc_size: EXMC_ECC_SIZE_xBYTES,x=256,512,1024,2048,4096
atr_latency: EXMC_ALE_RE_DELAY_x_HCLK,x=1..16
ctr_latency: EXMC_CLE_RE_DELAY_x_HCLK,x=1..16
ecc_logic: ENABLE or DISABLE
databus_width: EXMC_NAND_DATABUS_WIDTH_8B,EXMC_NAND_DATABUS_WIDTH_16B
wait_feature: ENABLE or DISABLE
common_space_timing: struct exmc_nand_pccard_timing_parameter_struct set the time
attribute_space_timing: struct exmc_nand_pccard_timing_parameter_struct set the time
\param[out] none
\retval none
*/
void exmc_nand_init(exmc_nand_parameter_struct* exmc_nand_init_struct)
{
uint32_t npctl = 0x00000000U, npctcfg = 0x00000000U, npatcfg = 0x00000000U;
npctl = (uint32_t)(exmc_nand_init_struct->wait_feature << NPCTL_NDWTEN_OFFSET)|
EXMC_NPCTL_NDTP |
exmc_nand_init_struct->databus_width |
(exmc_nand_init_struct->ecc_logic << NPCTL_ECCEN_OFFSET)|
exmc_nand_init_struct->ecc_size |
exmc_nand_init_struct->ctr_latency |
exmc_nand_init_struct->atr_latency;
npctcfg = (uint32_t)((exmc_nand_init_struct->common_space_timing->setuptime - 1U) & EXMC_NPCTCFG_COMSET ) |
(((exmc_nand_init_struct->common_space_timing->waittime - 1U) << NPCTCFG_COMWAIT_OFFSET) & EXMC_NPCTCFG_COMWAIT ) |
((exmc_nand_init_struct->common_space_timing->holdtime << NPCTCFG_COMHLD_OFFSET) & EXMC_NPCTCFG_COMHLD ) |
(((exmc_nand_init_struct->common_space_timing->databus_hiztime - 1U) << NPCTCFG_COMHIZ_OFFSET) & EXMC_NPCTCFG_COMHIZ );
npatcfg = (uint32_t)((exmc_nand_init_struct->attribute_space_timing->setuptime - 1U) & EXMC_NPATCFG_ATTSET ) |
(((exmc_nand_init_struct->attribute_space_timing->waittime - 1U) << NPATCFG_ATTWAIT_OFFSET) & EXMC_NPATCFG_ATTWAIT ) |
((exmc_nand_init_struct->attribute_space_timing->holdtime << NPATCFG_ATTHLD_OFFSET) & EXMC_NPATCFG_ATTHLD ) |
(((exmc_nand_init_struct->attribute_space_timing->databus_hiztime -1U) << NPATCFG_ATTHIZ_OFFSET) & EXMC_NPATCFG_ATTHIZ );
/* EXMC_BANK1_NAND or EXMC_BANK2_NAND initialize */
EXMC_NPCTL(exmc_nand_init_struct->nand_bank) = npctl;
EXMC_NPCTCFG(exmc_nand_init_struct->nand_bank) = npctcfg;
EXMC_NPATCFG(exmc_nand_init_struct->nand_bank) = npatcfg;
}
/*!
\brief initialize the struct exmc_norsram_parameter_struct
\param[in] none
\param[out] the initialized struct exmc_norsram_parameter_struct pointer
\retval none
*/
void exmc_nand_parameter_init(exmc_nand_parameter_struct* exmc_nand_init_struct)
{
/* configure the structure with default value */
exmc_nand_init_struct->nand_bank = EXMC_BANK1_NAND;
exmc_nand_init_struct->wait_feature = DISABLE;
exmc_nand_init_struct->databus_width = EXMC_NAND_DATABUS_WIDTH_8B;
exmc_nand_init_struct->ecc_logic = DISABLE;
exmc_nand_init_struct->ecc_size = EXMC_ECC_SIZE_256BYTES;
exmc_nand_init_struct->ctr_latency = 0x0U;
exmc_nand_init_struct->atr_latency = 0x0U;
exmc_nand_init_struct->common_space_timing->setuptime = 0xfcU;
exmc_nand_init_struct->common_space_timing->waittime = 0xfcU;
exmc_nand_init_struct->common_space_timing->holdtime = 0xfcU;
exmc_nand_init_struct->common_space_timing->databus_hiztime = 0xfcU;
exmc_nand_init_struct->attribute_space_timing->setuptime = 0xfcU;
exmc_nand_init_struct->attribute_space_timing->waittime = 0xfcU;
exmc_nand_init_struct->attribute_space_timing->holdtime = 0xfcU;
exmc_nand_init_struct->attribute_space_timing->databus_hiztime = 0xfcU;
}
/*!
\brief enable NAND bank
\param[in] exmc_nand_bank: specifie the NAND bank
\arg EXMC_BANKx_NAND(x=1,2)
\param[out] none
\retval none
*/
void exmc_nand_enable(uint32_t exmc_nand_bank)
{
EXMC_NPCTL(exmc_nand_bank) |= EXMC_NPCTL_NDBKEN;
}
/*!
\brief disable NAND bank
\param[in] exmc_nand_bank: specifie the NAND bank
\arg EXMC_BANKx_NAND(x=1,2)
\param[out] none
\retval none
*/
void exmc_nand_disable(uint32_t exmc_nand_bank)
{
EXMC_NPCTL(exmc_nand_bank) &= (~EXMC_NPCTL_NDBKEN);
}
/*!
\brief enable or disable the EXMC NAND ECC function
\param[in] exmc_nand_bank: specifie the NAND bank
\arg EXMC_BANKx_NAND(x=1,2)
\param[in] newvalue: ENABLE or DISABLE
\param[out] none
\retval none
*/
void exmc_nand_ecc_config(uint32_t exmc_nand_bank, ControlStatus newvalue)
{
if (ENABLE == newvalue){
/* enable the selected NAND bank ECC function */
EXMC_NPCTL(exmc_nand_bank) |= EXMC_NPCTL_ECCEN;
}else{
/* disable the selected NAND bank ECC function */
EXMC_NPCTL(exmc_nand_bank) &= (~EXMC_NPCTL_ECCEN);
}
}
/*!
\brief get the EXMC ECC value
\param[in] exmc_nand_bank: specifie the NAND bank
\arg EXMC_BANKx_NAND(x=1,2)
\param[out] none
\retval the error correction code(ECC) value
*/
uint32_t exmc_ecc_get(uint32_t exmc_nand_bank)
{
return (EXMC_NECC(exmc_nand_bank));
}
/*!
\brief deinitialize EXMC PC card bank
\param[in] none
\param[out] none
\retval none
*/
void exmc_pccard_deinit(void)
{
/* EXMC_BANK3_PCCARD */
EXMC_NPCTL3 = BANK3_NPCTL_RESET;
EXMC_NPINTEN3 = BANK3_NPINTEN_RESET;
EXMC_NPCTCFG3 = BANK3_NPCTCFG_RESET;
EXMC_NPATCFG3 = BANK3_NPATCFG_RESET;
EXMC_PIOTCFG3 = BANK3_PIOTCFG3_RESET;
}
/*!
\brief initialize EXMC PC card bank
\param[in] exmc_pccard_parameter_struct: configure the EXMC NAND parameter
atr_latency: EXMC_ALE_RE_DELAY_x_HCLK,x=1..16
ctr_latency: EXMC_CLE_RE_DELAY_x_HCLK,x=1..16
wait_feature: ENABLE or DISABLE
common_space_timing: struct exmc_nand_pccard_timing_parameter_struct set the time
attribute_space_timing: struct exmc_nand_pccard_timing_parameter_struct set the time
io_space_timing: exmc_nand_pccard_timing_parameter_struct set the time
\param[out] none
\retval none
*/
void exmc_pccard_init(exmc_pccard_parameter_struct* exmc_pccard_init_struct)
{
/* configure the EXMC bank3 PC card control register */
EXMC_NPCTL3 = (uint32_t)(exmc_pccard_init_struct->wait_feature << NPCTL_NDWTEN_OFFSET) |
EXMC_NAND_DATABUS_WIDTH_16B |
exmc_pccard_init_struct->ctr_latency |
exmc_pccard_init_struct->atr_latency ;
/* configure the EXMC bank3 PC card common space timing configuration register */
EXMC_NPCTCFG3 = (uint32_t)((exmc_pccard_init_struct->common_space_timing->setuptime - 1U)& EXMC_NPCTCFG_COMSET ) |
(((exmc_pccard_init_struct->common_space_timing->waittime - 1U) << NPCTCFG_COMWAIT_OFFSET) & EXMC_NPCTCFG_COMWAIT ) |
((exmc_pccard_init_struct->common_space_timing->holdtime << NPCTCFG_COMHLD_OFFSET) & EXMC_NPCTCFG_COMHLD ) |
(((exmc_pccard_init_struct->common_space_timing->databus_hiztime - 1U) << NPCTCFG_COMHIZ_OFFSET) & EXMC_NPCTCFG_COMHIZ );
/* configure the EXMC bank3 PC card attribute space timing configuration register */
EXMC_NPATCFG3 = (uint32_t)((exmc_pccard_init_struct->attribute_space_timing->setuptime - 1U) & EXMC_NPATCFG_ATTSET ) |
(((exmc_pccard_init_struct->attribute_space_timing->waittime - 1U) << NPATCFG_ATTWAIT_OFFSET) & EXMC_NPATCFG_ATTWAIT ) |
((exmc_pccard_init_struct->attribute_space_timing->holdtime << NPATCFG_ATTHLD_OFFSET) & EXMC_NPATCFG_ATTHLD )|
(((exmc_pccard_init_struct->attribute_space_timing->databus_hiztime -1U) << NPATCFG_ATTHIZ_OFFSET) & EXMC_NPATCFG_ATTHIZ );
/* configure the EXMC bank3 PC card io space timing configuration register */
EXMC_PIOTCFG3 = (uint32_t)((exmc_pccard_init_struct->io_space_timing->setuptime - 1U) & EXMC_PIOTCFG3_IOSET ) |
(((exmc_pccard_init_struct->io_space_timing->waittime - 1U) << PIOTCFG_IOWAIT_OFFSET) & EXMC_PIOTCFG3_IOWAIT ) |
((exmc_pccard_init_struct->io_space_timing->holdtime << PIOTCFG_IOHLD_OFFSET) & EXMC_PIOTCFG3_IOHLD )|
((exmc_pccard_init_struct->io_space_timing->databus_hiztime << PIOTCFG_IOHIZ_OFFSET) & EXMC_PIOTCFG3_IOHIZ );
}
/*!
\brief initialize the struct exmc_pccard_parameter_struct
\param[in] none
\param[out] the initialized struct exmc_pccard_parameter_struct pointer
\retval none
*/
void exmc_pccard_parameter_init(exmc_pccard_parameter_struct* exmc_pccard_init_struct)
{
/* configure the structure with default value */
exmc_pccard_init_struct->wait_feature = DISABLE;
exmc_pccard_init_struct->ctr_latency = 0x0U;
exmc_pccard_init_struct->atr_latency = 0x0U;
exmc_pccard_init_struct->common_space_timing->setuptime = 0xFCU;
exmc_pccard_init_struct->common_space_timing->waittime = 0xFCU;
exmc_pccard_init_struct->common_space_timing->holdtime = 0xFCU;
exmc_pccard_init_struct->common_space_timing->databus_hiztime = 0xFCU;
exmc_pccard_init_struct->attribute_space_timing->setuptime = 0xFCU;
exmc_pccard_init_struct->attribute_space_timing->waittime = 0xFCU;
exmc_pccard_init_struct->attribute_space_timing->holdtime = 0xFCU;
exmc_pccard_init_struct->attribute_space_timing->databus_hiztime = 0xFCU;
exmc_pccard_init_struct->io_space_timing->setuptime = 0xFCU;
exmc_pccard_init_struct->io_space_timing->waittime = 0xFCU;
exmc_pccard_init_struct->io_space_timing->holdtime = 0xFCU;
exmc_pccard_init_struct->io_space_timing->databus_hiztime = 0xFCU;
}
/*!
\brief enable PC Card Bank
\param[in] none
\param[out] none
\retval none
*/
void exmc_pccard_enable(void)
{
EXMC_NPCTL3 |= EXMC_NPCTL_NDBKEN;
}
/*!
\brief disable PC Card Bank
\param[in] none
\param[out] none
\retval none
*/
void exmc_pccard_disable(void)
{
EXMC_NPCTL3 &= (~EXMC_NPCTL_NDBKEN);
}
/*!
\brief check EXMC flag is set or not
\param[in] exmc_bank: specifies the NAND bank , PC card bank
\arg EXMC_BANK1_NAND: the NAND bank1
\arg EXMC_BANK2_NAND: the NAND bank2
\arg EXMC_BANK3_PCCARD: the PC Card bank
\param[in] flag: specify get which flag
\arg EXMC_NAND_PCCARD_FLAG_RISE: interrupt rising edge status
\arg EXMC_NAND_PCCARD_FLAG_LEVEL: interrupt high-level status
\arg EXMC_NAND_PCCARD_FLAG_FALL: interrupt falling edge status
\arg EXMC_NAND_PCCARD_FLAG_FIFOE: FIFO empty flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus exmc_flag_get(uint32_t exmc_bank,uint32_t flag)
{
uint32_t status = 0x00000000U;
/* NAND bank1,bank2 or PC card bank3 */
status = EXMC_NPINTEN(exmc_bank);
if ((status & flag) != (uint32_t)flag ){
/* flag is reset */
return RESET;
}else{
/* flag is set */
return SET;
}
}
/*!
\brief clear EXMC flag
\param[in] exmc_bank: specifie the NAND bank , PCCARD bank
\arg EXMC_BANK1_NAND: the NAND bank1
\arg EXMC_BANK2_NAND: the NAND bank2
\arg EXMC_BANK3_PCCARD: the PC card bank
\param[in] flag: specify get which flag
\arg EXMC_NAND_PCCARD_FLAG_RISE: interrupt rising edge status
\arg EXMC_NAND_PCCARD_FLAG_LEVEL: interrupt high-level status
\arg EXMC_NAND_PCCARD_FLAG_FALL: interrupt falling edge status
\arg EXMC_NAND_PCCARD_FLAG_FIFOE: FIFO empty flag
\param[out] none
\retval none
*/
void exmc_flag_clear(uint32_t exmc_bank,uint32_t flag)
{
/* NAND bank1,bank2 or PC card bank3 */
EXMC_NPINTEN(exmc_bank) &= (~flag);
}
/*!
\brief check EXMC interrupt flag is set or not
\param[in] exmc_bank: specifies the NAND bank , PC card bank
\arg EXMC_BANK1_NAND: the NAND bank1
\arg EXMC_BANK2_NAND: the NAND bank2
\arg EXMC_BANK3_PCCARD: the PC card bank
\param[in] interrupt_source: specify get which interrupt flag
\arg EXMC_NAND_PCCARD_INT_FLAG_RISE: interrupt source of rising edge
\arg EXMC_NAND_PCCARD_INT_FLAG_LEVEL: interrupt source of high-level
\arg EXMC_NAND_PCCARD_INT_FLAG_FALL: interrupt source of falling edge
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus exmc_interrupt_flag_get(uint32_t exmc_bank,uint32_t interrupt_source)
{
uint32_t status = 0x00000000U,interrupt_enable = 0x00000000U,interrupt_state = 0x00000000U;
/* NAND bank1,bank2 or PC card bank3 */
status = EXMC_NPINTEN(exmc_bank);
interrupt_state = (status & (interrupt_source >> INTEN_INTS_OFFSET));
interrupt_enable = (status & interrupt_source);
if ((interrupt_enable) && (interrupt_state)){
/* interrupt flag is set */
return SET;
}else{
/* interrupt flag is reset */
return RESET;
}
}
/*!
\brief clear EXMC interrupt flag
\param[in] exmc_bank: specifies the NAND bank , PC card bank
\arg EXMC_BANK1_NAND: the NAND bank1
\arg EXMC_BANK2_NAND: the NAND bank2
\arg EXMC_BANK3_PCCARD: the PC card bank
\param[in] interrupt_source: specify get which interrupt flag
\arg EXMC_NAND_PCCARD_INT_FLAG_RISE: interrupt source of rising edge
\arg EXMC_NAND_PCCARD_INT_FLAG_LEVEL: interrupt source of high-level
\arg EXMC_NAND_PCCARD_INT_FLAG_FALL: interrupt source of falling edge
\param[out] none
\retval none
*/
void exmc_interrupt_flag_clear(uint32_t exmc_bank,uint32_t interrupt_source)
{
/* NAND bank1,bank2 or PC card bank3 */
EXMC_NPINTEN(exmc_bank) &= ~(interrupt_source >> INTEN_INTS_OFFSET);
}
/*!
\brief enable EXMC interrupt
\param[in] exmc_bank: specifies the NAND bank,PC card bank
\arg EXMC_BANK1_NAND: the NAND bank1
\arg EXMC_BANK2_NAND: the NAND bank2
\arg EXMC_BANK3_PCCARD: the PC card bank
\param[in] interrupt_source: specify get which interrupt flag
\arg EXMC_NAND_PCCARD_INT_RISE: interrupt source of rising edge
\arg EXMC_NAND_PCCARD_INT_LEVEL: interrupt source of high-level
\arg EXMC_NAND_PCCARD_INT_FALL: interrupt source of falling edge
\param[out] none
\retval none
*/
void exmc_interrupt_enable(uint32_t exmc_bank,uint32_t interrupt_source)
{
/* NAND bank1,bank2 or PC card bank3 */
EXMC_NPINTEN(exmc_bank) |= interrupt_source;
}
/*!
\brief disable EXMC interrupt
\param[in] exmc_bank: specifies the NAND bank , PC card bank
\arg EXMC_BANK1_NAND: the NAND bank1
\arg EXMC_BANK2_NAND: the NAND bank2
\arg EXMC_BANK3_PCCARD: the PC card bank
\param[in] interrupt_source: specify get which interrupt flag
\arg EXMC_NAND_PCCARD_INT_RISE: interrupt source of rising edge
\arg EXMC_NAND_PCCARD_INT_LEVEL: interrupt source of high-level
\arg EXMC_NAND_PCCARD_INT_FALL: interrupt source of falling edge
\param[out] none
\retval none
*/
void exmc_interrupt_disable(uint32_t exmc_bank,uint32_t interrupt_source)
{
/* NAND bank1,bank2 or PC card bank3 */
EXMC_NPINTEN(exmc_bank) &= (~interrupt_source);
}

View File

@ -0,0 +1,227 @@
/*!
\file gd32f30x_exti.c
\brief EXTI driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "gd32f30x_exti.h"
/*!
\brief deinitialize the EXTI
\param[in] none
\param[out] none
\retval none
*/
void exti_deinit(void)
{
/* reset the value of all the EXTI registers */
EXTI_INTEN = (uint32_t)0x00000000U;
EXTI_EVEN = (uint32_t)0x00000000U;
EXTI_RTEN = (uint32_t)0x00000000U;
EXTI_FTEN = (uint32_t)0x00000000U;
EXTI_SWIEV = (uint32_t)0x00000000U;
}
/*!
\brief initialize the EXTI
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[in] mode: interrupt or event mode, refer to exti_mode_enum
only one parameter can be selected which is shown as below:
\arg EXTI_INTERRUPT: interrupt mode
\arg EXTI_EVENT: event mode
\param[in] trig_type: interrupt trigger type, refer to exti_trig_type_enum
only one parameter can be selected which is shown as below:
\arg EXTI_TRIG_RISING: rising edge trigger
\arg EXTI_TRIG_FALLING: falling trigger
\arg EXTI_TRIG_BOTH: rising and falling trigger
\param[out] none
\retval none
*/
void exti_init(exti_line_enum linex, exti_mode_enum mode, exti_trig_type_enum trig_type)
{
/* reset the EXTI line x */
EXTI_INTEN &= ~(uint32_t)linex;
EXTI_EVEN &= ~(uint32_t)linex;
EXTI_RTEN &= ~(uint32_t)linex;
EXTI_FTEN &= ~(uint32_t)linex;
/* set the EXTI mode and enable the interrupts or events from EXTI line x */
switch(mode){
case EXTI_INTERRUPT:
EXTI_INTEN |= (uint32_t)linex;
break;
case EXTI_EVENT:
EXTI_EVEN |= (uint32_t)linex;
break;
default:
break;
}
/* set the EXTI trigger type */
switch(trig_type){
case EXTI_TRIG_RISING:
EXTI_RTEN |= (uint32_t)linex;
EXTI_FTEN &= ~(uint32_t)linex;
break;
case EXTI_TRIG_FALLING:
EXTI_RTEN &= ~(uint32_t)linex;
EXTI_FTEN |= (uint32_t)linex;
break;
case EXTI_TRIG_BOTH:
EXTI_RTEN |= (uint32_t)linex;
EXTI_FTEN |= (uint32_t)linex;
break;
default:
break;
}
}
/*!
\brief enable the interrupts from EXTI line x
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval none
*/
void exti_interrupt_enable(exti_line_enum linex)
{
EXTI_INTEN |= (uint32_t)linex;
}
/*!
\brief enable the events from EXTI line x
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval none
*/
void exti_event_enable(exti_line_enum linex)
{
EXTI_EVEN |= (uint32_t)linex;
}
/*!
\brief disable the interrupt from EXTI line x
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval none
*/
void exti_interrupt_disable(exti_line_enum linex)
{
EXTI_INTEN &= ~(uint32_t)linex;
}
/*!
\brief disable the events from EXTI line x
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval none
*/
void exti_event_disable(exti_line_enum linex)
{
EXTI_EVEN &= ~(uint32_t)linex;
}
/*!
\brief get EXTI lines flag
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval FlagStatus: status of flag (RESET or SET)
*/
FlagStatus exti_flag_get(exti_line_enum linex)
{
if(RESET != (EXTI_PD & (uint32_t)linex)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear EXTI lines pending flag
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval none
*/
void exti_flag_clear(exti_line_enum linex)
{
EXTI_PD = (uint32_t)linex;
}
/*!
\brief get EXTI lines flag when the interrupt flag is set
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval FlagStatus: status of flag (RESET or SET)
*/
FlagStatus exti_interrupt_flag_get(exti_line_enum linex)
{
uint32_t flag_left, flag_right;
flag_left = EXTI_PD & (uint32_t)linex;
flag_right = EXTI_INTEN & (uint32_t)linex;
if((RESET != flag_left) && (RESET != flag_right)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear EXTI lines pending flag
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval none
*/
void exti_interrupt_flag_clear(exti_line_enum linex)
{
EXTI_PD = (uint32_t)linex;
}
/*!
\brief enable EXTI software interrupt event
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval none
*/
void exti_software_interrupt_enable(exti_line_enum linex)
{
EXTI_SWIEV |= (uint32_t)linex;
}
/*!
\brief disable EXTI software interrupt event
\param[in] linex: EXTI line number, refer to exti_line_enum
only one parameter can be selected which is shown as below:
\arg EXTI_x (x=0..19): EXTI line x
\param[out] none
\retval none
*/
void exti_software_interrupt_disable(exti_line_enum linex)
{
EXTI_SWIEV &= ~(uint32_t)linex;
}

View File

@ -0,0 +1,927 @@
/*!
\file gd32f30x_fmc.c
\brief FMC driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_fmc.h"
/*!
\brief set the wait state counter value
\param[in] wscnt:wait state counter value
\arg WS_WSCNT_0: FMC 0 wait
\arg WS_WSCNT_1: FMC 1 wait
\arg WS_WSCNT_2: FMC 2 wait
\param[out] none
\retval none
*/
void fmc_wscnt_set(uint32_t wscnt)
{
uint32_t reg;
reg = FMC_WS;
/* set the wait state counter value */
reg &= ~FMC_WS_WSCNT;
FMC_WS = (reg | wscnt);
}
/*!
\brief unlock the main FMC operation
\param[in] none
\param[out] none
\retval none
*/
void fmc_unlock(void)
{
if((RESET != (FMC_CTL0 & FMC_CTL0_LK))){
/* write the FMC unlock key */
FMC_KEY0 = UNLOCK_KEY0;
FMC_KEY0 = UNLOCK_KEY1;
}
if(FMC_BANK0_SIZE < FMC_SIZE){
/* write the FMC unlock key */
if(RESET != (FMC_CTL1 & FMC_CTL1_LK)){
FMC_KEY1 = UNLOCK_KEY0;
FMC_KEY1 = UNLOCK_KEY1;
}
}
}
/*!
\brief unlock the FMC bank0 operation
this function can be used for all GD32F20x devices.
for GD32F20x with flash more than 512KB, this function unlocks bank0.
for GD32F20x with flash no more than 512KB and it is equivalent to fmc_unlock function.
\param[in] none
\param[out] none
\retval none
*/
void fmc_bank0_unlock(void)
{
if((RESET != (FMC_CTL0 & FMC_CTL0_LK))){
/* write the FMC unlock key */
FMC_KEY0 = UNLOCK_KEY0;
FMC_KEY0 = UNLOCK_KEY1;
}
}
/*!
\brief unlock the FMC bank1 operation
this function can be used for GD32F20x with flash more than 512KB.
\param[in] none
\param[out] none
\retval none
*/
void fmc_bank1_unlock(void)
{
if((RESET != (FMC_CTL1 & FMC_CTL1_LK))){
/* write the FMC unlock key */
FMC_KEY1 = UNLOCK_KEY0;
FMC_KEY1 = UNLOCK_KEY1;
}
}
/*!
\brief lock the main FMC operation
\param[in] none
\param[out] none
\retval none
*/
void fmc_lock(void)
{
/* set the LK bit */
FMC_CTL0 |= FMC_CTL0_LK;
if(FMC_BANK0_SIZE < FMC_SIZE){
/* set the LK bit */
FMC_CTL1 |= FMC_CTL1_LK;
}
}
/*!
\brief lock the FMC bank0 operation
this function can be used for all GD32F20X devices.
for GD32F20x with flash more than 512KB, this function locks bank0.
for GD32F20x with flash no more than 512KB and it is equivalent to fmc_lock function.
\param[in] none
\param[out] none
\retval none
*/
void fmc_bank0_lock(void)
{
/* set the LK bit*/
FMC_CTL0 |= FMC_CTL0_LK;
}
/*!
\brief lock the FMC bank1 operation
this function can be used for GD32F20x with flash more than 512KB.
\param[in] none
\param[out] none
\retval none
*/
void fmc_bank1_lock(void)
{
/* set the LK bit*/
FMC_CTL1 |= FMC_CTL1_LK;
}
/*!
\brief erase page
\param[in] page_address: the page address to be erased.
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_page_erase(uint32_t page_address)
{
fmc_state_enum fmc_state;
if(FMC_BANK0_SIZE < FMC_SIZE){
if(FMC_BANK0_END_ADDRESS > page_address){
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* if the last operation is completed, start page erase */
if(FMC_READY == fmc_state){
FMC_CTL0 |= FMC_CTL0_PER;
FMC_ADDR0 = page_address;
FMC_CTL0 |= FMC_CTL0_START;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the PER bit */
FMC_CTL0 &= ~FMC_CTL0_PER;
}
}else{
/* wait for the FMC ready */
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
/* if the last operation is completed, start page erase */
if(FMC_READY == fmc_state){
FMC_CTL1 |= FMC_CTL1_PER;
FMC_ADDR1 = page_address;
if(FMC_OBSTAT & FMC_OBSTAT_SPC){
FMC_ADDR0 = page_address;
}
FMC_CTL1 |= FMC_CTL1_START;
/* wait for the FMC ready */
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the PER bit */
FMC_CTL1 &= ~FMC_CTL1_PER;
}
}
}else{
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* if the last operation is completed, start page erase */
if(FMC_READY == fmc_state){
FMC_CTL0 |= FMC_CTL0_PER;
FMC_ADDR0 = page_address;
FMC_CTL0 |= FMC_CTL0_START;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the PER bit */
FMC_CTL0 &= ~FMC_CTL0_PER;
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief erase whole chip
\param[in] none
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_mass_erase(void)
{
fmc_state_enum fmc_state;
if(FMC_BANK0_SIZE < FMC_SIZE){
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* start whole chip erase */
FMC_CTL0 |= FMC_CTL0_MER;
FMC_CTL0 |= FMC_CTL0_START;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the MER bit */
FMC_CTL0 &= ~FMC_CTL0_MER;
}
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* start whole chip erase */
FMC_CTL1 |= FMC_CTL1_MER;
FMC_CTL1 |= FMC_CTL1_START;
/* wait for the FMC ready */
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the MER bit */
FMC_CTL1 &= ~FMC_CTL1_MER;
}
}else{
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* start whole chip erase */
FMC_CTL0 |= FMC_CTL0_MER;
FMC_CTL0 |= FMC_CTL0_START;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the MER bit */
FMC_CTL0 &= ~FMC_CTL0_MER;
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief erase bank0
\param[in] none
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_bank0_erase(void)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* start FMC bank0 erase */
FMC_CTL0 |= FMC_CTL0_MER;
FMC_CTL0 |= FMC_CTL0_START;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the MER bit */
FMC_CTL0 &= ~FMC_CTL0_MER;
}
/* return the fmc state */
return fmc_state;
}
/*!
\brief erase bank1
\param[in] none
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_bank1_erase(void)
{
fmc_state_enum fmc_state = FMC_READY;
/* wait for the FMC ready */
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* start FMC bank1 erase */
FMC_CTL1 |= FMC_CTL1_MER;
FMC_CTL1 |= FMC_CTL1_START;
/* wait for the FMC ready */
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the MER bit */
FMC_CTL1 &= ~FMC_CTL1_MER;
}
/* return the fmc state */
return fmc_state;
}
/*!
\brief program a word at the corresponding address
\param[in] address: address to program
\param[in] data: word to program
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_word_program(uint32_t address, uint32_t data)
{
fmc_state_enum fmc_state = FMC_READY;
if(FMC_BANK0_SIZE < FMC_SIZE){
if(FMC_BANK0_END_ADDRESS > address){
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* set the PG bit to start program */
FMC_CTL0 |= FMC_CTL0_PG;
REG32(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the PG bit */
FMC_CTL0 &= ~FMC_CTL0_PG;
}
}else{
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* set the PG bit to start program */
FMC_CTL1 |= FMC_CTL1_PG;
REG32(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the PG bit */
FMC_CTL1 &= ~FMC_CTL1_PG;
}
}
}else{
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* set the PG bit to start program */
FMC_CTL0 |= FMC_CTL0_PG;
REG32(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the PG bit */
FMC_CTL0 &= ~FMC_CTL0_PG;
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief program a half word at the corresponding address
\param[in] address: address to program
\param[in] data: halfword to program
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_halfword_program(uint32_t address, uint16_t data)
{
fmc_state_enum fmc_state = FMC_READY;
if(FMC_BANK0_SIZE < FMC_SIZE){
if(FMC_BANK0_END_ADDRESS > address){
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* set the PG bit to start program */
FMC_CTL0 |= FMC_CTL0_PG;
REG16(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the PG bit */
FMC_CTL0 &= ~FMC_CTL0_PG;
}
}else{
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* set the PG bit to start program */
FMC_CTL1 |= FMC_CTL1_PG;
REG16(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_bank1_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the PG bit */
FMC_CTL1 &= ~FMC_CTL1_PG;
}
}
}else{
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* set the PG bit to start program */
FMC_CTL0 |= FMC_CTL0_PG;
REG16(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* reset the PG bit */
FMC_CTL0 &= ~FMC_CTL0_PG;
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief unlock the option byte operation
\param[in] none
\param[out] none
\retval none
*/
void ob_unlock(void)
{
if(RESET == (FMC_CTL0 & FMC_CTL0_OBWEN)){
/* write the FMC key */
FMC_OBKEY = UNLOCK_KEY0;
FMC_OBKEY = UNLOCK_KEY1;
}
}
/*!
\brief lock the option byte operation
\param[in] none
\param[out] none
\retval none
*/
void ob_lock(void)
{
/* reset the OBWEN bit */
FMC_CTL0 &= ~FMC_CTL0_OBWEN;
}
/*!
\brief erase the FMC option byte
unlock the FMC_CTL0 and option byte before calling this function
\param[in] none
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum ob_erase(void)
{
uint16_t temp_spc = FMC_NSPC;
fmc_state_enum fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
/* check the option byte security protection value */
if(RESET != ob_spc_get()){
temp_spc = FMC_USPC;
}
if(FMC_READY == fmc_state){
/* start erase the option byte */
FMC_CTL0 |= FMC_CTL0_OBER;
FMC_CTL0 |= FMC_CTL0_START;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* reset the OBER bit */
FMC_CTL0 &= ~FMC_CTL0_OBER;
/* set the OBPG bit */
FMC_CTL0 |= FMC_CTL0_OBPG;
/* no security protection */
OB_SPC = (uint16_t)temp_spc;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_TOERR != fmc_state){
/* reset the OBPG bit */
FMC_CTL0 &= ~FMC_CTL0_OBPG;
}
}else{
if(FMC_TOERR != fmc_state){
/* reset the OBPG bit */
FMC_CTL0 &= ~FMC_CTL0_OBPG;
}
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief enable write protection
\param[in] ob_wp: specify sector to be write protected
\arg OB_WPx(x=0..31): write protect specify sector
\arg OB_WP_ALL: write protect all sector
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum ob_write_protection_enable(uint32_t ob_wp)
{
uint16_t temp_wp0, temp_wp1, temp_wp2, temp_wp3;
fmc_state_enum fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
ob_wp = (uint32_t)(~ob_wp);
temp_wp0 = (uint16_t)(ob_wp & OB_WP0_WP0);
temp_wp1 = (uint16_t)((ob_wp & OB_WP1_WP1) >> 8U);
temp_wp2 = (uint16_t)((ob_wp & OB_WP2_WP2) >> 16U);
temp_wp3 = (uint16_t)((ob_wp & OB_WP3_WP3) >> 24U);
if(FMC_READY == fmc_state){
/* set the OBPG bit*/
FMC_CTL0 |= FMC_CTL0_OBPG;
if(0xFFU != temp_wp0){
OB_WP0 = temp_wp0;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
}
if((FMC_READY == fmc_state) && (0xFFU != temp_wp1)){
OB_WP1 = temp_wp1;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
}
if((FMC_READY == fmc_state) && (0xFFU != temp_wp2)){
OB_WP2 = temp_wp2;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
}
if((FMC_READY == fmc_state) && (0xFFU != temp_wp3)){
OB_WP3 = temp_wp3;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
}
if(FMC_TOERR != fmc_state){
/* reset the OBPG bit */
FMC_CTL0 &= ~FMC_CTL0_OBPG;
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief configure security protection
\param[in] ob_spc: specify security protection
\arg FMC_NSPC: no security protection
\arg FMC_USPC: under security protection
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum ob_security_protection_config(uint8_t ob_spc)
{
fmc_state_enum fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
FMC_CTL0 |= FMC_CTL0_OBER;
FMC_CTL0 |= FMC_CTL0_START;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* reset the OBER bit */
FMC_CTL0 &= ~FMC_CTL0_OBER;
/* start the option byte program */
FMC_CTL0 |= FMC_CTL0_OBPG;
OB_SPC = (uint16_t)ob_spc;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_TOERR != fmc_state){
/* reset the OBPG bit */
FMC_CTL0 &= ~FMC_CTL0_OBPG;
}
}else{
if(FMC_TOERR != fmc_state){
/* reset the OBER bit */
FMC_CTL0 &= ~FMC_CTL0_OBER;
}
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief program the FMC user option byte
\param[in] ob_fwdgt: option byte watchdog value
\arg OB_FWDGT_SW: software free watchdog
\arg OB_FWDGT_HW: hardware free watchdog
\param[in] ob_deepsleep: option byte deepsleep reset value
\arg OB_DEEPSLEEP_NRST: no reset when entering deepsleep mode
\arg OB_DEEPSLEEP_RST: generate a reset instead of entering deepsleep mode
\param[in] ob_stdby:option byte standby reset value
\arg OB_STDBY_NRST: no reset when entering standby mode
\arg OB_STDBY_RST: generate a reset instead of entering standby mode
\param[in] ob_boot: specifies the option byte boot bank value
\arg OB_BOOT_B0: boot from bank0
\arg OB_BOOT_B1: boot from bank1 or bank0 if bank1 is void
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum ob_user_write(uint8_t ob_fwdgt, uint8_t ob_deepsleep, uint8_t ob_stdby, uint8_t ob_boot)
{
fmc_state_enum fmc_state = FMC_READY;
uint8_t temp;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* set the OBPG bit*/
FMC_CTL0 |= FMC_CTL0_OBPG;
temp = ((uint8_t)((uint8_t)((uint8_t)(ob_boot | ob_fwdgt) | ob_deepsleep) | ob_stdby) | OB_USER_MASK);
OB_USER = (uint16_t)temp;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_TOERR != fmc_state){
/* reset the OBPG bit */
FMC_CTL0 &= ~FMC_CTL0_OBPG;
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief program option bytes data
\param[in] address: the option bytes address to be programmed
\param[in] data: the byte to be programmed
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum ob_data_program(uint32_t address, uint8_t data)
{
fmc_state_enum fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_READY == fmc_state){
/* set the OBPG bit */
FMC_CTL0 |= FMC_CTL0_OBPG;
REG16(address) = data;
/* wait for the FMC ready */
fmc_state = fmc_bank0_ready_wait(FMC_TIMEOUT_COUNT);
if(FMC_TOERR != fmc_state){
/* reset the OBPG bit */
FMC_CTL0 &= ~FMC_CTL0_OBPG;
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief get the FMC user option byte
\param[in] none
\param[out] none
\retval the FMC user option byte values
*/
uint8_t ob_user_get(void)
{
/* return the FMC user option byte value */
return (uint8_t)(FMC_OBSTAT >> 2U);
}
/*!
\brief get OB_DATA in register FMC_OBSTAT
\param[in] none
\param[out] none
\retval ob_data
*/
uint16_t ob_data_get(void)
{
return (uint16_t)(FMC_OBSTAT >> 10U);
}
/*!
\brief get the FMC option byte write protection
\param[in] none
\param[out] none
\retval the FMC write protection option byte value
*/
uint32_t ob_write_protection_get(void)
{
/* return the FMC write protection option byte value */
return FMC_WP;
}
/*!
\brief get the FMC option byte security protection
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus ob_spc_get(void)
{
FlagStatus spc_state = RESET;
if(RESET != (FMC_OBSTAT & FMC_OBSTAT_SPC)){
spc_state = SET;
}else{
spc_state = RESET;
}
return spc_state;
}
/*!
\brief enable FMC interrupt
\param[in] interrupt: the FMC interrupt source
\arg FMC_INT_BANK0_END: enable FMC end of program interrupt
\arg FMC_INT_BANK0_ERR: enable FMC error interrupt
\arg FMC_INT_BANK1_END: enable FMC bank1 end of program interrupt
\arg FMC_INT_BANK1_ERR: enable FMC bank1 error interrupt
\param[out] none
\retval none
*/
void fmc_interrupt_enable(uint32_t interrupt)
{
FMC_REG_VAL(interrupt) |= BIT(FMC_BIT_POS(interrupt));
}
/*!
\brief disable FMC interrupt
\param[in] interrupt: the FMC interrupt source
\arg FMC_INT_BANK0_END: enable FMC end of program interrupt
\arg FMC_INT_BANK0_ERR: enable FMC error interrupt
\arg FMC_INT_BANK1_END: enable FMC bank1 end of program interrupt
\arg FMC_INT_BANK1_ERR: enable FMC bank1 error interrupt
\param[out] none
\retval none
*/
void fmc_interrupt_disable(uint32_t interrupt)
{
FMC_REG_VAL(interrupt) &= ~BIT(FMC_BIT_POS(interrupt));
}
/*!
\brief check flag is set or not
\param[in] flag: check FMC flag
only one parameter can be selected which is shown as below:
\arg FMC_FLAG_BANK0_BUSY: FMC bank0 busy flag bit
\arg FMC_FLAG_BANK0_PGERR: FMC bank0 operation error flag bit
\arg FMC_FLAG_BANK0_WPERR: FMC bank0 erase/program protection error flag bit
\arg FMC_FLAG_BANK0_END: FMC bank0 end of operation flag bit
\arg FMC_FLAG_OBERR: FMC option bytes read error flag bit
\arg FMC_FLAG_BANK1_BUSY: FMC bank1 busy flag bit
\arg FMC_FLAG_BANK1_PGERR: FMC bank1 operation error flag bit
\arg FMC_FLAG_BANK1_WPERR: FMC bank1 erase/program protection error flag bit
\arg FMC_FLAG_BANK1_END: FMC bank1 end of operation flag bit
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus fmc_flag_get(uint32_t flag)
{
if(RESET != (FMC_REG_VAL(flag) & BIT(FMC_BIT_POS(flag)))){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear the FMC flag
\param[in] flag: clear FMC flag
only one parameter can be selected which is shown as below:
\arg FMC_FLAG_BANK0_PGERR: FMC bank0 operation error flag bit
\arg FMC_FLAG_BANK0_WPERR: FMC bank0 erase/program protection error flag bit
\arg FMC_FLAG_BANK0_END: FMC bank0 end of operation flag bit
\arg FMC_FLAG_BANK1_PGERR: FMC bank1 operation error flag bit
\arg FMC_FLAG_BANK1_WPERR: FMC bank1 erase/program protection error flag bit
\arg FMC_FLAG_BANK1_END: FMC bank1 end of operation flag bit
\param[out] none
\retval none
*/
void fmc_flag_clear(uint32_t flag)
{
FMC_REG_VAL(flag) |= BIT(FMC_BIT_POS(flag));
}
/*!
\brief get FMC interrupt flag state
\param[in] flag: FMC interrupt flags, refer to fmc_interrupt_flag_enum
only one parameter can be selected which is shown as below:
\arg FMC_INT_FLAG_BANK0_PGERR: FMC bank0 operation error interrupt flag bit
\arg FMC_INT_FLAG_BANK0_WPERR: FMC bank0 erase/program protection error interrupt flag bit
\arg FMC_INT_FLAG_BANK0_END: FMC bank0 end of operation interrupt flag bit
\arg FMC_INT_FLAG_BANK1_PGERR: FMC bank1 operation error interrupt flag bit
\arg FMC_INT_FLAG_BANK1_WPERR: FMC bank1 erase/program protection error interrupt flag bit
\arg FMC_INT_FLAG_BANK1_END: FMC bank1 end of operation interrupt flag bit
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus fmc_interrupt_flag_get(fmc_interrupt_flag_enum flag)
{
FlagStatus ret1 = RESET;
FlagStatus ret2 = RESET;
if(FMC_STAT0_REG_OFFSET == FMC_REG_OFFSET_GET(flag)){
/* get the staus of interrupt flag */
ret1 = (FlagStatus)(FMC_REG_VALS(flag) & BIT(FMC_BIT_POS0(flag)));
/* get the staus of interrupt enale bit */
ret2 = (FlagStatus)(FMC_CTL0 & BIT(FMC_BIT_POS1(flag)));
}else{
/* get the staus of interrupt flag */
ret1 = (FlagStatus)(FMC_REG_VALS(flag) & BIT(FMC_BIT_POS0(flag)));
/* get the staus of interrupt enale bit */
ret2 = (FlagStatus)(FMC_CTL1 & BIT(FMC_BIT_POS1(flag)));
}
if(ret1 && ret2){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear FMC interrupt flag state
\param[in] flag: FMC interrupt flags, refer to can_interrupt_flag_enum
only one parameter can be selected which is shown as below:
\arg FMC_INT_FLAG_BANK0_PGERR: FMC bank0 operation error interrupt flag bit
\arg FMC_INT_FLAG_BANK0_WPERR: FMC bank0 erase/program protection error interrupt flag bit
\arg FMC_INT_FLAG_BANK0_END: FMC bank0 end of operation interrupt flag bit
\arg FMC_INT_FLAG_BANK1_PGERR: FMC bank1 operation error interrupt flag bit
\arg FMC_INT_FLAG_BANK1_WPERR: FMC bank1 erase/program protection error interrupt flag bit
\arg FMC_INT_FLAG_BANK1_END: FMC bank1 end of operation interrupt flag bit
\param[out] none
\retval none
*/
void fmc_interrupt_flag_clear(fmc_interrupt_flag_enum flag)
{
FMC_REG_VALS(flag) |= BIT(FMC_BIT_POS0(flag));
}
/*!
\brief get the FMC bank0 state
\param[in] none
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_bank0_state_get(void)
{
fmc_state_enum fmc_state = FMC_READY;
if((uint32_t)0x00U != (FMC_STAT0 & FMC_STAT0_BUSY)){
fmc_state = FMC_BUSY;
}else{
if((uint32_t)0x00U != (FMC_STAT0 & FMC_STAT0_WPERR)){
fmc_state = FMC_WPERR;
}else{
if((uint32_t)0x00U != (FMC_STAT0 & (FMC_STAT0_PGERR))){
fmc_state = FMC_PGERR;
}
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief get the FMC bank1 state
\param[in] none
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_bank1_state_get(void)
{
fmc_state_enum fmc_state = FMC_READY;
if((uint32_t)0x00U != (FMC_STAT1 & FMC_STAT1_BUSY)){
fmc_state = FMC_BUSY;
}else{
if((uint32_t)0x00U != (FMC_STAT1 & FMC_STAT1_WPERR)){
fmc_state = FMC_WPERR;
}else{
if((uint32_t)0x00U != (FMC_STAT1 & FMC_STAT1_PGERR)){
fmc_state = FMC_PGERR;
}
}
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief check whether FMC bank0 is ready or not
\param[in] timeout: count of loop
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_bank0_ready_wait(uint32_t timeout)
{
fmc_state_enum fmc_state = FMC_BUSY;
/* wait for FMC ready */
do{
/* get FMC state */
fmc_state = fmc_bank0_state_get();
timeout--;
}while((FMC_BUSY == fmc_state) && (0x00U != timeout));
if(FMC_BUSY == fmc_state){
fmc_state = FMC_TOERR;
}
/* return the FMC state */
return fmc_state;
}
/*!
\brief check whether FMC bank1 is ready or not
\param[in] timeout: count of loop
\param[out] none
\retval state of FMC, refer to fmc_state_enum
*/
fmc_state_enum fmc_bank1_ready_wait(uint32_t timeout)
{
fmc_state_enum fmc_state = FMC_BUSY;
/* wait for FMC ready */
do{
/* get FMC state */
fmc_state = fmc_bank1_state_get();
timeout--;
}while((FMC_BUSY == fmc_state) && (0x00U != timeout));
if(FMC_BUSY == fmc_state){
fmc_state = FMC_TOERR;
}
/* return the FMC state */
return fmc_state;
}

View File

@ -0,0 +1,120 @@
/*!
\file gd32f30x_fwdgt.c
\brief FWDGT driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_fwdgt.h"
/* write value to FWDGT_CTL_CMD bit field */
#define CTL_CMD(regval) (BITS(0,15) & ((uint32_t)(regval) << 0))
/* write value to FWDGT_RLD_RLD bit field */
#define RLD_RLD(regval) (BITS(0,11) & ((uint32_t)(regval) << 0))
/*!
\brief disable write access to FWDGT_PSC and FWDGT_RLD
\param[in] none
\param[out] none
\retval none
*/
void fwdgt_write_disable(void)
{
FWDGT_CTL = FWDGT_WRITEACCESS_DISABLE;
}
/*!
\brief reload the counter of FWDGT
\param[in] none
\param[out] none
\retval none
*/
void fwdgt_counter_reload(void)
{
FWDGT_CTL = FWDGT_KEY_RELOAD;
}
/*!
\brief start the free watchdog timer counter
\param[in] none
\param[out] none
\retval none
*/
void fwdgt_enable(void)
{
FWDGT_CTL = FWDGT_KEY_ENABLE;
}
/*!
\brief configure counter reload value, and prescaler divider value
\param[in] reload_value: specify reload value(0x0000 - 0x0FFF)
\param[in] prescaler_div: FWDGT prescaler value
\arg FWDGT_PSC_DIV4: FWDGT prescaler set to 4
\arg FWDGT_PSC_DIV8: FWDGT prescaler set to 8
\arg FWDGT_PSC_DIV16: FWDGT prescaler set to 16
\arg FWDGT_PSC_DIV32: FWDGT prescaler set to 32
\arg FWDGT_PSC_DIV64: FWDGT prescaler set to 64
\arg FWDGT_PSC_DIV128: FWDGT prescaler set to 128
\arg FWDGT_PSC_DIV256: FWDGT prescaler set to 256
\param[out] none
\retval ErrStatus: ERROR or SUCCESS
*/
ErrStatus fwdgt_config(uint16_t reload_value, uint8_t prescaler_div)
{
uint32_t timeout = FWDGT_PSC_TIMEOUT;
uint32_t flag_status = RESET;
/* enable write access to FWDGT_PSC,and FWDGT_RLD */
FWDGT_CTL = FWDGT_WRITEACCESS_ENABLE;
/* wait until the PUD flag to be reset */
do{
flag_status = FWDGT_STAT & FWDGT_STAT_PUD;
}while((--timeout > 0U) && ((uint32_t)RESET != flag_status));
if ((uint32_t)RESET != flag_status){
return ERROR;
}
/* configure FWDGT */
FWDGT_PSC = (uint32_t)prescaler_div;
timeout = FWDGT_RLD_TIMEOUT;
/* wait until the RUD flag to be reset */
do{
flag_status = FWDGT_STAT & FWDGT_STAT_RUD;
}while((--timeout > 0U) && ((uint32_t)RESET != flag_status));
if ((uint32_t)RESET != flag_status){
return ERROR;
}
FWDGT_RLD = RLD_RLD(reload_value);
/* reload the counter */
FWDGT_CTL = FWDGT_KEY_RELOAD;
return SUCCESS;
}
/*!
\brief get flag state of FWDGT
\param[in] flag: flag to get
\arg FWDGT_FLAG_PUD: a write operation to FWDGT_PSC register is on going
\arg FWDGT_FLAG_RUD: a write operation to FWDGT_RLD register is on going
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus fwdgt_flag_get(uint16_t flag)
{
if(FWDGT_STAT & flag){
return SET;
}
return RESET;
}

View File

@ -0,0 +1,531 @@
/*!
\file gd32f30x_gpio.c
\brief GPIO driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_gpio.h"
#define AFIO_EXTI_SOURCE_FIELDS ((uint8_t)0x04U) /*!< select AFIO exti source registers */
#define LSB_16BIT_MASK ((uint16_t)0xFFFFU) /*!< LSB 16-bit mask */
#define PCF_POSITION_MASK ((uint32_t)0x000F0000U) /*!< AFIO_PCF register position mask */
#define PCF_SWJCFG_MASK ((uint32_t)0xF0FFFFFFU) /*!< AFIO_PCF register SWJCFG mask */
#define PCF_LOCATION1_MASK ((uint32_t)0x00200000U) /*!< AFIO_PCF register location1 mask */
#define PCF_LOCATION2_MASK ((uint32_t)0x00100000U) /*!< AFIO_PCF register location2 mask */
#define AFIO_PCF1_FIELDS ((uint32_t)0x80000000U) /*!< select AFIO_PCF1 register */
/*!
\brief reset GPIO port
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[out] none
\retval none
*/
void gpio_deinit(uint32_t gpio_periph)
{
switch(gpio_periph){
case GPIOA:
/* reset GPIOA */
rcu_periph_reset_enable(RCU_GPIOARST);
rcu_periph_reset_disable(RCU_GPIOARST);
break;
case GPIOB:
/* reset GPIOB */
rcu_periph_reset_enable(RCU_GPIOBRST);
rcu_periph_reset_disable(RCU_GPIOBRST);
break;
case GPIOC:
/* reset GPIOC */
rcu_periph_reset_enable(RCU_GPIOCRST);
rcu_periph_reset_disable(RCU_GPIOCRST);
break;
case GPIOD:
/* reset GPIOD */
rcu_periph_reset_enable(RCU_GPIODRST);
rcu_periph_reset_disable(RCU_GPIODRST);
break;
case GPIOE:
/* reset GPIOE */
rcu_periph_reset_enable(RCU_GPIOERST);
rcu_periph_reset_disable(RCU_GPIOERST);
break;
case GPIOF:
/* reset GPIOF */
rcu_periph_reset_enable(RCU_GPIOFRST);
rcu_periph_reset_disable(RCU_GPIOFRST);
break;
case GPIOG:
/* reset GPIOG */
rcu_periph_reset_enable(RCU_GPIOGRST);
rcu_periph_reset_disable(RCU_GPIOGRST);
break;
default:
break;
}
}
/*!
\brief reset alternate function I/O(AFIO)
\param[in] none
\param[out] none
\retval none
*/
void gpio_afio_deinit(void)
{
rcu_periph_reset_enable(RCU_AFRST);
rcu_periph_reset_disable(RCU_AFRST);
}
/*!
\brief GPIO parameter initialization
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[in] mode: gpio pin mode
\arg GPIO_MODE_AIN: analog input mode
\arg GPIO_MODE_IN_FLOATING: floating input mode
\arg GPIO_MODE_IPD: pull-down input mode
\arg GPIO_MODE_IPU: pull-up input mode
\arg GPIO_MODE_OUT_OD: GPIO output with open-drain
\arg GPIO_MODE_OUT_PP: GPIO output with push-pull
\arg GPIO_MODE_AF_OD: AFIO output with open-drain
\arg GPIO_MODE_AF_PP: AFIO output with push-pull
\param[in] speed: gpio output max speed value
\arg GPIO_OSPEED_10MHZ: output max speed 10MHz
\arg GPIO_OSPEED_2MHZ: output max speed 2MHz
\arg GPIO_OSPEED_50MHZ: output max speed 50MHz
\arg GPIO_OSPEED_MAX: output max speed more than 50MHz
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_init(uint32_t gpio_periph, uint32_t mode, uint32_t speed, uint32_t pin)
{
uint16_t i;
uint32_t temp_mode = 0U;
uint32_t reg = 0U;
/* GPIO mode configuration */
temp_mode = (uint32_t)(mode & ((uint32_t)0x0FU));
/* GPIO speed configuration */
if(((uint32_t)0x00U) != ((uint32_t)mode & ((uint32_t)0x10U))){
/* output mode max speed */
if(GPIO_OSPEED_MAX == (uint32_t)speed){
temp_mode |= (uint32_t)0x03U;
/* set the corresponding SPD bit */
GPIOx_SPD(gpio_periph) |= (uint32_t)pin ;
}else{
/* output mode max speed:10MHz,2MHz,50MHz */
temp_mode |= (uint32_t)speed;
}
}
/* configure the eight low port pins with GPIO_CTL0 */
for(i = 0U;i < 8U;i++){
if((1U << i) & pin){
reg = GPIO_CTL0(gpio_periph);
/* clear the specified pin mode bits */
reg &= ~GPIO_MODE_MASK(i);
/* set the specified pin mode bits */
reg |= GPIO_MODE_SET(i, temp_mode);
/* set IPD or IPU */
if(GPIO_MODE_IPD == mode){
/* reset the corresponding OCTL bit */
GPIO_BC(gpio_periph) = (uint32_t)pin;
}else{
/* set the corresponding OCTL bit */
if(GPIO_MODE_IPU == mode){
GPIO_BOP(gpio_periph) = (uint32_t)pin;
}
}
/* set GPIO_CTL0 register */
GPIO_CTL0(gpio_periph) = reg;
}
}
/* configure the eight high port pins with GPIO_CTL1 */
for(i = 8U;i < 16U;i++){
if((1U << i) & pin){
reg = GPIO_CTL1(gpio_periph);
/* clear the specified pin mode bits */
reg &= ~GPIO_MODE_MASK(i - 8U);
/* set the specified pin mode bits */
reg |= GPIO_MODE_SET(i - 8U, temp_mode);
/* set IPD or IPU */
if(GPIO_MODE_IPD == mode){
/* reset the corresponding OCTL bit */
GPIO_BC(gpio_periph) = (uint32_t)pin;
}else{
/* set the corresponding OCTL bit */
if(GPIO_MODE_IPU == mode){
GPIO_BOP(gpio_periph) = (uint32_t)pin;
}
}
/* set GPIO_CTL1 register */
GPIO_CTL1(gpio_periph) = reg;
}
}
}
/*!
\brief set GPIO pin
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_bit_set(uint32_t gpio_periph,uint32_t pin)
{
GPIO_BOP(gpio_periph) = (uint32_t)pin;
}
/*!
\brief reset GPIO pin
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_bit_reset(uint32_t gpio_periph,uint32_t pin)
{
GPIO_BC(gpio_periph) = (uint32_t)pin;
}
/*!
\brief write data to the specified GPIO pin
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[in] bit_value: SET or RESET
\arg RESET: clear the port pin
\arg SET: set the port pin
\param[out] none
\retval none
*/
void gpio_bit_write(uint32_t gpio_periph,uint32_t pin,bit_status bit_value)
{
if(RESET != bit_value){
GPIO_BOP(gpio_periph) = (uint32_t)pin;
}else{
GPIO_BC(gpio_periph) = (uint32_t)pin;
}
}
/*!
\brief write data to the specified GPIO port
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[in] data: specify the value to be written to the port output data register
\param[out] none
\retval none
*/
void gpio_port_write(uint32_t gpio_periph,uint16_t data)
{
GPIO_OCTL(gpio_periph) = (uint32_t)data;
}
/*!
\brief get GPIO pin input status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval input status of gpio pin: SET or RESET
*/
FlagStatus gpio_input_bit_get(uint32_t gpio_periph,uint32_t pin)
{
if((uint32_t)RESET != (GPIO_ISTAT(gpio_periph)&(pin))){
return SET;
}else{
return RESET;
}
}
/*!
\brief get GPIO port input status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[out] none
\retval input status of gpio all pins
*/
uint16_t gpio_input_port_get(uint32_t gpio_periph)
{
return (uint16_t)(GPIO_ISTAT(gpio_periph));
}
/*!
\brief get GPIO pin output status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval output status of gpio pin: SET or RESET
*/
FlagStatus gpio_output_bit_get(uint32_t gpio_periph,uint32_t pin)
{
if((uint32_t)RESET !=(GPIO_OCTL(gpio_periph)&(pin))){
return SET;
}else{
return RESET;
}
}
/*!
\brief get GPIO port output status
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[out] none
\retval output status of gpio all pins
*/
uint16_t gpio_output_port_get(uint32_t gpio_periph)
{
return ((uint16_t)GPIO_OCTL(gpio_periph));
}
/*!
\brief lock GPIO pin
\param[in] gpio_periph: GPIOx(x = A,B,C,D,E,F,G)
\param[in] pin: GPIO_PIN_x(x=0..15), GPIO_PIN_ALL
\param[out] none
\retval none
*/
void gpio_pin_lock(uint32_t gpio_periph,uint32_t pin)
{
uint32_t lock = 0x00010000U;
lock |= pin;
/* lock key writing sequence: write 1 -> write 0 -> write 1 -> read 0 -> read 1 */
GPIO_LOCK(gpio_periph) = (uint32_t)lock;
GPIO_LOCK(gpio_periph) = (uint32_t)pin;
GPIO_LOCK(gpio_periph) = (uint32_t)lock;
lock = GPIO_LOCK(gpio_periph);
lock = GPIO_LOCK(gpio_periph);
}
/*!
\brief configure GPIO pin event output
\param[in] output_port: gpio event output port
\arg GPIO_EVENT_PORT_GPIOA: event output port A
\arg GPIO_EVENT_PORT_GPIOB: event output port B
\arg GPIO_EVENT_PORT_GPIOC: event output port C
\arg GPIO_EVENT_PORT_GPIOD: event output port D
\arg GPIO_EVENT_PORT_GPIOE: event output port E
\param[in] output_pin: GPIO_EVENT_PIN_x(x=0..15)
\param[out] none
\retval none
*/
void gpio_event_output_config(uint8_t output_port, uint8_t output_pin)
{
uint32_t reg = 0U;
reg = AFIO_EC;
/* clear AFIO_EC_PORT and AFIO_EC_PIN bits */
reg &= (uint32_t)(~(AFIO_EC_PORT|AFIO_EC_PIN));
reg |= (uint32_t)((uint32_t)output_port << 0x04U);
reg |= (uint32_t)output_pin;
AFIO_EC = reg;
}
/*!
\brief enable GPIO pin event output
\param[in] none
\param[out] none
\retval none
*/
void gpio_event_output_enable(void)
{
AFIO_EC |= AFIO_EC_EOE;
}
/*!
\brief disable GPIO pin event output
\param[in] none
\param[out] none
\retval none
*/
void gpio_event_output_disable(void)
{
AFIO_EC &= (uint32_t)(~AFIO_EC_EOE);
}
/*!
\brief select GPIO pin exti sources
\param[in] output_port: gpio event output port
\arg GPIO_PORT_SOURCE_GPIOA: output port source A
\arg GPIO_PORT_SOURCE_GPIOB: output port source B
\arg GPIO_PORT_SOURCE_GPIOC: output port source C
\arg GPIO_PORT_SOURCE_GPIOD: output port source D
\arg GPIO_PORT_SOURCE_GPIOE: output port source E
\arg GPIO_PORT_SOURCE_GPIOF: output port source F
\arg GPIO_PORT_SOURCE_GPIOG: output port source G
\param[in] output_pin: GPIO_PIN_SOURCE_x(x=0..15)
\param[out] none
\retval none
*/
void gpio_exti_source_select(uint8_t output_port, uint8_t output_pin)
{
uint32_t source = 0U;
source = ((uint32_t)0x0FU) << (AFIO_EXTI_SOURCE_FIELDS * (output_pin & (uint8_t)0x03U));
/* select EXTI sources */
if(GPIO_PIN_SOURCE_4 > output_pin){
/* select EXTI0/EXTI1/EXTI2/EXTI3 */
AFIO_EXTISS0 &= ~source;
AFIO_EXTISS0 |= (((uint32_t)output_port) << (AFIO_EXTI_SOURCE_FIELDS * (output_pin & (uint8_t)0x03U)));
}else if(GPIO_PIN_SOURCE_8 > output_pin){
/* select EXTI4/EXTI5/EXTI6/EXTI7 */
AFIO_EXTISS1 &= ~source;
AFIO_EXTISS1 |= (((uint32_t)output_port) << (AFIO_EXTI_SOURCE_FIELDS * (output_pin & (uint8_t)0x03U)));
}else if(GPIO_PIN_SOURCE_12 > output_pin){
/* select EXTI8/EXTI9/EXTI10/EXTI11 */
AFIO_EXTISS2 &= ~source;
AFIO_EXTISS2 |= (((uint32_t)output_port) << (AFIO_EXTI_SOURCE_FIELDS * (output_pin & (uint8_t)0x03U)));
}else{
/* select EXTI12/EXTI13/EXTI14/EXTI15 */
AFIO_EXTISS3 &= ~source;
AFIO_EXTISS3 |= (((uint32_t)output_port) << (AFIO_EXTI_SOURCE_FIELDS * (output_pin & (uint8_t)0x03U)));
}
}
#ifdef GD32F30X_CL
/*!
\brief select ethernet MII or RMII PHY
\param[in] enet_sel: ethernet MII or RMII PHY selection
\arg GPIO_ENET_PHY_MII: configure ethernet MAC for connection with an MII PHY
\arg GPIO_ENET_PHY_RMII: configure ethernet MAC for connection with an RMII PHY
\param[out] none
\retval none
*/
void gpio_ethernet_phy_select(uint32_t enet_sel)
{
/* clear AFIO_PCF0_ENET_PHY_SEL bit */
AFIO_PCF0 &= (uint32_t)(~AFIO_PCF0_ENET_PHY_SEL);
/* select MII or RMII PHY */
AFIO_PCF0 |= (uint32_t)enet_sel;
}
#endif /* GD32F30X_CL */
/*!
\brief configure GPIO pin remap
\param[in] gpio_remap: select the pin to remap
\arg GPIO_SPI0_REMAP: SPI0 remapping
\arg GPIO_I2C0_REMAP: I2C0 remapping
\arg GPIO_USART0_REMAP: USART0 remapping
\arg GPIO_USART1_REMAP: USART1 remapping
\arg GPIO_USART2_PARTIAL_REMAP: USART2 partial remapping
\arg GPIO_USART2_FULL_REMAP: USART2 full remapping
\arg GPIO_TIMER0_PARTIAL_REMAP: TIMER0 partial remapping
\arg GPIO_TIMER0_FULL_REMAP: TIMER0 full remapping
\arg GPIO_TIMER1_PARTIAL_REMAP1: TIMER1 partial remapping
\arg GPIO_TIMER1_PARTIAL_REMAP2: TIMER1 partial remapping
\arg GPIO_TIMER1_FULL_REMAP: TIMER1 full remapping
\arg GPIO_TIMER2_PARTIAL_REMAP: TIMER2 partial remapping
\arg GPIO_TIMER2_FULL_REMAP: TIMER2 full remapping
\arg GPIO_TIMER3_REMAP: TIMER3 remapping
\arg GPIO_CAN_PARTIAL_REMAP: CAN partial remapping(only for GD32F30X_HD devices and GD32F30X_XD devices)
\arg GPIO_CAN_FULL_REMAP: CAN full remapping(only for GD32F30X_HD devices and GD32F30X_XD devices)
\arg GPIO_CAN0_PARTIAL_REMAP: CAN0 partial remapping(only for GD32F30X_CL devices)
\arg GPIO_CAN0_FULL_REMAP: CAN0 full remapping(only for GD32F30X_CL devices)
\arg GPIO_PD01_REMAP: PD01 remapping
\arg GPIO_TIMER4CH3_IREMAP: TIMER4 channel3 internal remapping(only for GD32F30X_CL devices and GD32F30X_HD devices)
\arg GPIO_ADC0_ETRGINS_REMAP: ADC0 external trigger inserted conversion remapping(only for GD32F30X_HD devices and GD32F30X_XD devices)
\arg GPIO_ADC0_ETRGREG_REMAP: ADC0 external trigger regular conversion remapping(only for GD32F30X_HD devices and GD32F30X_XD devices)
\arg GPIO_ADC1_ETRGINS_REMAP: ADC1 external trigger inserted conversion remapping(only for GD32F30X_HD devices and GD32F30X_XD devices)
\arg GPIO_ADC1_ETRGREG_REMAP: ADC1 external trigger regular conversion remapping(only for GD32F30X_HD devices and GD32F30X_XD devices)
\arg GPIO_ENET_REMAP: ENET remapping(only for GD32F30X_CL devices)
\arg GPIO_CAN1_REMAP: CAN1 remapping(only for GD32F30X_CL devices)
\arg GPIO_SWJ_NONJTRST_REMAP: full SWJ(JTAG-DP + SW-DP),but without NJTRST
\arg GPIO_SWJ_SWDPENABLE_REMAP: JTAG-DP disabled and SW-DP enabled
\arg GPIO_SWJ_DISABLE_REMAP: JTAG-DP disabled and SW-DP disabled
\arg GPIO_SPI2_REMAP: SPI2 remapping(only for GD32F30X_CL devices)
\arg GPIO_TIMER1ITR0_REMAP: TIMER1 internal trigger 0 remapping(only for GD32F30X_CL devices)
\arg GPIO_PTP_PPS_REMAP: ethernet PTP PPS remapping(only for GD32F30X_CL devices)
\arg GPIO_TIMER8_REMAP: TIMER8 remapping
\arg GPIO_TIMER9_REMAP: TIMER9 remapping
\arg GPIO_TIMER10_REMAP: TIMER10 remapping
\arg GPIO_TIMER12_REMAP: TIMER12 remapping
\arg GPIO_TIMER13_REMAP: TIMER13 remapping
\arg GPIO_EXMC_NADV_REMAP: EXMC_NADV connect/disconnect
\arg GPIO_CTC_REMAP0: CTC remapping(PD15)
\arg GPIO_CTC_REMAP1: CTC remapping(PF0)
\param[in] newvalue: ENABLE or DISABLE
\param[out] none
\retval none
*/
void gpio_pin_remap_config(uint32_t gpio_remap, ControlStatus newvalue)
{
uint32_t remap1 = 0U, remap2 = 0U, temp_reg = 0U, temp_mask = 0U;
if(((uint32_t)0x80000000U) == (gpio_remap & 0x80000000U)){
/* get AFIO_PCF1 regiter value */
temp_reg = AFIO_PCF1;
}else{
/* get AFIO_PCF0 regiter value */
temp_reg = AFIO_PCF0;
}
temp_mask = (gpio_remap & PCF_POSITION_MASK) >> 0x10U;
remap1 = gpio_remap & LSB_16BIT_MASK;
/* judge pin remap type */
if((PCF_LOCATION1_MASK | PCF_LOCATION2_MASK) == (gpio_remap & (PCF_LOCATION1_MASK | PCF_LOCATION2_MASK))){
temp_reg &= PCF_SWJCFG_MASK;
AFIO_PCF0 &= PCF_SWJCFG_MASK;
}else if(PCF_LOCATION2_MASK == (gpio_remap & PCF_LOCATION2_MASK)){
remap2 = ((uint32_t)0x03U) << temp_mask;
temp_reg &= ~remap2;
temp_reg |= ~PCF_SWJCFG_MASK;
}else{
temp_reg &= ~(remap1 << ((gpio_remap >> 0x15U)*0x10U));
temp_reg |= ~PCF_SWJCFG_MASK;
}
/* set pin remap value */
if(DISABLE != newvalue){
temp_reg |= (remap1 << ((gpio_remap >> 0x15U)*0x10U));
}
if(AFIO_PCF1_FIELDS == (gpio_remap & AFIO_PCF1_FIELDS)){
/* set AFIO_PCF1 regiter value */
AFIO_PCF1 = temp_reg;
}else{
/* set AFIO_PCF0 regiter value */
AFIO_PCF0 = temp_reg;
}
}
/*!
\brief configure the I/O compensation cell
\param[in] compensation: specifies the I/O compensation cell mode
\arg GPIO_COMPENSATION_ENABLE: I/O compensation cell is enabled
\arg GPIO_COMPENSATION_DISABLE: I/O compensation cell is disabled
\param[out] none
\retval none
*/
void gpio_compensation_config(uint32_t compensation)
{
uint32_t reg;
reg = AFIO_CPSCTL;
/* reset the AFIO_CPSCTL_CPS_EN bit and set according to gpio_compensation */
reg &= ~AFIO_CPSCTL_CPS_EN;
AFIO_CPSCTL = (reg | compensation);
}
/*!
\brief check the I/O compensation cell is ready or not
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus gpio_compensation_flag_get(void)
{
if(((uint32_t)RESET) != (AFIO_CPSCTL & AFIO_CPSCTL_CPS_RDY)){
return SET;
}else{
return RESET;
}
}

View File

@ -0,0 +1,683 @@
/*!
\file gd32f30x_i2c.c
\brief I2C driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_i2c.h"
#define I2CCLK_MAX 0x7fU /*!< i2cclk max value */
#define I2C_FLAG_MASK 0x0000FFFFU /*!< i2c flag mask */
/*!
\brief reset I2C
\param[in] i2c_periph: I2Cx(x=0,1)
\param[out] none
\retval none
*/
void i2c_deinit(uint32_t i2c_periph)
{
switch(i2c_periph){
case I2C0:
/* reset I2C0 */
rcu_periph_reset_enable(RCU_I2C0RST);
rcu_periph_reset_disable(RCU_I2C0RST);
break;
case I2C1:
/* reset I2C1 */
rcu_periph_reset_enable(RCU_I2C1RST);
rcu_periph_reset_disable(RCU_I2C1RST);
break;
default:
break;
}
}
/*!
\brief configure I2C clock
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] clkspeed: I2C clock speed, supports standard mode (up to 100 kHz), fast mode (up to 400 kHz)
and fast mode plus (up to 1MHz)
\param[in] dutycyc: duty cycle in fast mode or fast mode plus
\arg I2C_DTCY_2: T_low/T_high=2
\arg I2C_DTCY_16_9: T_low/T_high=16/9
\param[out] none
\retval none
*/
void i2c_clock_config(uint32_t i2c_periph, uint32_t clkspeed, uint32_t dutycyc)
{
uint32_t pclk1,clkc,freq,risetime;
uint32_t temp;
pclk1 = rcu_clock_freq_get(CK_APB1);
/* I2C peripheral clock frequency */
freq = (uint32_t)(pclk1/1000000U);
if(freq >= I2CCLK_MAX){
freq = I2CCLK_MAX;
}
temp = I2C_CTL1(i2c_periph);
temp &= ~I2C_CTL1_I2CCLK;
temp |= freq;
I2C_CTL1(i2c_periph) = temp;
if(100000U >= clkspeed){
/* the maximum SCL rise time is 1000ns in standard mode */
risetime = (uint32_t)((pclk1/1000000U)+1U);
if(risetime >= I2CCLK_MAX){
I2C_RT(i2c_periph) = I2CCLK_MAX;
}else{
I2C_RT(i2c_periph) = risetime;
}
clkc = (uint32_t)(pclk1/(clkspeed*2U));
if(clkc < 0x04U){
/* the CLKC in standard mode minmum value is 4 */
clkc = 0x04U;
}
I2C_CKCFG(i2c_periph) |= (I2C_CKCFG_CLKC & clkc);
}else if(400000U >= clkspeed){
/* the maximum SCL rise time is 300ns in fast mode */
I2C_RT(i2c_periph) = (uint32_t)(((freq*(uint32_t)300U)/(uint32_t)1000U)+(uint32_t)1U);
if(I2C_DTCY_2 == dutycyc){
/* I2C duty cycle is 2 */
clkc = (uint32_t)(pclk1/(clkspeed*3U));
I2C_CKCFG(i2c_periph) &= ~I2C_CKCFG_DTCY;
}else{
/* I2C duty cycle is 16/9 */
clkc = (uint32_t)(pclk1/(clkspeed*25U));
I2C_CKCFG(i2c_periph) |= I2C_CKCFG_DTCY;
}
if(0U == (clkc & I2C_CKCFG_CLKC)){
/* the CLKC in fast mode minmum value is 1 */
clkc |= 0x0001U;
}
I2C_CKCFG(i2c_periph) |= I2C_CKCFG_FAST;
I2C_CKCFG(i2c_periph) |= clkc;
}else{
/* fast mode plus, the maximum SCL rise time is 120ns */
I2C_RT(i2c_periph) = (uint32_t)(((freq*(uint32_t)120U)/(uint32_t)1000U)+(uint32_t)1U);
if(I2C_DTCY_2 == dutycyc){
/* I2C duty cycle is 2 */
clkc = (uint32_t)(pclk1/(clkspeed*3U));
I2C_CKCFG(i2c_periph) &= ~I2C_CKCFG_DTCY;
}else{
/* I2C duty cycle is 16/9 */
clkc = (uint32_t)(pclk1/(clkspeed*25U));
I2C_CKCFG(i2c_periph) |= I2C_CKCFG_DTCY;
}
/* enable fast mode */
I2C_CKCFG(i2c_periph) |= I2C_CKCFG_FAST;
I2C_CKCFG(i2c_periph) |= clkc;
/* enable I2C fast mode plus */
I2C_FMPCFG(i2c_periph) = I2C_FMPCFG_FMPEN;
}
}
/*!
\brief configure I2C address
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] mode:
\arg I2C_I2CMODE_ENABLE: I2C mode
\arg I2C_SMBUSMODE_ENABLE: SMBus mode
\param[in] addformat: 7bits or 10bits
\arg I2C_ADDFORMAT_7BITS: 7bits
\arg I2C_ADDFORMAT_10BITS: 10bits
\param[in] addr: I2C address
\param[out] none
\retval none
*/
void i2c_mode_addr_config(uint32_t i2c_periph, uint32_t mode, uint32_t addformat, uint32_t addr)
{
/* SMBus/I2C mode selected */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_SMBEN);
ctl |= mode;
I2C_CTL0(i2c_periph) = ctl;
/* configure address */
I2C_SADDR0(i2c_periph) = (addformat | addr);
}
/*!
\brief SMBus type selection
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] ack:
\arg I2C_SMBUS_DEVICE: device
\arg I2C_SMBUS_HOST: host
\param[out] none
\retval none
*/
void i2c_smbus_type_config(uint32_t i2c_periph, uint32_t type)
{
if(I2C_SMBUS_HOST == type){
I2C_CTL0(i2c_periph) |= I2C_CTL0_SMBSEL;
}else{
I2C_CTL0(i2c_periph) &= ~(I2C_CTL0_SMBSEL);
}
}
/*!
\brief whether or not to send an ACK
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] ack:
\arg I2C_ACK_ENABLE: ACK will be sent
\arg I2C_ACK_DISABLE: ACK will not be sent
\param[out] none
\retval none
*/
void i2c_ack_config(uint32_t i2c_periph, uint32_t ack)
{
if(I2C_ACK_ENABLE == ack){
I2C_CTL0(i2c_periph) |= I2C_CTL0_ACKEN;
}else{
I2C_CTL0(i2c_periph) &= ~(I2C_CTL0_ACKEN);
}
}
/*!
\brief I2C POAP position configure
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] pos:
\arg I2C_ACKPOS_CURRENT: whether to send ACK or not for the current
\arg I2C_ACKPOS_NEXT: whether to send ACK or not for the next byte
\param[out] none
\retval none
*/
void i2c_ackpos_config(uint32_t i2c_periph, uint32_t pos)
{
/* configure I2C POAP position */
if(I2C_ACKPOS_NEXT == pos){
I2C_CTL0(i2c_periph) |= I2C_CTL0_POAP;
}else{
I2C_CTL0(i2c_periph) &= ~(I2C_CTL0_POAP);
}
}
/*!
\brief master send slave address
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] addr: slave address
\param[in] trandirection: transmitter or receiver
\arg I2C_TRANSMITTER: transmitter
\arg I2C_RECEIVER: receiver
\param[out] none
\retval none
*/
void i2c_master_addressing(uint32_t i2c_periph, uint32_t addr, uint32_t trandirection)
{
if(I2C_TRANSMITTER == trandirection){
addr = addr & I2C_TRANSMITTER;
}else{
addr = addr | I2C_RECEIVER;
}
I2C_DATA(i2c_periph) = addr;
}
/*!
\brief dual-address mode switch
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] dualaddr:
\arg I2C_DUADEN_DISABLE: disable dual-address mode
\arg I2C_DUADEN_ENABLE: enable dual-address mode
\param[out] none
\retval none
*/
void i2c_dualaddr_enable(uint32_t i2c_periph, uint32_t dualaddr)
{
if(I2C_DUADEN_ENABLE == dualaddr){
I2C_SADDR1(i2c_periph) |= I2C_SADDR1_DUADEN;
}else{
I2C_SADDR1(i2c_periph) &= ~(I2C_SADDR1_DUADEN);
}
}
/*!
\brief enable I2C
\param[in] i2c_periph: I2Cx(x=0,1)
\param[out] none
\retval none
*/
void i2c_enable(uint32_t i2c_periph)
{
I2C_CTL0(i2c_periph) |= I2C_CTL0_I2CEN;
}
/*!
\brief disable I2C
\param[in] i2c_periph: I2Cx(x=0,1)
\param[out] none
\retval none
*/
void i2c_disable(uint32_t i2c_periph)
{
I2C_CTL0(i2c_periph) &= ~(I2C_CTL0_I2CEN);
}
/*!
\brief generate a START condition on I2C bus
\param[in] i2c_periph: I2Cx(x=0,1)
\param[out] none
\retval none
*/
void i2c_start_on_bus(uint32_t i2c_periph)
{
I2C_CTL0(i2c_periph) |= I2C_CTL0_START;
}
/*!
\brief generate a STOP condition on I2C bus
\param[in] i2c_periph: I2Cx(x=0,1)
\param[out] none
\retval none
*/
void i2c_stop_on_bus(uint32_t i2c_periph)
{
I2C_CTL0(i2c_periph) |= I2C_CTL0_STOP;
}
/*!
\brief I2C transmit data function
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] data: data of transmission
\param[out] none
\retval none
*/
void i2c_data_transmit(uint32_t i2c_periph, uint8_t data)
{
I2C_DATA(i2c_periph) = DATA_TRANS(data);
}
/*!
\brief I2C receive data function
\param[in] i2c_periph: I2Cx(x=0,1)
\param[out] none
\retval data of received
*/
uint8_t i2c_data_receive(uint32_t i2c_periph)
{
return (uint8_t)DATA_RECV(I2C_DATA(i2c_periph));
}
/*!
\brief enable I2C DMA mode
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] dmastate:
\arg I2C_DMA_ON: DMA mode enable
\arg I2C_DMA_OFF: DMA mode disable
\param[out] none
\retval none
*/
void i2c_dma_enable(uint32_t i2c_periph, uint32_t dmastate)
{
/* configure I2C DMA function */
uint32_t ctl = 0U;
ctl = I2C_CTL1(i2c_periph);
ctl &= ~(I2C_CTL1_DMAON);
ctl |= dmastate;
I2C_CTL1(i2c_periph) = ctl;
}
/*!
\brief flag indicating DMA last transfer
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] dmalast:
\arg I2C_DMALST_ON: next DMA EOT is the last transfer
\arg I2C_DMALST_OFF: next DMA EOT is not the last transfer
\param[out] none
\retval none
*/
void i2c_dma_last_transfer_enable(uint32_t i2c_periph, uint32_t dmalast)
{
/* configure DMA last transfer */
uint32_t ctl = 0U;
ctl = I2C_CTL1(i2c_periph);
ctl &= ~(I2C_CTL1_DMALST);
ctl |= dmalast;
I2C_CTL1(i2c_periph) = ctl;
}
/*!
\brief whether to stretch SCL low when data is not ready in slave mode
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] stretchpara:
\arg I2C_SCLSTRETCH_ENABLE: SCL stretching is enabled
\arg I2C_SCLSTRETCH_DISABLE: SCL stretching is disabled
\param[out] none
\retval none
*/
void i2c_stretch_scl_low_config(uint32_t i2c_periph, uint32_t stretchpara)
{
/* configure I2C SCL strerching enable or disable */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_DISSTRC);
ctl |= stretchpara;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief whether or not to response to a general call
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] gcallpara:
\arg I2C_GCEN_ENABLE: slave will response to a general call
\arg I2C_GCEN_DISABLE: slave will not response to a general call
\param[out] none
\retval none
*/
void i2c_slave_response_to_gcall_config(uint32_t i2c_periph, uint32_t gcallpara)
{
/* configure slave response to a general call enable or disable */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_GCEN);
ctl |= gcallpara;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief software reset I2C
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] sreset:
\arg I2C_SRESET_SET: I2C is under reset
\arg I2C_SRESET_RESET: I2C is not under reset
\param[out] none
\retval none
*/
void i2c_software_reset_config(uint32_t i2c_periph, uint32_t sreset)
{
/* modify CTL0 and configure software reset I2C state */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_SRESET);
ctl |= sreset;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief check I2C flag is set or not
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] flag:
\arg I2C_FLAG_SBSEND: start condition send out
\arg I2C_FLAG_ADDSEND: address is sent in master mode or received and matches in slave mode
\arg I2C_FLAG_BTC: byte transmission finishes
\arg I2C_FLAG_ADD10SEND: header of 10-bit address is sent in master mode
\arg I2C_FLAG_STPDET: stop condition detected in slave mode
\arg I2C_FLAG_RBNE: I2C_DATA is not Empty during receiving
\arg I2C_FLAG_TBE: I2C_DATA is empty during transmitting
\arg I2C_FLAG_BERR: a bus error occurs indication a unexpected start or stop condition on I2C bus
\arg I2C_FLAG_LOSTARB: arbitration lost in master mode
\arg I2C_FLAG_AERR: acknowledge error
\arg I2C_FLAG_OUERR: overrun or underrun situation occurs in slave mode
\arg I2C_FLAG_PECERR: PEC error when receiving data
\arg I2C_FLAG_SMBTO: timeout signal in SMBus mode
\arg I2C_FLAG_SMBALT: SMBus alert status
\arg I2C_FLAG_MASTER: a flag indicating whether I2C block is in master or slave mode
\arg I2C_FLAG_I2CBSY: busy flag
\arg I2C_FLAG_TRS: whether the I2C is a transmitter or a receiver
\arg I2C_FLAG_RXGC: general call address (00h) received
\arg I2C_FLAG_DEFSMB: default address of SMBus device
\arg I2C_FLAG_HSTSMB: SMBus host header detected in slave mode
\arg I2C_FLAG_DUMOD: dual flag in slave mode indicating which address is matched in dual-address mode
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus i2c_flag_get(uint32_t i2c_periph, uint32_t flag)
{
uint32_t reg = 0U;
FlagStatus reval = RESET;
/* get the flag in which register */
reg = (BIT(31) & flag);
if((BIT(31) == reg)){
if((I2C_STAT1(i2c_periph)&(flag & I2C_FLAG_MASK))){
reval = SET;
}else{
reval = RESET;
}
}else{
if((I2C_STAT0(i2c_periph)&(flag & I2C_FLAG_MASK))){
reval = SET;
}else{
reval = RESET;
}
}
/* return the flag status */
return reval;
}
/*!
\brief clear I2C flag
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] flag: flag type
\arg I2C_FLAG_SMBALT: SMBus Alert status
\arg I2C_FLAG_SMBTO: timeout signal in SMBus mode
\arg I2C_FLAG_PECERR: PEC error when receiving data
\arg I2C_FLAG_OUERR: over-run or under-run situation occurs in slave mode
\arg I2C_FLAG_AERR: acknowledge error
\arg I2C_FLAG_LOSTARB: arbitration lost in master mode
\arg I2C_FLAG_BERR: a bus error
\arg I2C_FLAG_ADDSEND: cleared by reading I2C_STAT0 and reading I2C_STAT1
\param[out] none
\retval none
*/
void i2c_flag_clear(uint32_t i2c_periph, uint32_t flag)
{
if(I2C_FLAG_ADDSEND == flag){
/* read I2C_STAT0 and then read I2C_STAT1 to clear ADDSEND */
I2C_STAT0(i2c_periph);
I2C_STAT1(i2c_periph);
}else{
I2C_STAT0(i2c_periph) &= ~(flag);
}
}
/*!
\brief enable I2C interrupt
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] inttype: interrupt type
\arg I2C_INT_ERR: error interrupt enable
\arg I2C_INT_EV: event interrupt enable
\arg I2C_INT_BUF: buffer interrupt enable
\param[out] none
\retval none
*/
void i2c_interrupt_enable(uint32_t i2c_periph, uint32_t inttype)
{
I2C_CTL1(i2c_periph) |= (inttype);
}
/*!
\brief disable I2C interrupt
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] inttype: interrupt type
\arg I2C_INT_ERR: error interrupt enable
\arg I2C_INT_EV: event interrupt enable
\arg I2C_INT_BUF: buffer interrupt enable
\param[out] none
\retval none
*/
void i2c_interrupt_disable(uint32_t i2c_periph, uint32_t inttype)
{
I2C_CTL1(i2c_periph) &= ~(inttype);
}
/*!
\brief check I2C interrupt flag
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] int_flag: interrupt flag
\arg I2C_INT_FLAG_SBSEND: start condition sent out in master mode interrupt flag
\arg I2C_INT_FLAG_ADDSEND: address is sent in master mode or received and matches in slave mode interrupt flag
\arg I2C_INT_FLAG_BTC: byte transmission finishes
\arg I2C_INT_FLAG_ADD10SEND: header of 10-bit address is sent in master mode interrupt flag
\arg I2C_INT_FLAG_STPDET: etop condition detected in slave mode interrupt flag
\arg I2C_INT_FLAG_RBNE: I2C_DATA is not Empty during receiving interrupt flag
\arg I2C_INT_FLAG_TBE: I2C_DATA is empty during transmitting interrupt flag
\arg I2C_INT_FLAG_BERR: a bus error occurs indication a unexpected start or stop condition on I2C bus interrupt flag
\arg I2C_INT_FLAG_LOSTARB: arbitration lost in master mode interrupt flag
\arg I2C_INT_FLAG_AERR: acknowledge error interrupt flag
\arg I2C_INT_FLAG_OUERR: over-run or under-run situation occurs in slave mode interrupt flag
\arg I2C_INT_FLAG_PECERR: PEC error when receiving data interrupt flag
\arg I2C_INT_FLAG_SMBTO: timeout signal in SMBus mode interrupt flag
\arg I2C_INT_FLAG_SMBALT: SMBus Alert status interrupt flag
\param[out] none
\retval none
*/
FlagStatus i2c_interrupt_flag_get(uint32_t i2c_periph, uint32_t intflag)
{
uint32_t evie, errie, bufie;
evie = I2C_CTL1(i2c_periph)&I2C_CTL1_EVIE;
errie = I2C_CTL1(i2c_periph)&I2C_CTL1_ERRIE;
/* check I2C event interrupt enable bit */
if((intflag&0x00ffU) && evie){
if(intflag&0x001fU){
/* check I2C event flags except TBE and RBNE */
if(intflag & I2C_STAT0(i2c_periph)){
return SET;
}else{
return RESET;
}
}else{
/* check I2C event flags TBE and RBNE */
bufie = I2C_CTL1(i2c_periph)&I2C_CTL1_BUFIE;
if(bufie){
if(intflag & I2C_STAT0(i2c_periph)){
return SET;
}else{
return RESET;
}
}else{
return RESET;
}
}
/* check I2C error interrupt enable bit */
}else if((intflag&0xff00U) && errie){
/* check I2C error flags */
if(intflag & I2C_STAT0(i2c_periph)){
return SET;
}else{
return RESET;
}
}else{
return RESET;
}
}
/*!
\brief clear I2C interrupt flag
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] intflag: interrupt flag
\arg I2C_INT_FLAG_ADDSEND: address is sent in master mode or received and matches in slave mode interrupt flag
\arg I2C_INT_FLAG_BERR: a bus error occurs indication a unexpected start or stop condition on I2C bus interrupt flag
\arg I2C_INT_FLAG_LOSTARB: arbitration lost in master mode interrupt flag
\arg I2C_INT_FLAG_AERR: acknowledge error interrupt flag
\arg I2C_INT_FLAG_OUERR: over-run or under-run situation occurs in slave mode interrupt flag
\arg I2C_INT_FLAG_PECERR: PEC error when receiving data interrupt flag
\arg I2C_INT_FLAG_SMBTO: timeout signal in SMBus mode interrupt flag
\arg I2C_INT_FLAG_SMBALT: SMBus Alert status interrupt flag
\param[out] none
\retval none
*/
void i2c_interrupt_flag_clear(uint32_t i2c_periph, uint32_t intflag)
{
if(I2C_INT_FLAG_ADDSEND == intflag){
/* read I2C_STAT0 and then read I2C_STAT1 to clear ADDSEND */
I2C_STAT0(i2c_periph);
I2C_STAT1(i2c_periph);
}else{
I2C_STAT0(i2c_periph) &= ~(intflag);
}
}
/*!
\brief I2C PEC calculation on or off
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] pecpara:
\arg I2C_PEC_ENABLE: PEC calculation on
\arg I2C_PEC_DISABLE: PEC calculation off
\param[out] none
\retval none
*/
void i2c_pec_enable(uint32_t i2c_periph, uint32_t pecstate)
{
/* on/off PEC calculation */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_PECEN);
ctl |= pecstate;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief I2C whether to transfer PEC value
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] pecpara:
\arg I2C_PECTRANS_ENABLE: transfer PEC
\arg I2C_PECTRANS_DISABLE: not transfer PEC
\param[out] none
\retval none
*/
void i2c_pec_transfer_enable(uint32_t i2c_periph, uint32_t pecpara)
{
/* whether to transfer PEC */
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_PECTRANS);
ctl |= pecpara;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief get packet error checking value
\param[in] i2c_periph: I2Cx(x=0,1)
\param[out] none
\retval PEC value
*/
uint8_t i2c_pec_value_get(uint32_t i2c_periph)
{
return (uint8_t)((I2C_STAT1(i2c_periph) & I2C_STAT1_ECV)>>8);
}
/*!
\brief I2C issue alert through SMBA pin
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] smbuspara:
\arg I2C_SALTSEND_ENABLE: issue alert through SMBA pin
\arg I2C_SALTSEND_DISABLE: not issue alert through SMBA pin
\param[out] none
\retval none
*/
void i2c_smbus_issue_alert(uint32_t i2c_periph, uint32_t smbuspara)
{
/* issue alert through SMBA pin configure*/
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_SALT);
ctl |= smbuspara;
I2C_CTL0(i2c_periph) = ctl;
}
/*!
\brief enable or disable I2C ARP protocol in SMBus switch
\param[in] i2c_periph: I2Cx(x=0,1)
\param[in] smbuspara:
\arg I2C_ARP_ENABLE: enable ARP
\arg I2C_ARP_DISABLE: disable ARP
\param[out] none
\retval none
*/
void i2c_smbus_arp_enable(uint32_t i2c_periph, uint32_t arpstate)
{
/* enable or disable I2C ARP protocol*/
uint32_t ctl = 0U;
ctl = I2C_CTL0(i2c_periph);
ctl &= ~(I2C_CTL0_ARPEN);
ctl |= arpstate;
I2C_CTL0(i2c_periph) = ctl;
}

View File

@ -0,0 +1,146 @@
/*!
\file gd32f30x_misc.c
\brief MISC driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "gd32f30x_misc.h"
/*!
\brief set the priority group
\param[in] nvic_prigroup: the NVIC priority group
\arg NVIC_PRIGROUP_PRE0_SUB4:0 bits for pre-emption priority 4 bits for subpriority
\arg NVIC_PRIGROUP_PRE1_SUB3:1 bits for pre-emption priority 3 bits for subpriority
\arg NVIC_PRIGROUP_PRE2_SUB2:2 bits for pre-emption priority 2 bits for subpriority
\arg NVIC_PRIGROUP_PRE3_SUB1:3 bits for pre-emption priority 1 bits for subpriority
\arg NVIC_PRIGROUP_PRE4_SUB0:4 bits for pre-emption priority 0 bits for subpriority
\param[out] none
\retval none
*/
void nvic_priority_group_set(uint32_t nvic_prigroup)
{
/* set the priority group value */
SCB->AIRCR = NVIC_AIRCR_VECTKEY_MASK | nvic_prigroup;
}
/*!
\brief enable NVIC request
\param[in] nvic_irq: the NVIC interrupt request, detailed in IRQn_Type
\param[in] nvic_irq_pre_priority: the pre-emption priority needed to set
\param[in] nvic_irq_sub_priority: the subpriority needed to set
\param[out] none
\retval none
*/
void nvic_irq_enable(uint8_t nvic_irq, uint8_t nvic_irq_pre_priority,
uint8_t nvic_irq_sub_priority)
{
uint32_t temp_priority = 0x00U, temp_pre = 0x00U, temp_sub = 0x00U;
/* use the priority group value to get the temp_pre and the temp_sub */
if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE0_SUB4){
temp_pre=0U;
temp_sub=0x4U;
}else if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE1_SUB3){
temp_pre=1U;
temp_sub=0x3U;
}else if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE2_SUB2){
temp_pre=2U;
temp_sub=0x2U;
}else if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE3_SUB1){
temp_pre=3U;
temp_sub=0x1U;
}else if(((SCB->AIRCR) & (uint32_t)0x700U)==NVIC_PRIGROUP_PRE4_SUB0){
temp_pre=4U;
temp_sub=0x0U;
}else{
}
/* get the temp_priority to fill the NVIC->IP register */
temp_priority = (uint32_t)nvic_irq_pre_priority << (0x4U - temp_pre);
temp_priority |= nvic_irq_sub_priority &(0x0FU >> (0x4U - temp_sub));
temp_priority = temp_priority << 0x04U;
NVIC->IP[nvic_irq] = (uint8_t)temp_priority;
/* enable the selected IRQ */
NVIC->ISER[nvic_irq >> 0x05U] = (uint32_t)0x01U << (nvic_irq & (uint8_t)0x1FU);
}
/*!
\brief disable NVIC request
\param[in] nvic_irq: the NVIC interrupt request, detailed in IRQn_Type
\param[out] none
\retval none
*/
void nvic_irq_disable(uint8_t nvic_irq)
{
/* disable the selected IRQ.*/
NVIC->ICER[nvic_irq >> 0x05] = (uint32_t)0x01 << (nvic_irq & (uint8_t)0x1F);
}
/*!
\brief set the NVIC vector table base address
\param[in] nvic_vict_tab: the RAM or FLASH base address
\arg NVIC_VECTTAB_RAM: RAM base address
\are NVIC_VECTTAB_FLASH: Flash base address
\param[in] offset: Vector Table offset
\param[out] none
\retval none
*/
void nvic_vector_table_set(uint32_t nvic_vict_tab, uint32_t offset)
{
SCB->VTOR = nvic_vict_tab | (offset & NVIC_VECTTAB_OFFSET_MASK);
}
/*!
\brief set the state of the low power mode
\param[in] lowpower_mode: the low power mode state
\arg SCB_LPM_SLEEP_EXIT_ISR: if chose this para, the system always enter low power
mode by exiting from ISR
\arg SCB_LPM_DEEPSLEEP: if chose this para, the system will enter the DEEPSLEEP mode
\arg SCB_LPM_WAKE_BY_ALL_INT: if chose this para, the lowpower mode can be woke up
by all the enable and disable interrupts
\param[out] none
\retval none
*/
void system_lowpower_set(uint8_t lowpower_mode)
{
SCB->SCR |= (uint32_t)lowpower_mode;
}
/*!
\brief reset the state of the low power mode
\param[in] lowpower_mode: the low power mode state
\arg SCB_LPM_SLEEP_EXIT_ISR: if chose this para, the system will exit low power
mode by exiting from ISR
\arg SCB_LPM_DEEPSLEEP: if chose this para, the system will enter the SLEEP mode
\arg SCB_LPM_WAKE_BY_ALL_INT: if chose this para, the lowpower mode only can be
woke up by the enable interrupts
\param[out] none
\retval none
*/
void system_lowpower_reset(uint8_t lowpower_mode)
{
SCB->SCR &= (~(uint32_t)lowpower_mode);
}
/*!
\brief set the systick clock source
\param[in] systick_clksource: the systick clock source needed to choose
\arg SYSTICK_CLKSOURCE_HCLK: systick clock source is from HCLK
\arg SYSTICK_CLKSOURCE_HCLK_DIV8: systick clock source is from HCLK/8
\param[out] none
\retval none
*/
void systick_clksource_set(uint32_t systick_clksource)
{
if(SYSTICK_CLKSOURCE_HCLK == systick_clksource ){
/* set the systick clock source from HCLK */
SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
}else{
/* set the systick clock source from HCLK/8 */
SysTick->CTRL &= SYSTICK_CLKSOURCE_HCLK_DIV8;
}
}

View File

@ -0,0 +1,342 @@
/*!
\file gd32f30x_pmu.c
\brief PMU driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "gd32f30x_pmu.h"
/*!
\brief reset PMU register
\param[in] none
\param[out] none
\retval none
*/
void pmu_deinit(void)
{
/* reset PMU */
rcu_periph_reset_enable(RCU_PMURST);
rcu_periph_reset_disable(RCU_PMURST);
}
/*!
\brief select low voltage detector threshold
\param[in] lvdt_n:
\arg PMU_LVDT_0: voltage threshold is 2.1V
\arg PMU_LVDT_1: voltage threshold is 2.3V
\arg PMU_LVDT_2: voltage threshold is 2.4V
\arg PMU_LVDT_3: voltage threshold is 2.6V
\arg PMU_LVDT_4: voltage threshold is 2.7V
\arg PMU_LVDT_5: voltage threshold is 2.9V
\arg PMU_LVDT_6: voltage threshold is 3.0V
\arg PMU_LVDT_7: voltage threshold is 3.1V
\param[out] none
\retval none
*/
void pmu_lvd_select(uint32_t lvdt_n)
{
/* disable LVD */
PMU_CTL &= ~PMU_CTL_LVDEN;
/* clear LVDT bits */
PMU_CTL &= ~PMU_CTL_LVDT;
/* set LVDT bits according to lvdt_n */
PMU_CTL |= lvdt_n;
/* enable LVD */
PMU_CTL |= PMU_CTL_LVDEN;
}
/*!
\brief select LDO output voltage
this bit set by software when the main PLL closed, before closing PLL, change the system clock to IRC16M or HXTAL
\param[in] ldo_output:
\arg PMU_LDOVS_LOW: low-driver mode enable in deep-sleep mode
\arg PMU_LDOVS_MID: low-driver mode disable in deep-sleep mode
\arg PMU_LDOVS_HIGH: low-driver mode disable in deep-sleep mode
\param[out] none
\retval none
*/
void pmu_ldo_output_select(uint32_t ldo_output)
{
PMU_CTL &= ~PMU_CTL_LDOVS;
PMU_CTL |= ldo_output;
}
/*!
\brief switch high-driver mode
this bit set by software only when IRC16M or HXTAL used as system clock
\param[in] highdr_switch:
\arg PMU_HIGHDR_SWITCH_NONE: disable high-driver mode switch
\arg PMU_HIGHDR_SWITCH_EN: enable high-driver mode switch
\param[out] none
\retval none
*/
void pmu_highdriver_switch_select(uint32_t highdr_switch)
{
/* wait for HDRF flag set */
while(SET != pmu_flag_get(PMU_FLAG_HDRF)){
}
PMU_CTL &= ~PMU_CTL_HDS;
PMU_CTL |= highdr_switch;
}
/*!
\brief enable low-driver mode in deep-sleep mode
\param[in] none
\param[out] none
\retval none
*/
void pmu_lowdriver_mode_enable(void)
{
PMU_CTL |= PMU_CTL_LDEN;
}
/*!
\brief disable low-driver mode in deep-sleep mode
\param[in] none
\param[out] none
\retval none
*/
void pmu_lowdriver_mode_disable(void)
{
PMU_CTL &= ~PMU_CTL_LDEN;
}
/*!
\brief enable high-driver mode
this bit set by software only when IRC16M or HXTAL used as system clock
\param[in] none
\param[out] none
\retval none
*/
void pmu_highdriver_mode_enable(void)
{
PMU_CTL |= PMU_CTL_HDEN;
}
/*!
\brief disable high-driver mode
\param[in] none
\param[out] none
\retval none
*/
void pmu_highdriver_mode_disable(void)
{
PMU_CTL &= ~PMU_CTL_HDEN;
}
/*!
\brief disable PMU lvd
\param[in] none
\param[out] none
\retval none
*/
void pmu_lvd_disable(void)
{
/* disable LVD */
PMU_CTL &= ~PMU_CTL_LVDEN;
}
/*!
\brief driver mode when use low power LDO
\param[in] mode:
\arg PMU_NORMALDR_LOWPWR: normal driver when use low power LDO
\arg PMU_LOWDR_LOWPWR: low-driver mode enabled when LDEN is 11 and use low power LDO
\param[out] none
\retval none
*/
void pmu_lowpower_driver_config(uint32_t mode)
{
PMU_CTL &= ~PMU_CTL_LDLP;
PMU_CTL |= mode;
}
/*!
\brief driver mode when use normal power LDO
\param[in] mode:
\arg PMU_NORMALDR_NORMALPWR: normal driver when use low power LDO
\arg PMU_LOWDR_NORMALPWR: low-driver mode enabled when LDEN is 11 and use low power LDO
\param[out] none
\retval none
*/
void pmu_normalpower_driver_config(uint32_t mode)
{
PMU_CTL &= ~PMU_CTL_LDNP;
PMU_CTL |= mode;
}
/*!
\brief PMU work at sleep mode
\param[in] sleepmodecmd:
\arg WFI_CMD: use WFI command
\arg WFE_CMD: use WFE command
\param[out] none
\retval none
*/
void pmu_to_sleepmode(uint8_t sleepmodecmd)
{
/* clear sleepdeep bit of Cortex-M4 system control register */
SCB->SCR &= ~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
/* select WFI or WFE command to enter sleep mode */
if(WFI_CMD == sleepmodecmd){
__WFI();
}else{
__WFE();
}
}
/*!
\brief PMU work at deepsleep mode
\param[in] ldo
\arg PMU_LDO_NORMAL: LDO normal work when pmu enter deepsleep mode
\arg PMU_LDO_LOWPOWER: LDO work at low power mode when pmu enter deepsleep mode
\param[in] deepsleepmodecmd:
\arg WFI_CMD: use WFI command
\arg WFE_CMD: use WFE command
\param[out] none
\retval none
*/
void pmu_to_deepsleepmode(uint32_t ldo,uint8_t deepsleepmodecmd)
{
/* clear stbmod and ldolp bits */
PMU_CTL &= ~((uint32_t)(PMU_CTL_STBMOD | PMU_CTL_LDOLP));
/* set ldolp bit according to pmu_ldo */
PMU_CTL |= ldo;
/* set sleepdeep bit of Cortex-M4 system control register */
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
/* select WFI or WFE command to enter deepsleep mode */
if(WFI_CMD == deepsleepmodecmd){
__WFI();
}else{
__SEV();
__WFE();
__WFE();
}
/* reset sleepdeep bit of Cortex-M4 system control register */
SCB->SCR &= ~((uint32_t)SCB_SCR_SLEEPDEEP_Msk);
}
/*!
\brief pmu work at standby mode
\param[in] standbymodecmd:
\arg WFI_CMD: use WFI command
\arg WFE_CMD: use WFE command
\param[out] none
\retval none
*/
void pmu_to_standbymode(uint8_t standbymodecmd)
{
/* set sleepdeep bit of Cortex-M4 system control register */
SCB->SCR |= SCB_SCR_SLEEPDEEP_Msk;
/* set stbmod bit */
PMU_CTL |= PMU_CTL_STBMOD;
/* reset wakeup flag */
PMU_CTL |= PMU_CTL_WURST;
/* select WFI or WFE command to enter standby mode */
if(WFI_CMD == standbymodecmd){
__WFI();
}else{
__WFE();
}
}
/*!
\brief clear flag bit
\param[in] flag_reset:
\arg PMU_FLAG_RESET_WAKEUP: reset wakeup flag
\arg PMU_FLAG_RESET_STANDBY: reset standby flag
\param[out] none
\retval none
*/
void pmu_flag_clear(uint32_t flag_reset)
{
switch(flag_reset){
case PMU_FLAG_RESET_WAKEUP:
/* reset wakeup flag */
PMU_CTL |= PMU_CTL_WURST;
break;
case PMU_FLAG_RESET_STANDBY:
/* reset standby flag */
PMU_CTL |= PMU_CTL_STBRST;
break;
default :
break;
}
}
/*!
\brief get flag state
\param[in] flag:
\arg PMU_FLAG_WAKEUP: wakeup flag
\arg PMU_FLAG_STANDBY: standby flag
\arg PMU_FLAG_LVD: lvd flag
\arg PMU_FLAG_LDOVSRF: LDO voltage select ready flag
\arg PMU_FLAG_HDRF: high-driver ready flag
\arg PMU_FLAG_HDSRF: high-driver switch ready flag
\arg PMU_FLAG_LDRF: low-driver mode ready flag
\param[out] none
\retval FlagStatus SET or RESET
*/
FlagStatus pmu_flag_get(uint32_t flag)
{
if(PMU_CS & flag){
return SET;
}else{
return RESET;
}
}
/*!
\brief enable backup domain write
\param[in] none
\param[out] none
\retval none
*/
void pmu_backup_write_enable(void)
{
PMU_CTL |= PMU_CTL_BKPWEN;
}
/*!
\brief disable backup domain write
\param[in] none
\param[out] none
\retval none
*/
void pmu_backup_write_disable(void)
{
PMU_CTL &= ~PMU_CTL_BKPWEN;
}
/*!
\brief enable wakeup pin
\param[in] none
\param[out] none
\retval none
*/
void pmu_wakeup_pin_enable(void)
{
PMU_CS |= PMU_CS_WUPEN;
}
/*!
\brief disable wakeup pin
\param[in] none
\param[out] none
\retval none
*/
void pmu_wakeup_pin_disable(void)
{
PMU_CS &= ~PMU_CS_WUPEN;
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,203 @@
/*!
\file gd32f30x_rtc.c
\brief RTC driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_rtc.h"
/*!
\brief enable RTC interrupt
\param[in] interrupt: specify which interrupt to enbale
\arg RTC_INT_SECOND: second interrupt
\arg RTC_INT_ALARM: alarm interrupt
\arg RTC_INT_OVERFLOW: overflow interrupt
\param[out] none
\retval none
*/
void rtc_interrupt_enable(uint32_t interrupt)
{
RTC_INTEN |= interrupt;
}
/*!
\brief disable RTC interrupt
\param[in] interrupt: specify which interrupt to disbale
\arg RTC_INT_SECOND: second interrupt
\arg RTC_INT_ALARM: alarm interrupt
\arg RTC_INT_OVERFLOW: overflow interrupt
\param[out] none
\retval none
*/
void rtc_interrupt_disable(uint32_t interrupt)
{
RTC_INTEN &= ~interrupt;
}
/*!
\brief enter RTC configuration mode
\param[in] none
\param[out] none
\retval none
*/
void rtc_configuration_mode_enter(void)
{
RTC_CTL |= RTC_CTL_CMF;
}
/*!
\brief exit RTC configuration mode
\param[in] none
\param[out] none
\retval none
*/
void rtc_configuration_mode_exit(void)
{
RTC_CTL &= ~RTC_CTL_CMF;
}
/*!
\brief wait RTC last write operation finished flag set
\param[in] none
\param[out] none
\retval none
*/
void rtc_lwoff_wait(void)
{
/* loop until LWOFF flag is set */
while (RESET == (RTC_CTL & RTC_CTL_LWOFF)){
}
}
/*!
\brief wait RTC registers synchronized flag set
\param[in] none
\param[out] none
\retval none
*/
void rtc_register_sync_wait(void)
{
/* clear RSYNF flag */
RTC_CTL &= ~RTC_CTL_RSYNF;
/* loop until RSYNF flag is set */
while (RESET == (RTC_CTL & RTC_CTL_RSYNF)){
}
}
/*!
\brief get RTC counter value
\param[in] none
\param[out] none
\retval RTC counter value
*/
uint32_t rtc_counter_get(void)
{
uint32_t temp = 0x0U;
temp = RTC_CNTL;
temp |= (RTC_CNTH << 16);
return temp;
}
/*!
\brief set RTC counter value
\param[in] cnt: RTC counter value
\param[out] none
\retval none
*/
void rtc_counter_set(uint32_t cnt)
{
rtc_configuration_mode_enter();
/* set the RTC counter high bits */
RTC_CNTH = cnt >> 16;
/* set the RTC counter low bits */
RTC_CNTL = (cnt & RTC_LOW_VALUE);
rtc_configuration_mode_exit();
}
/*!
\brief set RTC prescaler value
\param[in] psc: RTC prescaler value
\param[out] none
\retval none
*/
void rtc_prescaler_set(uint32_t psc)
{
rtc_configuration_mode_enter();
/* set the RTC prescaler high bits */
RTC_PSCH = (psc & RTC_HIGH_VALUE) >> 16;
/* set the RTC prescaler low bits */
RTC_PSCL = (psc & RTC_LOW_VALUE);
rtc_configuration_mode_exit();
}
/*!
\brief set RTC alarm value
\param[in] alarm: RTC alarm value
\param[out] none
\retval none
*/
void rtc_alarm_config(uint32_t alarm)
{
rtc_configuration_mode_enter();
/* set the alarm high bits */
RTC_ALRMH = alarm >> 16;
/* set the alarm low bits */
RTC_ALRML = (alarm & RTC_LOW_VALUE);
rtc_configuration_mode_exit();
}
/*!
\brief get RTC divider value
\param[in] none
\param[out] none
\retval RTC divider value
*/
uint32_t rtc_divider_get(void)
{
uint32_t temp = 0x00U;
temp = (RTC_DIVH & RTC_DIVH_DIV) << 16;
temp |= RTC_DIVL;
return temp;
}
/*!
\brief get RTC flag status
\param[in] flag: specify which flag status to get
\arg RTC_FLAG_SECOND: second interrupt flag
\arg RTC_FLAG_ALARM: alarm interrupt flag
\arg RTC_FLAG_OVERFLOW: overflow interrupt flag
\arg RTC_FLAG_RSYN: registers synchronized flag
\arg RTC_FLAG_LWOF: last write operation finished flag
\param[out] none
\retval SET or RESET
*/
FlagStatus rtc_flag_get(uint32_t flag)
{
if(RESET != (RTC_CTL & flag)){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear RTC flag status
\param[in] flag: specify which flag status to clear
\arg RTC_FLAG_SECOND: second interrupt flag
\arg RTC_FLAG_ALARM: alarm interrupt flag
\arg RTC_FLAG_OVERFLOW: overflow interrupt flag
\arg RTC_FLAG_RSYN: registers synchronized flag
\param[out] none
\retval none
*/
void rtc_flag_clear(uint32_t flag)
{
/* clear RTC flag */
RTC_CTL &= ~flag;
}

View File

@ -0,0 +1,772 @@
/*!
\file gd32f30x_sdio.c
\brief SDIO driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_sdio.h"
#define DEFAULT_RESET_VALUE 0x00000000U
/*!
\brief deinitialize the SDIO
\param[in] none
\param[out] none
\retval none
*/
void sdio_deinit(void)
{
SDIO_PWRCTL = DEFAULT_RESET_VALUE;
SDIO_CLKCTL = DEFAULT_RESET_VALUE;
SDIO_CMDAGMT = DEFAULT_RESET_VALUE;
SDIO_CMDCTL = DEFAULT_RESET_VALUE;
SDIO_DATATO = DEFAULT_RESET_VALUE;
SDIO_DATALEN = DEFAULT_RESET_VALUE;
SDIO_DATACTL = DEFAULT_RESET_VALUE;
SDIO_INTC = DEFAULT_RESET_VALUE;
SDIO_INTEN = DEFAULT_RESET_VALUE;
}
/*!
\brief configure the SDIO clock
\param[in] clock_edge: SDIO_CLK clock edge
\arg SDIO_SDIOCLKEDGE_RISING: select the rising edge of the SDIOCLK to generate SDIO_CLK
\arg SDIO_SDIOCLKEDGE_FALLING: select the falling edge of the SDIOCLK to generate SDIO_CLK
\param[in] clock_bypass: clock bypass
\arg SDIO_CLOCKBYPASS_ENABLE: clock bypass
\arg SDIO_CLOCKBYPASS_DISABLE: no bypass
\param[in] clock_powersave: SDIO_CLK clock dynamic switch on/off for power saving
\arg SDIO_CLOCKPWRSAVE_ENABLE: SDIO_CLK closed when bus is idle
\arg SDIO_CLOCKPWRSAVE_DISABLE: SDIO_CLK clock is always on
\param[in] clock_division: clock division, less than 512
\param[out] none
\retval none
*/
void sdio_clock_config(uint32_t clock_edge, uint32_t clock_bypass, uint32_t clock_powersave, uint16_t clock_division)
{
uint32_t clock_config = 0U;
clock_config = SDIO_CLKCTL;
/* reset the CLKEDGE, CLKBYP, CLKPWRSAV, DIV */
clock_config &= ~(SDIO_CLKCTL_CLKEDGE | SDIO_CLKCTL_CLKBYP | SDIO_CLKCTL_CLKPWRSAV | SDIO_CLKCTL_DIV8 | SDIO_CLKCTL_DIV);
/* if the clock division is greater or equal to 256, set the DIV[8] */
if(clock_division >= 256U){
clock_config |= SDIO_CLKCTL_DIV8;
clock_division -= 256U;
}
/* configure the SDIO_CLKCTL according to the parameters */
clock_config |= (clock_edge | clock_bypass | clock_powersave | clock_division);
SDIO_CLKCTL = clock_config;
}
/*!
\brief enable hardware clock control
\param[in] none
\param[out] none
\retval none
*/
void sdio_hardware_clock_enable(void)
{
SDIO_CLKCTL |= SDIO_CLKCTL_HWCLKEN;
}
/*!
\brief disable hardware clock control
\param[in] none
\param[out] none
\retval none
*/
void sdio_hardware_clock_disable(void)
{
SDIO_CLKCTL &= ~SDIO_CLKCTL_HWCLKEN;
}
/*!
\brief set different SDIO card bus mode
\param[in] bus_mode: SDIO card bus mode
\arg SDIO_BUSMODE_1BIT: 1-bit SDIO card bus mode
\arg SDIO_BUSMODE_4BIT: 4-bit SDIO card bus mode
\arg SDIO_BUSMODE_8BIT: 8-bit SDIO card bus mode
\param[out] none
\retval none
*/
void sdio_bus_mode_set(uint32_t bus_mode)
{
/* reset the SDIO card bus mode bits and set according to bus_mode */
SDIO_CLKCTL &= ~SDIO_CLKCTL_BUSMODE;
SDIO_CLKCTL |= bus_mode;
}
/*!
\brief set the SDIO power state
\param[in] power_state: SDIO power state
\arg SDIO_POWER_ON: SDIO power on
\arg SDIO_POWER_OFF: SDIO power off
\param[out] none
\retval none
*/
void sdio_power_state_set(uint32_t power_state)
{
SDIO_PWRCTL = power_state;
}
/*!
\brief get the SDIO power state
\param[in] none
\param[out] none
\retval SDIO power state
\arg SDIO_POWER_ON: SDIO power on
\arg SDIO_POWER_OFF: SDIO power off
*/
uint32_t sdio_power_state_get(void)
{
return SDIO_PWRCTL;
}
/*!
\brief enable SDIO_CLK clock output
\param[in] none
\param[out] none
\retval none
*/
void sdio_clock_enable(void)
{
SDIO_CLKCTL |= SDIO_CLKCTL_CLKEN;
}
/*!
\brief disable SDIO_CLK clock output
\param[in] none
\param[out] none
\retval none
*/
void sdio_clock_disable(void)
{
SDIO_CLKCTL &= ~SDIO_CLKCTL_CLKEN;
}
/*!
\brief configure the command and response
\param[in] cmd_index: command index, refer to the related specifications
\param[in] cmd_argument: command argument, refer to the related specifications
\param[in] response_type: response type
\arg SDIO_RESPONSETYPE_NO: no response
\arg SDIO_RESPONSETYPE_SHORT: short response
\arg SDIO_RESPONSETYPE_LONG: long response
\param[out] none
\retval none
*/
void sdio_command_response_config(uint32_t cmd_index, uint32_t cmd_argument, uint32_t response_type)
{
uint32_t cmd_config = 0U;
/* reset the command index, command argument and response type */
SDIO_CMDAGMT &= ~SDIO_CMDAGMT_CMDAGMT;
SDIO_CMDAGMT = cmd_argument;
cmd_config = SDIO_CMDCTL;
cmd_config &= ~(SDIO_CMDCTL_CMDIDX | SDIO_CMDCTL_CMDRESP);
/* configure SDIO_CMDCTL and SDIO_CMDAGMT according to the parameters */
cmd_config |= (cmd_index | response_type);
SDIO_CMDCTL = cmd_config;
}
/*!
\brief set the command state machine wait type
\param[in] wait_type: wait type
\arg SDIO_WAITTYPE_NO: not wait interrupt
\arg SDIO_WAITTYPE_INTERRUPT: wait interrupt
\arg SDIO_WAITTYPE_DATAEND: wait the end of data transfer
\param[out] none
\retval none
*/
void sdio_wait_type_set(uint32_t wait_type)
{
/* reset INTWAIT and WAITDEND */
SDIO_CMDCTL &= ~(SDIO_CMDCTL_INTWAIT | SDIO_CMDCTL_WAITDEND);
/* set the wait type according to wait_type */
SDIO_CMDCTL |= wait_type;
}
/*!
\brief enable the CSM(command state machine)
\param[in] none
\param[out] none
\retval none
*/
void sdio_csm_enable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_CSMEN;
}
/*!
\brief disable the CSM(command state machine)
\param[in] none
\param[out] none
\retval none
*/
void sdio_csm_disable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_CSMEN;
}
/*!
\brief get the last response command index
\param[in] none
\param[out] none
\retval last response command index
*/
uint8_t sdio_command_index_get(void)
{
return (uint8_t)SDIO_RSPCMDIDX;
}
/*!
\brief get the response for the last received command
\param[in] responsex: SDIO response
\arg SDIO_RESPONSE0: card response[31:0]/card response[127:96]
\arg SDIO_RESPONSE1: card response[95:64]
\arg SDIO_RESPONSE2: card response[63:32]
\arg SDIO_RESPONSE3: card response[31:1], plus bit 0
\param[out] none
\retval response for the last received command
*/
uint32_t sdio_response_get(uint32_t responsex)
{
uint32_t resp_content = 0U;
switch(responsex){
case SDIO_RESPONSE0:
resp_content = SDIO_RESP0;
break;
case SDIO_RESPONSE1:
resp_content = SDIO_RESP1;
break;
case SDIO_RESPONSE2:
resp_content = SDIO_RESP2;
break;
case SDIO_RESPONSE3:
resp_content = SDIO_RESP3;
break;
default:
break;
}
return resp_content;
}
/*!
\brief configure the data timeout, data length and data block size
\param[in] data_timeout: data timeout period in card bus clock periods
\param[in] data_length: number of data bytes to be transferred
\param[in] data_blocksize: size of data block for block transfer
\arg SDIO_DATABLOCKSIZE_1BYTE: block size = 1 byte
\arg SDIO_DATABLOCKSIZE_2BYTES: block size = 2 bytes
\arg SDIO_DATABLOCKSIZE_4BYTES: block size = 4 bytes
\arg SDIO_DATABLOCKSIZE_8BYTES: block size = 8 bytes
\arg SDIO_DATABLOCKSIZE_16BYTES: block size = 16 bytes
\arg SDIO_DATABLOCKSIZE_32BYTES: block size = 32 bytes
\arg SDIO_DATABLOCKSIZE_64BYTES: block size = 64 bytes
\arg SDIO_DATABLOCKSIZE_128BYTES: block size = 128 bytes
\arg SDIO_DATABLOCKSIZE_256BYTES: block size = 256 bytes
\arg SDIO_DATABLOCKSIZE_512BYTES: block size = 512 bytes
\arg SDIO_DATABLOCKSIZE_1024BYTES: block size = 1024 bytes
\arg SDIO_DATABLOCKSIZE_2048BYTES: block size = 2048 bytes
\arg SDIO_DATABLOCKSIZE_4096BYTES: block size = 4096 bytes
\arg SDIO_DATABLOCKSIZE_8192BYTES: block size = 8192 bytes
\arg SDIO_DATABLOCKSIZE_16384BYTES: block size = 16384 bytes
\param[out] none
\retval none
*/
void sdio_data_config(uint32_t data_timeout, uint32_t data_length, uint32_t data_blocksize)
{
/* reset data timeout, data length and data block size */
SDIO_DATATO &= ~SDIO_DATATO_DATATO;
SDIO_DATALEN &= ~SDIO_DATALEN_DATALEN;
SDIO_DATACTL &= ~SDIO_DATACTL_BLKSZ;
/* configure the related parameters of data */
SDIO_DATATO = data_timeout;
SDIO_DATALEN = data_length;
SDIO_DATACTL |= data_blocksize;
}
/*!
\brief configure the data transfer mode and direction
\param[in] transfer_mode: mode of data transfer
\arg SDIO_TRANSMODE_BLOCK: block transfer
\arg SDIO_TRANSMODE_STREAM: stream transfer or SDIO multibyte transfer
\param[in] transfer_direction: data transfer direction, read or write
\arg SDIO_TRANSDIRECTION_TOCARD: write data to card
\arg SDIO_TRANSDIRECTION_TOSDIO: read data from card
\param[out] none
\retval none
*/
void sdio_data_transfer_config(uint32_t transfer_mode, uint32_t transfer_direction)
{
uint32_t data_trans = 0U;
/* reset the data transfer mode, transfer direction and set according to the parameters */
data_trans = SDIO_DATACTL;
data_trans &= ~(SDIO_DATACTL_TRANSMOD | SDIO_DATACTL_DATADIR);
data_trans |= (transfer_mode | transfer_direction);
SDIO_DATACTL = data_trans;
}
/*!
\brief enable the DSM(data state machine) for data transfer
\param[in] none
\param[out] none
\retval none
*/
void sdio_dsm_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_DATAEN;
}
/*!
\brief disable the DSM(data state machine)
\param[in] none
\param[out] none
\retval none
*/
void sdio_dsm_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_DATAEN;
}
/*!
\brief write data(one word) to the transmit FIFO
\param[in] data: 32-bit data write to card
\param[out] none
\retval none
*/
void sdio_data_write(uint32_t data)
{
SDIO_FIFO = data;
}
/*!
\brief read data(one word) from the receive FIFO
\param[in] none
\param[out] none
\retval received data
*/
uint32_t sdio_data_read(void)
{
return SDIO_FIFO;
}
/*!
\brief get the number of remaining data bytes to be transferred to card
\param[in] none
\param[out] none
\retval number of remaining data bytes to be transferred
*/
uint32_t sdio_data_counter_get(void)
{
return SDIO_DATACNT;
}
/*!
\brief get the number of words remaining to be written or read from FIFO
\param[in] none
\param[out] none
\retval remaining number of words
*/
uint32_t sdio_fifo_counter_get(void)
{
return SDIO_FIFOCNT;
}
/*!
\brief enable the DMA request for SDIO
\param[in] none
\param[out] none
\retval none
*/
void sdio_dma_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_DMAEN;
}
/*!
\brief disable the DMA request for SDIO
\param[in] none
\param[out] none
\retval none
*/
void sdio_dma_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_DMAEN;
}
/*!
\brief get the flags state of SDIO
\param[in] flag: flags state of SDIO
\arg SDIO_FLAG_CCRCERR: command response received (CRC check failed) flag
\arg SDIO_FLAG_DTCRCERR: data block sent/received (CRC check failed) flag
\arg SDIO_FLAG_CMDTMOUT: command response timeout flag
\arg SDIO_FLAG_DTTMOUT: data timeout flag
\arg SDIO_FLAG_TXURE: transmit FIFO underrun error occurs flag
\arg SDIO_FLAG_RXORE: received FIFO overrun error occurs flag
\arg SDIO_FLAG_CMDRECV: command response received (CRC check passed) flag
\arg SDIO_FLAG_CMDSEND: command sent (no response required) flag
\arg SDIO_FLAG_DTEND: data end (data counter, SDIO_DATACNT, is zero) flag
\arg SDIO_FLAG_STBITE: start bit error in the bus flag
\arg SDIO_FLAG_DTBLKEND: data block sent/received (CRC check passed) flag
\arg SDIO_FLAG_CMDRUN: command transmission in progress flag
\arg SDIO_FLAG_TXRUN: data transmission in progress flag
\arg SDIO_FLAG_RXRUN: data reception in progress flag
\arg SDIO_FLAG_TFH: transmit FIFO is half empty flag: at least 8 words can be written into the FIFO
\arg SDIO_FLAG_RFH: receive FIFO is half full flag: at least 8 words can be read in the FIFO
\arg SDIO_FLAG_TFF: transmit FIFO is full flag
\arg SDIO_FLAG_RFF: receive FIFO is full flag
\arg SDIO_FLAG_TFE: transmit FIFO is empty flag
\arg SDIO_FLAG_RFE: receive FIFO is empty flag
\arg SDIO_FLAG_TXDTVAL: data is valid in transmit FIFO flag
\arg SDIO_FLAG_RXDTVAL: data is valid in receive FIFO flag
\arg SDIO_FLAG_SDIOINT: SD I/O interrupt received flag
\arg SDIO_FLAG_ATAEND: CE-ATA command completion signal received (only for CMD61) flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus sdio_flag_get(uint32_t flag)
{
FlagStatus temp_flag = RESET;
if(RESET != (SDIO_STAT & flag)){
temp_flag = SET;
}
return temp_flag;
}
/*!
\brief clear the pending flags of SDIO
\param[in] flag: flags state of SDIO
\arg SDIO_FLAG_CCRCERR: command response received (CRC check failed) flag
\arg SDIO_FLAG_DTCRCERR: data block sent/received (CRC check failed) flag
\arg SDIO_FLAG_CMDTMOUT: command response timeout flag
\arg SDIO_FLAG_DTTMOUT: data timeout flag
\arg SDIO_FLAG_TXURE: transmit FIFO underrun error occurs flag
\arg SDIO_FLAG_RXORE: received FIFO overrun error occurs flag
\arg SDIO_FLAG_CMDRECV: command response received (CRC check passed) flag
\arg SDIO_FLAG_CMDSEND: command sent (no response required) flag
\arg SDIO_FLAG_DTEND: data end (data counter, SDIO_DATACNT, is zero) flag
\arg SDIO_FLAG_STBITE: start bit error in the bus flag
\arg SDIO_FLAG_DTBLKEND: data block sent/received (CRC check passed) flag
\arg SDIO_FLAG_SDIOINT: SD I/O interrupt received flag
\arg SDIO_FLAG_ATAEND: CE-ATA command completion signal received (only for CMD61) flag
\param[out] none
\retval none
*/
void sdio_flag_clear(uint32_t flag)
{
SDIO_INTC = flag;
}
/*!
\brief enable the SDIO interrupt
\param[in] int_flag: interrupt flags state of SDIO
\arg SDIO_INT_CCRCERR: SDIO CCRCERR interrupt
\arg SDIO_INT_DTCRCERR: SDIO DTCRCERR interrupt
\arg SDIO_INT_CMDTMOUT: SDIO CMDTMOUT interrupt
\arg SDIO_INT_DTTMOUT: SDIO DTTMOUT interrupt
\arg SDIO_INT_TXURE: SDIO TXURE interrupt
\arg SDIO_INT_RXORE: SDIO RXORE interrupt
\arg SDIO_INT_CMDRECV: SDIO CMDRECV interrupt
\arg SDIO_INT_CMDSEND: SDIO CMDSEND interrupt
\arg SDIO_INT_DTEND: SDIO DTEND interrupt
\arg SDIO_INT_STBITE: SDIO STBITE interrupt
\arg SDIO_INT_DTBLKEND: SDIO DTBLKEND interrupt
\arg SDIO_INT_CMDRUN: SDIO CMDRUN interrupt
\arg SDIO_INT_TXRUN: SDIO TXRUN interrupt
\arg SDIO_INT_RXRUN: SDIO RXRUN interrupt
\arg SDIO_INT_TFH: SDIO TFH interrupt
\arg SDIO_INT_RFH: SDIO RFH interrupt
\arg SDIO_INT_TFF: SDIO TFF interrupt
\arg SDIO_INT_RFF: SDIO RFF interrupt
\arg SDIO_INT_TFE: SDIO TFE interrupt
\arg SDIO_INT_RFE: SDIO RFE interrupt
\arg SDIO_INT_TXDTVAL: SDIO TXDTVAL interrupt
\arg SDIO_INT_RXDTVAL: SDIO RXDTVAL interrupt
\arg SDIO_INT_SDIOINT: SDIO SDIOINT interrupt
\arg SDIO_INT_ATAEND: SDIO ATAEND interrupt
\param[out] none
\retval none
*/
void sdio_interrupt_enable(uint32_t int_flag)
{
SDIO_INTEN |= int_flag;
}
/*!
\brief disable the SDIO interrupt
\param[in] int_flag: interrupt flags state of SDIO
\arg SDIO_INT_CCRCERR: SDIO CCRCERR interrupt
\arg SDIO_INT_DTCRCERR: SDIO DTCRCERR interrupt
\arg SDIO_INT_CMDTMOUT: SDIO CMDTMOUT interrupt
\arg SDIO_INT_DTTMOUT: SDIO DTTMOUT interrupt
\arg SDIO_INT_TXURE: SDIO TXURE interrupt
\arg SDIO_INT_RXORE: SDIO RXORE interrupt
\arg SDIO_INT_CMDRECV: SDIO CMDRECV interrupt
\arg SDIO_INT_CMDSEND: SDIO CMDSEND interrupt
\arg SDIO_INT_DTEND: SDIO DTEND interrupt
\arg SDIO_INT_STBITE: SDIO STBITE interrupt
\arg SDIO_INT_DTBLKEND: SDIO DTBLKEND interrupt
\arg SDIO_INT_CMDRUN: SDIO CMDRUN interrupt
\arg SDIO_INT_TXRUN: SDIO TXRUN interrupt
\arg SDIO_INT_RXRUN: SDIO RXRUN interrupt
\arg SDIO_INT_TFH: SDIO TFH interrupt
\arg SDIO_INT_RFH: SDIO RFH interrupt
\arg SDIO_INT_TFF: SDIO TFF interrupt
\arg SDIO_INT_RFF: SDIO RFF interrupt
\arg SDIO_INT_TFE: SDIO TFE interrupt
\arg SDIO_INT_RFE: SDIO RFE interrupt
\arg SDIO_INT_TXDTVAL: SDIO TXDTVAL interrupt
\arg SDIO_INT_RXDTVAL: SDIO RXDTVAL interrupt
\arg SDIO_INT_SDIOINT: SDIO SDIOINT interrupt
\arg SDIO_INT_ATAEND: SDIO ATAEND interrupt
\param[out] none
\retval none
*/
void sdio_interrupt_disable(uint32_t int_flag)
{
SDIO_INTEN &= ~int_flag;
}
/*!
\brief get the interrupt flags state of SDIO
\param[in] int_flag: interrupt flags state of SDIO
\arg SDIO_INT_FLAG_CCRCERR: SDIO CCRCERR interrupt
\arg SDIO_INT_FLAG_DTCRCERR: SDIO DTCRCERR interrupt
\arg SDIO_INT_FLAG_CMDTMOUT: SDIO CMDTMOUT interrupt
\arg SDIO_INT_FLAG_DTTMOUT: SDIO DTTMOUT interrupt
\arg SDIO_INT_FLAG_TXURE: SDIO TXURE interrupt
\arg SDIO_INT_FLAG_RXORE: SDIO RXORE interrupt
\arg SDIO_INT_FLAG_CMDRECV: SDIO CMDRECV interrupt
\arg SDIO_INT_FLAG_CMDSEND: SDIO CMDSEND interrupt
\arg SDIO_INT_FLAG_DTEND: SDIO DTEND interrupt
\arg SDIO_INT_FLAG_STBITE: SDIO STBITE interrupt
\arg SDIO_INT_FLAG_DTBLKEND: SDIO DTBLKEND interrupt
\arg SDIO_INT_FLAG_CMDRUN: SDIO CMDRUN interrupt
\arg SDIO_INT_FLAG_TXRUN: SDIO TXRUN interrupt
\arg SDIO_INT_FLAG_RXRUN: SDIO RXRUN interrupt
\arg SDIO_INT_FLAG_TFH: SDIO TFH interrupt
\arg SDIO_INT_FLAG_RFH: SDIO RFH interrupt
\arg SDIO_INT_FLAG_TFF: SDIO TFF interrupt
\arg SDIO_INT_FLAG_RFF: SDIO RFF interrupt
\arg SDIO_INT_FLAG_TFE: SDIO TFE interrupt
\arg SDIO_INT_FLAG_RFE: SDIO RFE interrupt
\arg SDIO_INT_FLAG_TXDTVAL: SDIO TXDTVAL interrupt
\arg SDIO_INT_FLAG_RXDTVAL: SDIO RXDTVAL interrupt
\arg SDIO_INT_FLAG_SDIOINT: SDIO SDIOINT interrupt
\arg SDIO_INT_FLAG_ATAEND: SDIO ATAEND interrupt
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus sdio_interrupt_flag_get(uint32_t int_flag)
{
uint32_t state = 0U;
state = SDIO_STAT;
if(state & int_flag){
state = SDIO_INTEN;
/* check whether the corresponding bit in SDIO_INTEN is set or not */
if(state & int_flag){
return SET;
}
}
return RESET;
}
/*!
\brief clear the interrupt pending flags of SDIO
\param[in] int_flag: interrupt flags state of SDIO
\arg SDIO_INT_FLAG_CCRCERR: command response received (CRC check failed) flag
\arg SDIO_INT_FLAG_DTCRCERR: data block sent/received (CRC check failed) flag
\arg SDIO_INT_FLAG_CMDTMOUT: command response timeout flag
\arg SDIO_INT_FLAG_DTTMOUT: data timeout flag
\arg SDIO_INT_FLAG_TXURE: transmit FIFO underrun error occurs flag
\arg SDIO_INT_FLAG_RXORE: received FIFO overrun error occurs flag
\arg SDIO_INT_FLAG_CMDRECV: command response received (CRC check passed) flag
\arg SDIO_INT_FLAG_CMDSEND: command sent (no response required) flag
\arg SDIO_INT_FLAG_DTEND: data end (data counter, SDIO_DATACNT, is zero) flag
\arg SDIO_INT_FLAG_STBITE: start bit error in the bus flag
\arg SDIO_INT_FLAG_DTBLKEND: data block sent/received (CRC check passed) flag
\arg SDIO_INT_FLAG_SDIOINT: SD I/O interrupt received flag
\arg SDIO_INT_FLAG_ATAEND: CE-ATA command completion signal received (only for CMD61) flag
\param[out] none
\retval none
*/
void sdio_interrupt_flag_clear(uint32_t int_flag)
{
SDIO_INTC = int_flag;
}
/*!
\brief enable the read wait mode(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_readwait_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_RWEN;
}
/*!
\brief disable the read wait mode(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_readwait_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_RWEN;
}
/*!
\brief enable the function that stop the read wait process(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_stop_readwait_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_RWSTOP;
}
/*!
\brief disable the function that stop the read wait process(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_stop_readwait_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_RWSTOP;
}
/*!
\brief set the read wait type(SD I/O only)
\param[in] readwait_type: SD I/O read wait type
\arg SDIO_READWAITTYPE_CLK: read wait control by stopping SDIO_CLK
\arg SDIO_READWAITTYPE_DAT2: read wait control using SDIO_DAT[2]
\param[out] none
\retval none
*/
void sdio_readwait_type_set(uint32_t readwait_type)
{
if(SDIO_READWAITTYPE_CLK == readwait_type){
SDIO_DATACTL |= SDIO_DATACTL_RWTYPE;
}else{
SDIO_DATACTL &= ~SDIO_DATACTL_RWTYPE;
}
}
/*!
\brief enable the SD I/O mode specific operation(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_operation_enable(void)
{
SDIO_DATACTL |= SDIO_DATACTL_IOEN;
}
/*!
\brief disable the SD I/O mode specific operation(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_operation_disable(void)
{
SDIO_DATACTL &= ~SDIO_DATACTL_IOEN;
}
/*!
\brief enable the SD I/O suspend operation(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_suspend_enable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_SUSPEND;
}
/*!
\brief disable the SD I/O suspend operation(SD I/O only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_suspend_disable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_SUSPEND;
}
/*!
\brief enable the CE-ATA command(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_command_enable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_ATAEN;
}
/*!
\brief disable the CE-ATA command(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_command_disable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_ATAEN;
}
/*!
\brief enable the CE-ATA interrupt(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_interrupt_enable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_NINTEN;
}
/*!
\brief disable the CE-ATA interrupt(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_interrupt_disable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_NINTEN;
}
/*!
\brief enable the CE-ATA command completion signal(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_command_completion_enable(void)
{
SDIO_CMDCTL |= SDIO_CMDCTL_ENCMDC;
}
/*!
\brief disable the CE-ATA command completion signal(CE-ATA only)
\param[in] none
\param[out] none
\retval none
*/
void sdio_ceata_command_completion_disable(void)
{
SDIO_CMDCTL &= ~SDIO_CMDCTL_ENCMDC;
}

View File

@ -0,0 +1,792 @@
/*!
\file gd32f30x_spi.c
\brief SPI driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_spi.h"
#define SPI_INIT_MASK ((uint32_t)0x00003040U) /*!< SPI parameter initialization mask */
#define I2S_INIT_MASK ((uint32_t)0x0000F047U) /*!< I2S parameter initialization mask */
#define I2S1_CLOCK_SEL ((uint32_t)0x00020000U) /* I2S1 clock source selection */
#define I2S2_CLOCK_SEL ((uint32_t)0x00040000U) /* I2S2 clock source selection */
#define I2S_CLOCK_MUL_MASK ((uint32_t)0x0000F000U) /* I2S clock multiplication mask */
#define I2S_CLOCK_DIV_MASK ((uint32_t)0x000000F0U) /* I2S clock division mask */
/*!
\brief reset SPI and I2S
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_i2s_deinit(uint32_t spi_periph)
{
switch(spi_periph){
case SPI0:
/* reset SPI0 */
rcu_periph_reset_enable(RCU_SPI0RST);
rcu_periph_reset_disable(RCU_SPI0RST);
break;
case SPI1:
/* reset SPI1 and I2S1 */
rcu_periph_reset_enable(RCU_SPI1RST);
rcu_periph_reset_disable(RCU_SPI1RST);
break;
case SPI2:
/* reset SPI2 and I2S2 */
rcu_periph_reset_enable(RCU_SPI2RST);
rcu_periph_reset_disable(RCU_SPI2RST);
break;
default :
break;
}
}
/*!
\brief initialize SPI parameter
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] spi_struct: SPI parameter initialization stuct members of the structure
and the member values are shown as below:
device_mode: SPI_MASTER, SPI_SLAVE
trans_mode: SPI_TRANSMODE_FULLDUPLEX, SPI_TRANSMODE_RECEIVEONLY,
SPI_TRANSMODE_BDRECEIVE, SPI_TRANSMODE_BDTRANSMIT
frame_size: SPI_FRAMESIZE_16BIT, SPI_FRAMESIZE_8BIT
nss: SPI_NSS_SOFT, SPI_NSS_HARD
endian: SPI_ENDIAN_MSB, SPI_ENDIAN_LSB
clock_polarity_phase: SPI_CK_PL_LOW_PH_1EDGE, SPI_CK_PL_HIGH_PH_1EDGE
SPI_CK_PL_LOW_PH_2EDGE, SPI_CK_PL_HIGH_PH_2EDGE
prescale: SPI_PSC_n (n=2,4,8,16,32,64,128,256)
\param[out] none
\retval none
*/
void spi_init(uint32_t spi_periph, spi_parameter_struct* spi_struct)
{
uint32_t reg = 0U;
reg = SPI_CTL0(spi_periph);
reg &= SPI_INIT_MASK;
/* select SPI as master or slave */
reg |= spi_struct->device_mode;
/* select SPI transfer mode */
reg |= spi_struct->trans_mode;
/* select SPI frame size */
reg |= spi_struct->frame_size;
/* select SPI NSS use hardware or software */
reg |= spi_struct->nss;
/* select SPI LSB or MSB */
reg |= spi_struct->endian;
/* select SPI polarity and phase */
reg |= spi_struct->clock_polarity_phase;
/* select SPI prescale to adjust transmit speed */
reg |= spi_struct->prescale;
/* write to SPI_CTL0 register */
SPI_CTL0(spi_periph) = (uint32_t)reg;
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SSEL);
}
/*!
\brief enable SPI
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_enable(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SPIEN;
}
/*!
\brief disable SPI
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_disable(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SPIEN);
}
/*!
\brief configure I2S prescaler
\param[in] spi_periph: SPIx(x=1,2)
\param[in] audiosample: I2S audio sample rate
\arg I2S_AUDIOSAMPLE_8K: audio sample rate is 8KHz
\arg I2S_AUDIOSAMPLE_11K: audio sample rate is 11KHz
\arg I2S_AUDIOSAMPLE_16K: audio sample rate is 16KHz
\arg I2S_AUDIOSAMPLE_22K: audio sample rate is 22KHz
\arg I2S_AUDIOSAMPLE_32K: audio sample rate is 32KHz
\arg I2S_AUDIOSAMPLE_44K: audio sample rate is 44KHz
\arg I2S_AUDIOSAMPLE_48K: audio sample rate is 48KHz
\arg I2S_AUDIOSAMPLE_96K: audio sample rate is 96KHz
\arg I2S_AUDIOSAMPLE_192K: audio sample rate is 192KHz
\param[in] frameformat: I2S data length and channel length
\arg I2S_FRAMEFORMAT_DT16B_CH16B: I2S data length is 16 bit and channel length is 16 bit
\arg I2S_FRAMEFORMAT_DT16B_CH32B: I2S data length is 16 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT24B_CH32B: I2S data length is 24 bit and channel length is 32 bit
\arg I2S_FRAMEFORMAT_DT32B_CH32B: I2S data length is 32 bit and channel length is 32 bit
\param[in] mckout: I2S master clock output
\arg I2S_MCKOUT_ENABLE: I2S master clock output enable
\arg I2S_MCKOUT_DISABLE: I2S master clock output disable
\param[out] none
\retval none
*/
void i2s_psc_config(uint32_t spi_periph, uint32_t audiosample, uint32_t frameformat, uint32_t mckout)
{
uint32_t i2sdiv = 2U, i2sof = 0U;
uint32_t clks = 0U;
uint32_t i2sclock = 0U;
#ifdef GD32F30X_CL
uint32_t pll2mf_4 = 0U;
#endif /* GD32F30X_CL */
/* deinit SPI_I2SPSC register */
SPI_I2SPSC(spi_periph) = 0x0002U;
#ifdef GD32F30X_CL
/* get the I2S clock source */
if(((uint32_t)spi_periph) == SPI1){
/* I2S1 clock source selection */
clks = I2S1_CLOCK_SEL;
}else{
/* I2S2 clock source selection */
clks = I2S2_CLOCK_SEL;
}
if(0U != (RCU_CFG1 & clks)){
/* get RCU PLL2 clock multiplication factor */
clks = (uint32_t)((RCU_CFG1 & I2S_CLOCK_MUL_MASK) >> 12U);
pll2mf_4 = RCU_CFG1 & RCU_CFG1_PLL2MF_4;
if( 0U == pll2mf_4){
if((clks > 5U) && (clks < 15U)){
/* multiplier is between 8 and 16 */
clks += 2U;
}else{
if(15U == clks){
/* multiplier is 20 */
clks = 20U;
}
}
}else{
if(clks < 15U){
/* multiplier is between 18 and 32 */
clks += 18U;
}else{
if(15U == clks){
/* multiplier is 40 */
clks = 40U;
}
}
}
/* get the PREDV1 value */
i2sclock = (uint32_t)(((RCU_CFG1 & I2S_CLOCK_DIV_MASK) >> 4U) + 1U);
/* calculate i2sclock based on PLL2 and PREDV1 */
i2sclock = (uint32_t)((HXTAL_VALUE / i2sclock) * clks * 2U);
}else{
/* get system clock */
i2sclock = rcu_clock_freq_get(CK_SYS);
}
#else
/* get system clock */
i2sclock = rcu_clock_freq_get(CK_SYS);
#endif /* GD32F30X_CL */
/* config the prescaler depending on the mclk output state, the frame format and audio sample rate */
if(I2S_MCKOUT_ENABLE == mckout){
clks = (uint32_t)(((i2sclock / 256U) * 10U) / audiosample);
}else{
if(I2S_FRAMEFORMAT_DT16B_CH16B == frameformat){
clks = (uint32_t)(((i2sclock / 32U) *10U ) / audiosample);
}else{
clks = (uint32_t)(((i2sclock / 64U) *10U ) / audiosample);
}
}
/* remove the floating point */
clks = (clks + 5U) / 10U;
i2sof = (clks & 0x00000001U);
i2sdiv = ((clks - i2sof) / 2U);
i2sof = (i2sof << 8U);
/* set the default values */
if((i2sdiv < 2U) || (i2sdiv > 255U)){
i2sdiv = 2U;
i2sof = 0U;
}
/* configure SPI_I2SPSC */
SPI_I2SPSC(spi_periph) = (uint32_t)(i2sdiv | i2sof | mckout);
/* clear SPI_I2SCTL_DTLEN and SPI_I2SCTL_CHLEN bits */
SPI_I2SCTL(spi_periph) &= (uint32_t)(~(SPI_I2SCTL_DTLEN | SPI_I2SCTL_CHLEN));
/* configure data frame format */
SPI_I2SCTL(spi_periph) |= (uint32_t)frameformat;
}
/*!
\brief initialize I2S parameter
\param[in] spi_periph: SPIx(x=1,2)
\param[in] mode: I2S operation mode
\arg I2S_MODE_SLAVETX: I2S slave transmit mode
\arg I2S_MODE_SLAVERX: I2S slave receive mode
\arg I2S_MODE_MASTERTX: I2S master transmit mode
\arg I2S_MODE_MASTERRX: I2S master receive mode
\param[in] standard: I2S standard
\arg I2S_STD_PHILLIPS: I2S phillips standard
\arg I2S_STD_MSB: I2S MSB standard
\arg I2S_STD_LSB: I2S LSB standard
\arg I2S_STD_PCMSHORT: I2S PCM short standard
\arg I2S_STD_PCMLONG: I2S PCM long standard
\param[in] ckpl: I2S idle state clock polarity
\arg I2S_CKPL_LOW: I2S clock polarity low level
\arg I2S_CKPL_HIGH: I2S clock polarity high level
\param[out] none
\retval none
*/
void i2s_init(uint32_t spi_periph, uint32_t mode, uint32_t standard, uint32_t ckpl)
{
uint32_t reg= 0U;
reg = SPI_I2SCTL(spi_periph);
reg &= I2S_INIT_MASK;
/* enable I2S mode */
reg |= (uint32_t)SPI_I2SCTL_I2SSEL;
/* select I2S mode */
reg |= (uint32_t)mode;
/* select I2S standard */
reg |= (uint32_t)standard;
/* select I2S polarity */
reg |= (uint32_t)ckpl;
/* write to SPI_I2SCTL register */
SPI_I2SCTL(spi_periph) = (uint32_t)reg;
}
/*!
\brief enable I2S
\param[in] spi_periph: SPIx(x=1,2)
\param[out] none
\retval none
*/
void i2s_enable(uint32_t spi_periph)
{
SPI_I2SCTL(spi_periph) |= (uint32_t)SPI_I2SCTL_I2SEN;
}
/*!
\brief disable I2S
\param[in] spi_periph: SPIx(x=1,2)
\param[out] none
\retval none
*/
void i2s_disable(uint32_t spi_periph)
{
SPI_I2SCTL(spi_periph) &= (uint32_t)(~SPI_I2SCTL_I2SEN);
}
/*!
\brief enable SPI NSS output
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nss_output_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSDRV;
}
/*!
\brief disable SPI NSS output
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nss_output_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSDRV);
}
/*!
\brief SPI NSS pin high level in software mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nss_internal_high(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_SWNSS;
}
/*!
\brief SPI NSS pin low level in software mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nss_internal_low(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_SWNSS);
}
/*!
\brief enable SPI DMA send or receive
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] dma: SPI DMA mode
\arg SPI_DMA_TRANSMIT: SPI transmit data use DMA
\arg SPI_DMA_RECEIVE: SPI receive data use DMA
\param[out] none
\retval none
*/
void spi_dma_enable(uint32_t spi_periph, uint8_t dma)
{
if(SPI_DMA_TRANSMIT == dma){
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMATEN;
}else{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_DMAREN;
}
}
/*!
\brief disable SPI DMA send or receive
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] dma: SPI DMA mode
\arg SPI_DMA_TRANSMIT: SPI transmit data use DMA
\arg SPI_DMA_RECEIVE: SPI receive data use DMA
\param[out] none
\retval none
*/
void spi_dma_disable(uint32_t spi_periph, uint8_t dma)
{
if(SPI_DMA_TRANSMIT == dma){
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMATEN);
}else{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_DMAREN);
}
}
/*!
\brief configure SPI/I2S data frame format
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] frame_format: SPI frame size
\arg SPI_FRAMESIZE_16BIT: SPI frame size is 16 bits
\arg SPI_FRAMESIZE_8BIT: SPI frame size is 8 bits
\param[out] none
\retval none
*/
void spi_i2s_data_frame_format_config(uint32_t spi_periph, uint16_t frame_format)
{
/* clear SPI_CTL0_FF16 bit */
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_FF16);
/* confige SPI_CTL0_FF16 bit */
SPI_CTL0(spi_periph) |= (uint32_t)frame_format;
}
/*!
\brief SPI transmit data
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] data: 16-bit data
\param[out] none
\retval none
*/
void spi_i2s_data_transmit(uint32_t spi_periph, uint16_t data)
{
SPI_DATA(spi_periph) = (uint32_t)data;
}
/*!
\brief SPI receive data
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval 16-bit data
*/
uint16_t spi_i2s_data_receive(uint32_t spi_periph)
{
return ((uint16_t)SPI_DATA(spi_periph));
}
/*!
\brief configure SPI bidirectional transfer direction
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] transfer_direction: SPI transfer direction
\arg SPI_BIDIRECTIONAL_TRANSMIT: SPI work in transmit-only mode
\arg SPI_BIDIRECTIONAL_RECEIVE: SPI work in receive-only mode
\retval none
*/
void spi_bidirectional_transfer_config(uint32_t spi_periph, uint32_t transfer_direction)
{
if(SPI_BIDIRECTIONAL_TRANSMIT == transfer_direction){
/* set the transmit only mode */
SPI_CTL0(spi_periph) |= (uint32_t)SPI_BIDIRECTIONAL_TRANSMIT;
}else{
/* set the receive only mode */
SPI_CTL0(spi_periph) &= SPI_BIDIRECTIONAL_RECEIVE;
}
}
/*!
\brief enable SPI and I2S interrupt
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] interrupt: SPI/I2S interrupt
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
transmission underrun error and format error interrupt
\param[out] none
\retval none
*/
void spi_i2s_interrupt_enable(uint32_t spi_periph, uint8_t interrupt)
{
switch(interrupt){
/* SPI/I2S transmit buffer empty interrupt */
case SPI_I2S_INT_TBE:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TBEIE;
break;
/* SPI/I2S receive buffer not empty interrupt */
case SPI_I2S_INT_RBNE:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_RBNEIE;
break;
/* SPI/I2S error */
case SPI_I2S_INT_ERR:
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_ERRIE;
break;
default:
break;
}
}
/*!
\brief disable SPI and I2S interrupt
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] interrupt: SPI/I2S interrupt
\arg SPI_I2S_INT_TBE: transmit buffer empty interrupt
\arg SPI_I2S_INT_RBNE: receive buffer not empty interrupt
\arg SPI_I2S_INT_ERR: CRC error,configuration error,reception overrun error,
transmission underrun error and format error interrupt
\param[out] none
\retval none
*/
void spi_i2s_interrupt_disable(uint32_t spi_periph, uint8_t interrupt)
{
switch(interrupt){
/* SPI/I2S transmit buffer empty interrupt */
case SPI_I2S_INT_TBE:
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TBEIE);
break;
/* SPI/I2S receive buffer not empty interrupt */
case SPI_I2S_INT_RBNE:
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_RBNEIE);
break;
/* SPI/I2S error */
case SPI_I2S_INT_ERR:
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_ERRIE);
break;
default :
break;
}
}
/*!
\brief get SPI and I2S interrupt flag status
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] interrupt: SPI/I2S interrupt flag status
\arg SPI_I2S_INT_FLAG_TBE: transmit buffer empty interrupt flag
\arg SPI_I2S_INT_FLAG_RBNE: receive buffer not empty interrupt flag
\arg SPI_I2S_INT_FLAG_RXORERR: overrun interrupt flag
\arg SPI_INT_FLAG_CONFERR: config error interrupt flag
\arg SPI_INT_FLAG_CRCERR: CRC error interrupt flag
\arg I2S_INT_FLAG_TXURERR: underrun error interrupt flag
\arg SPI_I2S_INT_FLAG_FERR: format error interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_interrupt_flag_get(uint32_t spi_periph, uint8_t interrupt)
{
uint32_t reg1 = SPI_STAT(spi_periph);
uint32_t reg2 = SPI_CTL1(spi_periph);
switch(interrupt){
/* SPI/I2S transmit buffer empty interrupt */
case SPI_I2S_INT_FLAG_TBE:
reg1 = reg1 & SPI_STAT_TBE;
reg2 = reg2 & SPI_CTL1_TBEIE;
break;
/* SPI/I2S receive buffer not empty interrupt */
case SPI_I2S_INT_FLAG_RBNE:
reg1 = reg1 & SPI_STAT_RBNE;
reg2 = reg2 & SPI_CTL1_RBNEIE;
break;
/* SPI/I2S overrun interrupt */
case SPI_I2S_INT_FLAG_RXORERR:
reg1 = reg1 & SPI_STAT_RXORERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* SPI config error interrupt */
case SPI_INT_FLAG_CONFERR:
reg1 = reg1 & SPI_STAT_CONFERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* SPI CRC error interrupt */
case SPI_INT_FLAG_CRCERR:
reg1 = reg1 & SPI_STAT_CRCERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* I2S underrun error interrupt */
case I2S_INT_FLAG_TXURERR:
reg1 = reg1 & SPI_STAT_TXURERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
/* SPI/I2S format error interrupt */
case SPI_I2S_INT_FLAG_FERR:
reg1 = reg1 & SPI_STAT_FERR;
reg2 = reg2 & SPI_CTL1_ERRIE;
break;
default :
break;
}
/*get SPI/I2S interrupt flag status */
if(reg1 && reg2){
return SET;
}else{
return RESET;
}
}
/*!
\brief get SPI and I2S flag status
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] flag: SPI/I2S flag status
\arg SPI_FLAG_TBE: transmit buffer empty flag
\arg SPI_FLAG_RBNE: receive buffer not empty flag
\arg SPI_FLAG_TRANS: transmit on-going flag
\arg SPI_FLAG_RXORERR: receive overrun error flag
\arg SPI_FLAG_CONFERR: mode config error flag
\arg SPI_FLAG_CRCERR: CRC error flag
\arg SPI_FLAG_FERR: format error interrupt flag
\arg I2S_FLAG_TBE: transmit buffer empty flag
\arg I2S_FLAG_RBNE: receive buffer not empty flag
\arg I2S_FLAG_TRANS: transmit on-going flag
\arg I2S_FLAG_RXORERR: overrun error flag
\arg I2S_FLAG_TXURERR: underrun error flag
\arg I2S_FLAG_CH: channel side flag
\arg I2S_FLAG_FERR: format error interrupt flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus spi_i2s_flag_get(uint32_t spi_periph, uint32_t flag)
{
if(SPI_STAT(spi_periph) & flag){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear SPI CRC error flag status
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_crc_error_clear(uint32_t spi_periph)
{
SPI_STAT(spi_periph) &= (uint32_t)(~SPI_FLAG_CRCERR);
}
/*!
\brief turn on CRC function
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_crc_on(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
}
/*!
\brief turn off CRC function
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_crc_off(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) &= (uint32_t)(~SPI_CTL0_CRCEN);
}
/*!
\brief set CRC polynomial
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] crc_poly: CRC polynomial value
\param[out] none
\retval none
*/
void spi_crc_polynomial_set(uint32_t spi_periph,uint16_t crc_poly)
{
/* enable SPI CRC */
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCEN;
/* set SPI CRC polynomial */
SPI_CRCPOLY(spi_periph) = (uint32_t)crc_poly;
}
/*!
\brief get SPI CRC polynomial
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval 16-bit CRC polynomial
*/
uint16_t spi_crc_polynomial_get(uint32_t spi_periph)
{
return ((uint16_t)SPI_CRCPOLY(spi_periph));
}
/*!
\brief SPI next data is CRC value
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_crc_next(uint32_t spi_periph)
{
SPI_CTL0(spi_periph) |= (uint32_t)SPI_CTL0_CRCNT;
}
/*!
\brief get SPI CRC send value or receive value
\param[in] spi_periph: SPIx(x=0,1,2)
\param[in] crc: SPI crc value
\arg SPI_CRC_TX: get transmit crc value
\arg SPI_CRC_RX: get receive crc value
\param[out] none
\retval 16-bit CRC value
*/
uint16_t spi_crc_get(uint32_t spi_periph,uint8_t crc)
{
if(SPI_CRC_TX == crc){
return ((uint16_t)(SPI_TCRC(spi_periph)));
}else{
return ((uint16_t)(SPI_RCRC(spi_periph)));
}
}
/*!
\brief enable SPI TI mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_ti_mode_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_TMOD;
}
/*!
\brief disable SPI TI mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_ti_mode_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_TMOD);
}
/*!
\brief enable SPI NSS pulse mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nssp_mode_enable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) |= (uint32_t)SPI_CTL1_NSSP;
}
/*!
\brief disable SPI NSS pulse mode
\param[in] spi_periph: SPIx(x=0,1,2)
\param[out] none
\retval none
*/
void spi_nssp_mode_disable(uint32_t spi_periph)
{
SPI_CTL1(spi_periph) &= (uint32_t)(~SPI_CTL1_NSSP);
}
/*!
\brief enable quad wire SPI
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QMOD;
}
/*!
\brief disable quad wire SPI
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_disable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QMOD);
}
/*!
\brief enable quad wire SPI write
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_write_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_QRD);
}
/*!
\brief enable quad wire SPI read
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_read_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_QRD;
}
/*!
\brief enable SPI_IO2 and SPI_IO3 pin output
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_io23_output_enable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) |= (uint32_t)SPI_QCTL_IO23_DRV;
}
/*!
\brief disable SPI_IO2 and SPI_IO3 pin output
\param[in] spi_periph: SPIx(only x=0)
\param[out] none
\retval none
*/
void qspi_io23_output_disable(uint32_t spi_periph)
{
SPI_QCTL(spi_periph) &= (uint32_t)(~SPI_QCTL_IO23_DRV);
}

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,841 @@
/*!
\file gd32f30x_usart.c
\brief USART driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.1, firmware for GD32F30x
*/
#include "gd32f30x_usart.h"
/*!
\brief reset USART/UART
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_deinit(uint32_t usart_periph)
{
switch(usart_periph){
case USART0:
rcu_periph_reset_enable(RCU_USART0RST);
rcu_periph_reset_disable(RCU_USART0RST);
break;
case USART1:
rcu_periph_reset_enable(RCU_USART1RST);
rcu_periph_reset_disable(RCU_USART1RST);
break;
case USART2:
rcu_periph_reset_enable(RCU_USART2RST);
rcu_periph_reset_disable(RCU_USART2RST);
break;
case UART3:
rcu_periph_reset_enable(RCU_UART3RST);
rcu_periph_reset_disable(RCU_UART3RST);
break;
case UART4:
rcu_periph_reset_enable(RCU_UART4RST);
rcu_periph_reset_disable(RCU_UART4RST);
break;
default:
break;
}
}
/*!
\brief configure USART baud rate value
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] baudval: baud rate value
\param[out] none
\retval none
*/
void usart_baudrate_set(uint32_t usart_periph, uint32_t baudval)
{
uint32_t uclk=0U, intdiv=0U, fradiv=0U, udiv=0U;
switch(usart_periph){
/* get clock frequency */
case USART0:
uclk=rcu_clock_freq_get(CK_APB2);
break;
case USART1:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case USART2:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART3:
uclk=rcu_clock_freq_get(CK_APB1);
break;
case UART4:
uclk=rcu_clock_freq_get(CK_APB1);
break;
default:
break;
}
/* oversampling by 16, configure the value of USART_BAUD */
udiv = (uclk+baudval/2U)/baudval;
intdiv = udiv & 0xfff0U;
fradiv = udiv & 0xfU;
USART_BAUD(usart_periph) |= ((USART_BAUD_FRADIV | USART_BAUD_INTDIV) & (intdiv | fradiv));
}
/*!
\brief configure USART parity
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] paritycfg: configure USART parity
\arg USART_PM_NONE: no parity
\arg USART_PM_ODD: odd parity
\arg USART_PM_EVEN: even parity
\param[out] none
\retval none
*/
void usart_parity_config(uint32_t usart_periph, uint32_t paritycfg)
{
/* clear USART_CTL0 PM,PCEN bits */
USART_CTL0(usart_periph) &= ~(USART_CTL0_PM | USART_CTL0_PCEN);
/* configure USART parity mode */
USART_CTL0(usart_periph) |= paritycfg ;
}
/*!
\brief configure USART word length
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] wlen: USART word length configure
\arg USART_WL_8BIT: 8 bits
\arg USART_WL_9BIT: 9 bits
\param[out] none
\retval none
*/
void usart_word_length_set(uint32_t usart_periph, uint32_t wlen)
{
/* clear USART_CTL0 WL bit */
USART_CTL0(usart_periph) &= ~USART_CTL0_WL;
/* configure USART word length */
USART_CTL0(usart_periph) |= wlen;
}
/*!
\brief configure USART stop bit length
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] stblen: USART stop bit configure
\arg USART_STB_1BIT: 1 bit
\arg USART_STB_0_5BIT: 0.5 bit, not available for UARTx(x=3,4)
\arg USART_STB_2BIT: 2 bits
\arg USART_STB_1_5BIT: 1.5 bits, not available for UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_stop_bit_set(uint32_t usart_periph, uint32_t stblen)
{
/* clear USART_CTL1 STB bits */
USART_CTL1(usart_periph) &= ~USART_CTL1_STB;
/* configure USART stop bits */
USART_CTL1(usart_periph) |= stblen;
}
/*!
\brief enable USART
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_enable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) |= USART_CTL0_UEN;
}
/*!
\brief disable USART
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_disable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) &= ~(USART_CTL0_UEN);
}
/*!
\brief configure USART transmitter
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] txconfig: enable or disable USART transmitter
\arg USART_TRANSMIT_ENABLE: enable USART transmission
\arg USART_TRANSMIT_DISABLE: enable USART transmission
\param[out] none
\retval none
*/
void usart_transmit_config(uint32_t usart_periph, uint32_t txconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL0(usart_periph);
ctl &= ~USART_CTL0_TEN;
ctl |= txconfig;
/* configure transfer mode */
USART_CTL0(usart_periph) = ctl;
}
/*!
\brief configure USART receiver
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] rxconfig: enable or disable USART receiver
\arg USART_RECEIVE_ENABLE: enable USART reception
\arg USART_RECEIVE_DISABLE: disable USART reception
\param[out] none
\retval none
*/
void usart_receive_config(uint32_t usart_periph, uint32_t rxconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL0(usart_periph);
ctl &= ~USART_CTL0_REN;
ctl |= rxconfig;
/* configure transfer mode */
USART_CTL0(usart_periph) = ctl;
}
/*!
\brief data is transmitted/received with the LSB/MSB first
\param[in] usart_periph: USARTx(x=0,1,2)
\param[in] msbf: LSB/MSB
\arg USART_MSBF_LSB: LSB first
\arg USART_MSBF_MSB: MSB first
\param[out] none
\retval none
*/
void usart_data_first_config(uint32_t usart_periph, uint32_t msbf)
{
USART_CTL3(usart_periph) &= ~(USART_CTL3_MSBF);
USART_CTL3(usart_periph) |= msbf;
}
/*!
\brief configure USART inversion
\param[in] usart_periph: USARTx(x=0,1,2)
\param[in] invertpara: refer to enum USART_INVERT_CONFIG
\arg USART_DINV_ENABLE: data bit level inversion
\arg USART_DINV_DISABLE: data bit level not inversion
\arg USART_TXPIN_ENABLE: TX pin level inversion
\arg USART_TXPIN_DISABLE: TX pin level not inversion
\arg USART_RXPIN_ENABLE: RX pin level inversion
\arg USART_RXPIN_DISABLE: RX pin level not inversion
\param[out] none
\retval none
*/
void usart_invert_config(uint32_t usart_periph, usart_invert_enum invertpara)
{
/* inverted or not the specified siginal */
switch(invertpara){
case USART_DINV_ENABLE:
USART_CTL3(usart_periph) |= USART_CTL3_DINV;
break;
case USART_TXPIN_ENABLE:
USART_CTL3(usart_periph) |= USART_CTL3_TINV;
break;
case USART_RXPIN_ENABLE:
USART_CTL3(usart_periph) |= USART_CTL3_RINV;
break;
case USART_DINV_DISABLE:
USART_CTL3(usart_periph) &= ~(USART_CTL3_DINV);
break;
case USART_TXPIN_DISABLE:
USART_CTL3(usart_periph) &= ~(USART_CTL3_TINV);
break;
case USART_RXPIN_DISABLE:
USART_CTL3(usart_periph) &= ~(USART_CTL3_RINV);
break;
default:
break;
}
}
/*!
\brief enable receiver timeout of USART
\param[in] usart_periph: USARTx(x=0,1,2)
\param[out] none
\retval none
*/
void usart_receiver_timeout_enable(uint32_t usart_periph)
{
USART_CTL3(usart_periph) |= USART_CTL3_RTEN;
}
/*!
\brief disable receiver timeout of USART
\param[in] usart_periph: USARTx(x=0,1,2)
\param[out] none
\retval none
*/
void usart_receiver_timeout_disable(uint32_t usart_periph)
{
USART_CTL3(usart_periph) &= ~(USART_CTL3_RTEN);
}
/*!
\brief set the receiver timeout threshold of USART
\param[in] usart_periph: USARTx(x=0,1,2)
\param[in] rtimeout: 0-0xFFFFFF
\param[out] none
\retval none
*/
void usart_receiver_timeout_threshold_config(uint32_t usart_periph, uint32_t rtimeout)
{
USART_RT(usart_periph) &= ~(USART_RT_RT);
USART_RT(usart_periph) |= rtimeout;
}
/*!
\brief USART transmit data function
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] data: data of transmission
\param[out] none
\retval none
*/
void usart_data_transmit(uint32_t usart_periph, uint32_t data)
{
USART_DATA(usart_periph) = ((uint16_t)USART_DATA_DATA & data);
}
/*!
\brief USART receive data function
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval data of received
*/
uint16_t usart_data_receive(uint32_t usart_periph)
{
return (uint16_t)(GET_BITS(USART_DATA(usart_periph), 0U, 8U));
}
/*!
\brief configure the address of the USART in wake up by address match mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] addr: address of USART/UART
\param[out] none
\retval none
*/
void usart_address_config(uint32_t usart_periph, uint8_t addr)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_ADDR);
USART_CTL1(usart_periph) |= (USART_CTL1_ADDR & addr);
}
/*!
\brief receiver in mute mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_mute_mode_enable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) |= USART_CTL0_RWU;
}
/*!
\brief receiver in active mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_mute_mode_disable(uint32_t usart_periph)
{
USART_CTL0(usart_periph) &= ~(USART_CTL0_RWU);
}
/*!
\brief configure wakeup method in mute mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] wmethod: two methods be used to enter or exit the mute mode
\arg USART_WM_IDLE: idle line
\arg USART_WM_ADDR: address mask
\param[out] none
\retval none
*/
void usart_mute_mode_wakeup_config(uint32_t usart_periph, uint32_t wmethod)
{
USART_CTL0(usart_periph) &= ~(USART_CTL0_WM);
USART_CTL0(usart_periph) |= wmethod;
}
/*!
\brief enable LIN mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_lin_mode_enable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) |= USART_CTL1_LMEN;
}
/*!
\brief disable LIN mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_lin_mode_disable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_LMEN);
}
/*!
\brief configure lin break frame length
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] lblen: lin break frame length
\arg USART_LBLEN_10B: 10 bits
\arg USART_LBLEN_11B: 11 bits
\param[out] none
\retval none
*/
void usart_lin_break_dection_length_config(uint32_t usart_periph, uint32_t lblen)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_LBLEN);
USART_CTL1(usart_periph) |= (USART_CTL1_LBLEN & lblen);
}
/*!
\brief send break frame
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_send_break(uint32_t usart_periph)
{
USART_CTL0(usart_periph) |= USART_CTL0_SBKCMD;
}
/*!
\brief enable half duplex mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_halfduplex_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_HDEN;
}
/*!
\brief disable half duplex mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_halfduplex_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_HDEN);
}
/*!
\brief enable CK pin in synchronous mode
\param[in] usart_periph: USARTx(x=0,1,2)
\param[out] none
\retval none
*/
void usart_synchronous_clock_enable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) |= USART_CTL1_CKEN;
}
/*!
\brief disable CK pin in synchronous mode
\param[in] usart_periph: USARTx(x=0,1,2)
\param[out] none
\retval none
*/
void usart_synchronous_clock_disable(uint32_t usart_periph)
{
USART_CTL1(usart_periph) &= ~(USART_CTL1_CKEN);
}
/*!
\brief configure USART synchronous mode parameters
\param[in] usart_periph: USARTx(x=0,1,2)
\param[in] clen: CK length
\arg USART_CLEN_NONE: there are 7 CK pulses for an 8 bit frame and 8 CK pulses for a 9 bit frame
\arg USART_CLEN_EN: there are 8 CK pulses for an 8 bit frame and 9 CK pulses for a 9 bit frame
\param[in] cph: clock phase
\arg USART_CPH_1CK: first clock transition is the first data capture edge
\arg USART_CPH_2CK: second clock transition is the first data capture edge
\param[in] cpl: clock polarity
\arg USART_CPL_LOW: steady low value on CK pin
\arg USART_CPL_HIGH: steady high value on CK pin
\param[out] none
\retval none
*/
void usart_synchronous_clock_config(uint32_t usart_periph, uint32_t clen, uint32_t cph, uint32_t cpl)
{
uint32_t ctl = 0U;
/* read USART_CTL1 register */
ctl = USART_CTL1(usart_periph);
/* set CK length, CK phase, CK polarity */
ctl |= (USART_CTL1_CLEN & clen) | (USART_CTL1_CPH & cph) | (USART_CTL1_CPL & cpl);
USART_CTL1(usart_periph) |= ctl;
}
/*!
\brief configure guard time value in smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2)
\param[in] guat: guard time value
\param[out] none
\retval none
*/
void usart_guard_time_config(uint32_t usart_periph,uint32_t guat)
{
USART_GP(usart_periph) &= ~(USART_GP_GUAT);
USART_GP(usart_periph) |= (USART_GP_GUAT & ((guat)<<8));
}
/*!
\brief enable smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2)
\param[out] none
\retval none
*/
void usart_smartcard_mode_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_SCEN;
}
/*!
\brief disable smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2)
\param[out] none
\retval none
*/
void usart_smartcard_mode_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_SCEN);
}
/*!
\brief enable NACK in smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2)
\param[out] none
\retval none
*/
void usart_smartcard_mode_nack_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_NKEN;
}
/*!
\brief disable NACK in smartcard mode
\param[in] usart_periph: USARTx(x=0,1,2)
\param[out] none
\retval none
*/
void usart_smartcard_mode_nack_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_NKEN);
}
/*!
\brief configure smartcard auto-retry number
\param[in] usart_periph: USARTx(x=0,1,2)
\param[in] scrtnum: smartcard auto-retry number
\param[out] none
\retval none
*/
void usart_smartcard_autoretry_config(uint32_t usart_periph, uint32_t scrtnum)
{
USART_CTL3(usart_periph) &= ~(USART_CTL3_SCRTNUM);
USART_CTL3(usart_periph) |= (USART_CTL3_SCRTNUM & ((scrtnum)<<1));
}
/*!
\brief configure block length in Smartcard T=1 reception
\param[in] usart_periph: USARTx(x=0,1,2)
\param[in] bl: block length
\param[out] none
\retval none
*/
void usart_block_length_config(uint32_t usart_periph, uint32_t bl)
{
USART_RT(usart_periph) &= ~(USART_RT_BL);
USART_RT(usart_periph) |= (USART_RT_BL & ((bl)<<24));
}
/*!
\brief enable IrDA mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_irda_mode_enable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) |= USART_CTL2_IREN;
}
/*!
\brief disable IrDA mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[out] none
\retval none
*/
void usart_irda_mode_disable(uint32_t usart_periph)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_IREN);
}
/*!
\brief configure the peripheral clock prescaler in USART IrDA low-power mode
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] psc: 0x00-0xFF
\param[out] none
\retval none
*/
void usart_prescaler_config(uint32_t usart_periph, uint8_t psc)
{
USART_GP(usart_periph) &= ~(USART_GP_PSC);
USART_GP(usart_periph) |= psc;
}
/*!
\brief configure IrDA low-power
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] irlp: IrDA low-power or normal
\arg USART_IRLP_LOW: low-power
\arg USART_IRLP_NORMAL: normal
\param[out] none
\retval none
*/
void usart_irda_lowpower_config(uint32_t usart_periph, uint32_t irlp)
{
USART_CTL2(usart_periph) &= ~(USART_CTL2_IRLP);
USART_CTL2(usart_periph) |= (USART_CTL2_IRLP & irlp);
}
/*!
\brief configure hardware flow control RTS
\param[in] usart_periph: USARTx(x=0,1,2)
\param[in] hardwareflow: enable or disable RTS
\arg USART_RTS_ENABLE: enable RTS
\arg USART_RTS_DISABLE: disable RTS
\param[out] none
\retval none
*/
void usart_hardware_flow_rts_config(uint32_t usart_periph, uint32_t rtsconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_RTSEN;
ctl |= rtsconfig;
/* configure RTS */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief configure hardware flow control CTS
\param[in] usart_periph: USARTx(x=0,1,2)
\param[in] hardwareflow: enable or disable CTS
\arg USART_CTS_ENABLE: enable CTS
\arg USART_CTS_DISABLE: disable CTS
\param[out] none
\retval none
*/
void usart_hardware_flow_cts_config(uint32_t usart_periph, uint32_t ctsconfig)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_CTSEN;
ctl |= ctsconfig;
/* configure CTS */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief configure USART DMA reception
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3)
\param[in] dmacmd: enable or disable DMA for reception
\arg USART_DENR_ENABLE: DMA enable for reception
\arg USART_DENR_DISABLE: DMA disable for reception
\param[out] none
\retval none
*/
void usart_dma_receive_config(uint32_t usart_periph, uint32_t dmacmd)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_DENR;
ctl |= dmacmd;
/* configure DMA reception */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief configure USART DMA transmission
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3)
\param[in] dmacmd: enable or disable DMA for transmission
\arg USART_DENT_ENABLE: DMA enable for transmission
\arg USART_DENT_DISABLE: DMA disable for transmission
\param[out] none
\retval none
*/
void usart_dma_transmit_config(uint32_t usart_periph, uint32_t dmacmd)
{
uint32_t ctl = 0U;
ctl = USART_CTL2(usart_periph);
ctl &= ~USART_CTL2_DENT;
ctl |= dmacmd;
/* configure DMA transmission */
USART_CTL2(usart_periph) = ctl;
}
/*!
\brief get flag in STAT0/STAT1 register
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] flag: USART flags, refer to usart_flag_enum
only one among these parameters can be selected
\arg USART_FLAG_CTS: CTS change flag
\arg USART_FLAG_LBD: LIN break detected flag
\arg USART_FLAG_TBE: transmit data buffer empty
\arg USART_FLAG_TC: transmission complete
\arg USART_FLAG_RBNE: read data buffer not empty
\arg USART_FLAG_IDLE: IDLE frame detected flag
\arg USART_FLAG_ORERR: overrun error
\arg USART_FLAG_NERR: noise error flag
\arg USART_FLAG_FERR: frame error flag
\arg USART_FLAG_PERR: parity error flag
\arg USART_FLAG_BSY: busy flag
\arg USART_FLAG_EB: end of block flag
\arg USART_FLAG_RT: receiver timeout flag
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus usart_flag_get(uint32_t usart_periph, usart_flag_enum flag)
{
if(RESET != (USART_REG_VAL(usart_periph, flag) & BIT(USART_BIT_POS(flag)))){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear flag in STAT0/STAT1 register
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] flag: USART flags, refer to usart_flag_enum
only one among these parameters can be selected
\arg USART_FLAG_CTS: CTS change flag
\arg USART_FLAG_LBD: LIN break detected flag
\arg USART_FLAG_TC: transmission complete
\arg USART_FLAG_RBNE: read data buffer not empty
\arg USART_FLAG_EB: end of block flag
\arg USART_FLAG_RT: receiver timeout flag
\param[out] none
\retval none
*/
void usart_flag_clear(uint32_t usart_periph, usart_flag_enum flag)
{
USART_REG_VAL(usart_periph, flag) &= ~BIT(USART_BIT_POS(flag));
}
/*!
\brief enable USART interrupt
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] int_flag
only one among these parameters can be selected
\arg USART_INT_PERR: parity error interrupt
\arg USART_INT_TBE: transmitter buffer empty interrupt
\arg USART_INT_TC: transmission complete interrupt
\arg USART_INT_RBNE: read data buffer not empty interrupt and overrun error interrupt
\arg USART_INT_IDLE: IDLE line detected interrupt
\arg USART_INT_LBD: LIN break detected interrupt
\arg USART_INT_ERR: error interrupt
\arg USART_INT_CTS: CTS interrupt
\arg USART_INT_RT: interrupt enable bit of receive timeout event
\arg USART_INT_EB: interrupt enable bit of end of block event
\param[out] none
\retval none
*/
void usart_interrupt_enable(uint32_t usart_periph, uint32_t int_flag)
{
USART_REG_VAL(usart_periph, int_flag) |= BIT(USART_BIT_POS(int_flag));
}
/*!
\brief disable USART interrupt
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] int_flag
only one among these parameters can be selected
\arg USART_INT_PERR: parity error interrupt
\arg USART_INT_TBE: transmitter buffer empty interrupt
\arg USART_INT_TC: transmission complete interrupt
\arg USART_INT_RBNE: read data buffer not empty interrupt and overrun error interrupt
\arg USART_INT_IDLE: IDLE line detected interrupt
\arg USART_INT_LBD: LIN break detected interrupt
\arg USART_INT_ERR: error interrupt
\arg USART_INT_CTS: CTS interrupt
\arg USART_INT_RT: interrupt enable bit of receive timeout event
\arg USART_INT_EB: interrupt enable bit of end of block event
\param[out] none
\retval none
*/
void usart_interrupt_disable(uint32_t usart_periph, uint32_t int_flag)
{
USART_REG_VAL(usart_periph, int_flag) &= ~BIT(USART_BIT_POS(int_flag));
}
/*!
\brief get USART interrupt and flag status
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] int_flag
\arg USART_INT_FLAG_PERR: parity error interrupt and flag
\arg USART_INT_FLAG_TBE: transmitter buffer empty interrupt and flag
\arg USART_INT_FLAG_TC: transmission complete interrupt and flag
\arg USART_INT_FLAG_RBNE: read data buffer not empty interrupt and flag
\arg USART_INT_FLAG_RBNE_ORERR: read data buffer not empty interrupt and overrun error flag
\arg USART_INT_FLAG_IDLE: IDLE line detected interrupt and flag
\arg USART_INT_FLAG_LBD: LIN break detected interrupt and flag
\arg USART_INT_FLAG_CTS: CTS interrupt and flag
\arg USART_INT_FLAG_ERR_ORERR: error interrupt and overrun error
\arg USART_INT_FLAG_ERR_NERR: error interrupt and noise error flag
\arg USART_INT_FLAG_ERR_FERR: error interrupt and frame error flag
\arg USART_INT_FLAG_EB: interrupt enable bit of end of block event and flag
\arg USART_INT_FLAG_RT: interrupt enable bit of receive timeout event and flag
\param[out] none
\retval FlagStatus
*/
FlagStatus usart_interrupt_flag_get(uint32_t usart_periph, uint32_t int_flag)
{
uint32_t intenable = 0U, flagstatus = 0U;
/* get the interrupt enable bit status */
intenable = (USART_REG_VAL(usart_periph, int_flag) & BIT(USART_BIT_POS(int_flag)));
/* get the corresponding flag bit status */
flagstatus = (USART_REG_VAL2(usart_periph, int_flag) & BIT(USART_BIT_POS2(int_flag)));
if(flagstatus && intenable){
return SET;
}else{
return RESET;
}
}
/*!
\brief clear USART interrupt flag in STAT0/STAT1 register
\param[in] usart_periph: USARTx(x=0,1,2)/UARTx(x=3,4)
\param[in] flag: USART interrupt flag
\arg USART_INT_FLAG_CTS: CTS change flag
\arg USART_INT_FLAG_LBD: LIN break detected flag
\arg USART_INT_FLAG_TC: transmission complete
\arg USART_INT_FLAG_RBNE: read data buffer not empty
\arg USART_INT_FLAG_EB: end of block flag
\arg USART_INT_FLAG_RT: receiver timeout flag
\param[out] none
\retval none
*/
void usart_interrupt_flag_clear(uint32_t usart_periph, uint32_t flag)
{
USART_REG_VAL2(usart_periph, flag) &= ~BIT(USART_BIT_POS2(flag));
}

View File

@ -0,0 +1,122 @@
/*!
\file gd32f30x_wwdgt.c
\brief WWDGT driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "gd32f30x_wwdgt.h"
/* write value to WWDGT_CTL_CNT bit field */
#define CTL_CNT(regval) (BITS(0,6) & ((uint32_t)(regval) << 0))
/* write value to WWDGT_CFG_WIN bit field */
#define CFG_WIN(regval) (BITS(0,6) & ((uint32_t)(regval) << 0))
/*!
\brief reset the window watchdog timer configuration
\param[in] none
\param[out] none
\retval none
*/
void wwdgt_deinit(void)
{
rcu_periph_reset_enable(RCU_WWDGTRST);
rcu_periph_reset_disable(RCU_WWDGTRST);
}
/*!
\brief configure the window watchdog timer counter value
\param[in] counter_value: 0x00 - 0x7F
\param[out] none
\retval none
*/
void wwdgt_counter_update(uint16_t counter_value)
{
uint32_t reg = 0U;
reg = (WWDGT_CTL & (~WWDGT_CTL_CNT));
reg |= CTL_CNT(counter_value);
WWDGT_CTL = reg;
}
/*!
\brief start the window watchdog timer counter
\param[in] none
\param[out] none
\retval none
*/
void wwdgt_enable(void)
{
WWDGT_CTL |= WWDGT_CTL_WDGTEN;
}
/*!
\brief configure counter value, window value, and prescaler divider value
\param[in] counter: 0x00 - 0x7F
\param[in] window: 0x00 - 0x7F
\param[in] prescaler: wwdgt prescaler value
\arg WWDGT_CFG_PSC_DIV1: the time base of window watchdog counter = (PCLK1/4096)/1
\arg WWDGT_CFG_PSC_DIV2: the time base of window watchdog counter = (PCLK1/4096)/2
\arg WWDGT_CFG_PSC_DIV4: the time base of window watchdog counter = (PCLK1/4096)/4
\arg WWDGT_CFG_PSC_DIV8: the time base of window watchdog counter = (PCLK1/4096)/8
\param[out] none
\retval none
*/
void wwdgt_config(uint16_t counter, uint16_t window, uint32_t prescaler)
{
uint32_t reg_cfg = 0U, reg_ctl = 0U;
/* clear WIN and PSC bits, clear CNT bit */
reg_cfg = (WWDGT_CFG &(~(WWDGT_CFG_WIN|WWDGT_CFG_PSC)));
reg_ctl = (WWDGT_CTL &(~WWDGT_CTL_CNT));
/* configure WIN and PSC bits, configure CNT bit */
reg_cfg |= CFG_WIN(window);
reg_cfg |= prescaler;
reg_ctl |= CTL_CNT(counter);
WWDGT_CTL = reg_ctl;
WWDGT_CFG = reg_cfg;
}
/*!
\brief enable early wakeup interrupt of WWDGT
\param[in] none
\param[out] none
\retval none
*/
void wwdgt_interrupt_enable(void)
{
WWDGT_CFG |= WWDGT_CFG_EWIE;
}
/*!
\brief check early wakeup interrupt state of WWDGT
\param[in] none
\param[out] none
\retval FlagStatus: SET or RESET
*/
FlagStatus wwdgt_flag_get(void)
{
if(WWDGT_STAT & WWDGT_STAT_EWIF){
return SET;
}
return RESET;
}
/*!
\brief clear early wakeup interrupt state of WWDGT
\param[in] none
\param[out] none
\retval none
*/
void wwdgt_flag_clear(void)
{
WWDGT_STAT &= (~WWDGT_STAT_EWIF);
}

View File

@ -0,0 +1,191 @@
/*!
\file usbd_core.h
\brief USB device driver core
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBD_CORE_H
#define USBD_CORE_H
#include "usbd_conf.h"
#include "usbd_regs.h"
/* interrupt flag mask which decide what event should be handled by application */
#define IER_MASK (CTL_STIE | CTL_WKUPIE | CTL_SPSIE \
| CTL_SOFIE | CTL_ESOFIE | CTL_RSTIE)
#ifdef LPM_ENABLED
#undef IER_MASK
#define IER_MASK (CTL_STIE | CTL_WKUPIE | CTL_SPSIE \
| CTL_SOFIE | CTL_ESOFIE | CTL_RSTIE | CTL_L1REQIE)
#endif /* LPM_ENABLED */
/* USB device endpoint0 max packet size */
#define USBD_EP0_MAX_SIZE 64U
#define USBD_CONTRL_STATUS_TX() do \
{ \
pbuf_reg->tx_count = 0U; \
USBD_ENDP_TX_STATUS_SET(EP0, EPTX_VALID); \
} while(0)
#define USBD_CONTRL_STATUS_RX() do \
{ \
USBD_STATUS_OUT_SET(EP0); \
USBD_ENDP_RX_STATUS_SET(EP0, EPRX_VALID); \
} while(0)
#define ENDP_BUF_ADDR (sizeof(usbd_ep_buf_struct) * EP_COUNT)
/* USB device endpoint type */
typedef enum
{
ENDP_CONTROL = 0, /*!< control endpoint type value */
ENDP_ISOC, /*!< isochronous endpoint type value */
ENDP_BULK, /*!< bulk endpoint type value */
ENDP_INT /*!< interupt endpoint type value */
}usbd_eptype_enum;
/* USB device endpoint kind */
typedef enum
{
ENDP_SNG_BUF = 0, /*!< single buffer endpoint type value */
ENDP_DBL_BUF /*!< double buffer endpoint type value */
}usbd_epkind_enum;
/* transfer direction */
typedef enum
{
USBD_RX = 0, /*!< receive direction type value */
USBD_TX /*!< transmit direction type value */
}usbd_dir_enum;
/* USB device status */
typedef enum
{
USBD_UNCONNECTED = 0, /*!< USB device unconnected status */
USBD_DEFAULT, /*!< USB device default status */
USBD_ADDRESSED, /*!< USB device addressed status */
USBD_CONFIGURED, /*!< USB device configured status */
USBD_SUSPENDED, /*!< USB device suspended status */
USBD_CONNECTED /*!< USB device connected status */
}usbd_run_status_enum;
/* USB device operation state */
typedef enum
{
USBD_OK = 0, /*!< USB device ok */
USBD_BUSY, /*!< USB device busy */
USBD_FAIL /*!< USB device fail */
}usbd_status_enum;
typedef struct
{
uint16_t tx_addr; /*!< transmission address */
uint16_t reserved0;
uint16_t tx_count; /*!< transmission count */
uint16_t reserved1;
uint16_t rx_addr; /*!< reception address */
uint16_t reserved2;
uint16_t rx_count; /*!< reception count */
uint16_t reserved3;
}usbd_ep_buf_struct;
/* USB endpoint structure */
typedef struct
{
/* basic parameters */
uint8_t stall; /*!< endpoint stall status */
uint32_t maxpacket; /*!< the maxpacket of the endpoint */
/* transaction level parameters */
uint8_t *trs_buf; /*!< transaction buffer address */
uint32_t trs_len; /*!< transaction buffer length */
uint32_t trs_count; /*!< transaction data counts */
}usb_ep_struct;
/* USB standard device request structure */
typedef struct
{
uint8_t bmRequestType; /*!< the property of the request */
uint8_t bRequest; /*!< the code of the request */
uint16_t wValue; /*!< the value of the request which used to choose the different request in the same code request */
uint16_t wIndex; /*!< USB standard device request index */
uint16_t wLength; /*!< the return datas length that the host wants to get */
}usb_device_req_struct;
/* USB core driver struct */
typedef struct
{
/* basic parameters */
uint8_t config_num; /*!< the number of the USB device configuration */
uint8_t status; /*!< USB device status */
uint8_t prev_status; /*!< the previous USB device status */
uint8_t remote_wakeup; /*!< the flag that point out the device whether support the
remte wakeup function */
/* the parameters which needs in control transfer */
uint8_t setup_packet[8]; /*!< the buffer used to store the setup packet */
uint32_t ctl_count; /*!< the datas length of control transfer request */
/* device endpoints */
usb_ep_struct in_ep[EP_COUNT]; /*!< the IN direction endpoints */
usb_ep_struct out_ep[EP_COUNT]; /*!< the OUT direction endpoints */
#ifdef LPM_ENABLED
uint8_t *bos_desc; /*!< BOS descriptor */
#endif /* LPM_ENABLED */
uint8_t *dev_desc; /*!< device descriptor */
uint8_t *config_desc; /*!< configuration descriptor */
void* const *strings; /*!< configuration strings */
/* device class handler */
usbd_status_enum (*class_init) (void *pudev, uint8_t config_index);
usbd_status_enum (*class_deinit) (void *pudev, uint8_t config_index);
usbd_status_enum (*class_req_handler) (void *pudev, usb_device_req_struct *req);
usbd_status_enum (*class_data_handler) (void *pudev, usbd_dir_enum rx_tx, uint8_t ep_num);
}usbd_core_handle_struct;
extern uint32_t g_free_buf_addr;
extern usbd_ep_buf_struct *pbuf_reg;
/* function declarations */
/* device core register initialization */
void usbd_core_init (usbd_core_handle_struct *pudev);
/* device core register configure when stop device */
void usbd_core_deinit (void);
/* free buffer used from application by toggling the SW_BUF byte */
void user_buffer_free (uint8_t ep_num, uint8_t dir);
/* endpoint initialization */
void usbd_ep_init (usbd_core_handle_struct *pudev, void *pep_desc);
/* configure the endpoint when it is disabled */
void usbd_ep_deinit (usbd_core_handle_struct *pudev, uint8_t ep_addr);
/* endpoint prepare to transmit data */
void usbd_ep_tx (usbd_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint16_t buf_len);
/* endpoint prepare to receive data */
void usbd_ep_rx (usbd_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint16_t buf_len);
/* set an endpoint to STALL status */
void usbd_ep_stall (usbd_core_handle_struct *pudev, uint8_t ep_addr);
/* clear endpoint stalled status */
void usbd_ep_clear_stall (usbd_core_handle_struct *pudev, uint8_t ep_addr);
/* write datas from user fifo to USBRAM */
void usbd_ep_data_write (uint8_t *user_fifo, uint16_t usbram_addr, uint16_t bytes);
/* read datas from USBRAM to user fifo */
void usbd_ep_data_read (uint8_t *user_fifo, uint16_t usbram_addr, uint16_t bytes);
/* get the endpoint status */
uint8_t usbd_ep_status_get (usbd_core_handle_struct *pudev, uint8_t ep_addr);
/* get the received data length */
uint16_t usbd_rx_count_get (usbd_core_handle_struct *pudev, uint8_t ep_num);
#endif /* USBD_CORE_H */

View File

@ -0,0 +1,32 @@
/*!
\file usbd_int.h
\brief USB device interrupt handler header file
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBD_INT_H
#define USBD_INT_H
#include "usbd_core.h"
#include "usbd_std.h"
#include "usbd_pwr.h"
extern usbd_core_handle_struct usb_device_dev;
typedef struct
{
uint8_t (*SOF) (usbd_core_handle_struct *pudev); /*!< SOF ISR callback */
}usbd_int_cb_struct;
extern usbd_int_cb_struct *usbd_int_fops;
/* function declarations */
/* USB device interrupt service routine */
void usbd_isr (void);
#endif /* USBD_INT_H */

View File

@ -0,0 +1,25 @@
/*!
\file usbd_pwr.h
\brief USB device power management functions prototype
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBD_PWR_H
#define USBD_PWR_H
#include "usbd_core.h"
/* function declarations */
/* USB wakeup first operation is to wakeup mcu */
void resume_mcu (void);
/* set USB device to suspend mode */
void usbd_suspend (void);
/* start to remote wakeup */
void usbd_remote_wakeup_active (void);
#endif /* USBD_PWR_H */

View File

@ -0,0 +1,270 @@
/*!
\file usbd_regs.h
\brief USB device registers
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBD_REGS_H
#define USBD_REGS_H
#include "usbd_conf.h"
/* USB device registers base address */
#define USBD USBD_BASE
#define USBD_RAM (APB1_BUS_BASE + 0x00006000U)
/* registers definitions */
/* common registers */
#define USBD_CTL (REG32(USBD + 0x40U)) /*!< control register */
#define USBD_INTF (REG32(USBD + 0x44U)) /*!< interrupt flag register */
#define USBD_STAT (REG32(USBD + 0x48U)) /*!< status register */
#define USBD_DADDR (REG32(USBD + 0x4CU)) /*!< device address register */
#define USBD_BADDR (REG32(USBD + 0x50U)) /*!< buffer address register */
/* endpoint control and status register */
#define USBD_EPxCS(ep_id) (REG32(USBD + (ep_id) * 4U)) /*!< endpoint x control and status register address */
/* LPM Registers */
#define USBD_LPMCS (REG32(USBD + 0x54U)) /*!< USBD LPM control and status register */
/* bits definitions */
/* USBD_CTL */
#define CTL_STIE BIT(15) /*!< successful transfer interrupt enable mask */
#define CTL_PMOUIE BIT(14) /*!< packet memory overrun/underrun interrupt enable mask */
#define CTL_ERRIE BIT(13) /*!< error interrupt enable mask */
#define CTL_WKUPIE BIT(12) /*!< wakeup interrupt enable mask */
#define CTL_SPSIE BIT(11) /*!< suspend state interrupt enable mask */
#define CTL_RSTIE BIT(10) /*!< reset interrupt enable mask */
#define CTL_SOFIE BIT(9) /*!< start of frame interrupt enable mask */
#define CTL_ESOFIE BIT(8) /*!< expected start of frame interrupt enable mask */
#define CTL_L1REQIE BIT(7) /*!< LPM L1 state request interrupt enable */
#define CTL_L1RSREQ BIT(5) /*!< LPM L1 resume request */
#define CTL_RSREQ BIT(4) /*!< resume request */
#define CTL_SETSPS BIT(3) /*!< set suspend state */
#define CTL_LOWM BIT(2) /*!< low-power mode at suspend state */
#define CTL_CLOSE BIT(1) /*!< goes to close state */
#define CTL_SETRST BIT(0) /*!< set USB reset */
/* USBD_INTF */
#define INTF_STIF BIT(15) /*!< successful transfer interrupt flag (read only bit) */
#define INTF_PMOUIF BIT(14) /*!< packet memory overrun/underrun interrupt flag (clear-only bit) */
#define INTF_ERRIF BIT(13) /*!< error interrupt flag (clear-only bit) */
#define INTF_WKUPIF BIT(12) /*!< wakeup interrupt flag (clear-only bit) */
#define INTF_SPSIF BIT(11) /*!< suspend state interrupt flag (clear-only bit) */
#define INTF_RSTIF BIT(10) /*!< reset interrupt flag (clear-only bit) */
#define INTF_SOFIF BIT(9) /*!< start of frame interrupt flag (clear-only bit) */
#define INTF_ESOFIF BIT(8) /*!< expected start of frame interrupt flag(clear-only bit) */
#define INTF_L1REQ BIT(7) /*!< LPM L1 transaction is successfully received and acknowledged */
#define INTF_DIR BIT(4) /*!< direction of transaction (read-only bit) */
#define INTF_EPNUM BITS(0, 3) /*!< endpoint number (read-only bit) */
/* USBD_STAT */
#define STAT_RXDP BIT(15) /*!< data plus line status */
#define STAT_RXDM BIT(14) /*!< data minus line status */
#define STAT_LOCK BIT(13) /*!< locked the USB */
#define STAT_SOFLN BITS(11, 12) /*!< SOF lost number */
#define STAT_FCNT BITS(0, 10) /*!< frame number count */
/* USBD_DADDR */
#define DADDR_USBEN BIT(7) /*!< USB module enable */
#define DADDR_USBDAR BITS(0, 6) /*!< USB device address */
/* USBD_EPxCS */
#define EPxCS_RX_ST BIT(15) /*!< endpoint reception successful transferred */
#define EPxCS_RX_DTG BIT(14) /*!< endpoint reception data PID toggle */
#define EPxCS_RX_STA BITS(12, 13) /*!< endpoint reception status bits */
#define EPxCS_SETUP BIT(11) /*!< endpoint setup transaction completed */
#define EPxCS_CTL BITS(9, 10) /*!< endpoint type control */
#define EPxCS_KCTL BIT(8) /*!< endpoint kind control */
#define EPxCS_TX_ST BIT(7) /*!< endpoint transmission successful transfer */
#define EPxCS_TX_DTG BIT(6) /*!< endpoint transmission data toggle */
#define EPxCS_TX_STA BITS(4, 5) /*!< endpoint transmission transfers status bits */
#define EPxCS_ADDR BITS(0, 3) /*!< endpoint address */
/* USBD_LPMCS */
#define LPMCS_BLSTAT BITS(4, 7) /*!< bLinkState value */
#define LPMCS_REMWK BIT(3) /*!< bRemoteWake value */
#define LPMCS_LPMACK BIT(1) /*!< LPM token acknowledge enable */
#define LPMCS_LPMEN BIT(0) /*!< LPM support enable */
/* constants definitions */
/* endpoint control and status register mask (no toggle fields) */
#define EPCS_MASK (EPxCS_RX_ST|EPxCS_SETUP|EPxCS_CTL|EPxCS_KCTL|EPxCS_TX_ST|EPxCS_ADDR)
/* EPxCS_CTL[1:0] endpoint type control */
#define ENDP_TYPE(regval) (EPxCS_CTL & ((regval) << 9U))
#define EP_BULK ENDP_TYPE(0U) /* bulk transfers */
#define EP_CONTROL ENDP_TYPE(1U) /* control transfers */
#define EP_ISO ENDP_TYPE(2U) /* isochronous transfers */
#define EP_INTERRUPT ENDP_TYPE(3U) /* interrupt transfers */
#define EP_CTL_MASK (~EPxCS_CTL & EPCS_MASK)
/* endpoint kind control mask */
#define EPKCTL_MASK (~EPxCS_KCTL & EPCS_MASK)
/* EPxCS_TX_STA[1:0] status for Tx transfer */
#define ENDP_TXSTAT(regval) (EPxCS_TX_STA & ((regval) << 4U))
#define EPTX_DISABLED ENDP_TXSTAT(0U) /* transmission state is disabled */
#define EPTX_STALL ENDP_TXSTAT(1U) /* transmission state is STALL */
#define EPTX_NAK ENDP_TXSTAT(2U) /* transmission state is NAK */
#define EPTX_VALID ENDP_TXSTAT(3U) /* transmission state is enabled */
#define EPTX_DTGMASK (EPxCS_TX_STA | EPCS_MASK)
/* EPxCS_RX_STA[1:0] status for Rx transfer */
#define ENDP_RXSTAT(regval) (EPxCS_RX_STA & ((regval) << 12U))
#define EPRX_DISABLED ENDP_RXSTAT(0U) /* reception state is disabled */
#define EPRX_STALL ENDP_RXSTAT(1U) /* reception state is STALL */
#define EPRX_NAK ENDP_RXSTAT(2U) /* reception state is NAK */
#define EPRX_VALID ENDP_RXSTAT(3U) /* reception state is enabled */
#define EPRX_DTGMASK (EPxCS_RX_STA | EPCS_MASK)
/* endpoint receive/transmission counter register bit definitions */
#define EPRCNT_BLKSIZ BIT(15) /* reception data block size */
#define EPRCNT_BLKNUM BITS(10, 14) /* reception data block number */
#define EPRCNT_CNT BITS(0, 9) /* reception data count */
#define EPTCNT_CNT BITS(0, 9) /* transmisson data count */
/* interrupt flag clear bits */
#define CLR_STIF (~INTF_STIF)
#define CLR_PMOUIF (~INTF_PMOUIF)
#define CLR_ERRIF (~INTF_ERRIF)
#define CLR_WKUPIF (~INTF_WKUPIF)
#define CLR_SPSIF (~INTF_SPSIF)
#define CLR_RSTIF (~INTF_RSTIF)
#define CLR_SOFIF (~INTF_SOFIF)
#define CLR_ESOFIF (~INTF_ESOFIF)
#define CLR_L1REQ (~INTF_L1REQ)
/* endpoint receive/transmission counter register bit offset */
#define BLKSIZE_OFFSET (0x01U)
#define BLKNUM_OFFSET (0x05U)
#define RXCNT_OFFSET (0x0AU)
#define TXCNT_OFFSET (0x0AU)
#define BLKSIZE32_MASK (0x1fU)
#define BLKSIZE2_MASK (0x01U)
#define BLKSIZE32_OFFSETMASK (0x05U)
#define BLKSIZE2_OFFSETMASK (0x01U)
/* double buffer endpoint direction */
typedef enum
{
DBUF_EP_IN, /* double buffer IN direction */
DBUF_EP_OUT, /* double buffer OUT direction */
DBUF_EP_ERR, /* double buffer errer direction */
}dbuf_ep_dir_enum;
/* endpoints address */
/* first bit is direction(0 for Rx and 1 for Tx) */
#define EP0_OUT ((uint8_t)0x00) /* OUT endpoint 0 address */
#define EP0_IN ((uint8_t)0x80) /* IN endpoint 0 address */
#define EP1_OUT ((uint8_t)0x01) /* OUT endpoint 1 address */
#define EP1_IN ((uint8_t)0x81) /* IN endpoint 1 address */
#define EP2_OUT ((uint8_t)0x02) /* OUT endpoint 2 address */
#define EP2_IN ((uint8_t)0x82) /* IN endpoint 2 address */
#define EP3_OUT ((uint8_t)0x03) /* OUT endpoint 3 address */
#define EP3_IN ((uint8_t)0x83) /* IN endpoint 3 address */
#define EP4_OUT ((uint8_t)0x04) /* OUT endpoint 4 address */
#define EP4_IN ((uint8_t)0x84) /* IN endpoint 4 address */
#define EP5_OUT ((uint8_t)0x05) /* OUT endpoint 5 address */
#define EP5_IN ((uint8_t)0x85) /* IN endpoint 5 address */
#define EP6_OUT ((uint8_t)0x06) /* OUT endpoint 6 address */
#define EP6_IN ((uint8_t)0x86) /* IN endpoint 6 address */
#define EP7_OUT ((uint8_t)0x07) /* OUT endpoint 7 address */
#define EP7_IN ((uint8_t)0x87) /* IN endpoint 7 address */
/* endpoints_Identifier */
#define EP0 ((uint8_t)0) /* endpoint 0 ID */
#define EP1 ((uint8_t)1) /* endpoint 1 ID */
#define EP2 ((uint8_t)2) /* endpoint 2 ID */
#define EP3 ((uint8_t)3) /* endpoint 3 ID */
#define EP4 ((uint8_t)4) /* endpoint 4 ID */
#define EP5 ((uint8_t)5) /* endpoint 5 ID */
#define EP6 ((uint8_t)6) /* endpoint 6 ID */
#define EP7 ((uint8_t)7) /* endpoint 7 ID */
/* USBD operation macros */
/* set register value */
#define USBD_REG_SET(reg, regvalue) ((reg) = (uint16_t)(regvalue))
/* get register value */
#define USBD_REG_GET(reg) ((uint16_t)(reg))
#define _EP_ADDR_SET(ep_num, addr) USBD_REG_SET(USBD_EPxCS(ep_num), (USBD_REG_GET(USBD_EPxCS(ep_num)) & EPCS_MASK) | addr)
/* Tx or Rx transfer status setting (bits EPTX_STA[1:0]) */
#define USBD_ENDP_TX_STATUS_SET(ep_num, state) do {\
register uint16_t _regval; \
_regval = USBD_REG_GET(USBD_EPxCS(ep_num)) & (uint16_t)EPTX_DTGMASK;\
USBD_REG_SET(USBD_EPxCS(ep_num), ((_regval) ^ (state))); \
} while(0)
#define USBD_ENDP_RX_STATUS_SET(ep_num, state) do {\
register uint16_t _regval; \
_regval = USBD_REG_GET(USBD_EPxCS(ep_num)) & (uint16_t)EPRX_DTGMASK;\
USBD_REG_SET(USBD_EPxCS(ep_num), ((_regval) ^ (state))); \
} while(0)
/* Tx or Rx transfer status getting (bits EPxCS_RX_STA[1:0]) */
#define USBD_ENDP_TX_STATUS_GET(ep_num) (USBD_REG_GET(USBD_EPxCS(ep_num)) & EPxCS_TX_STA)
#define USBD_ENDP_RX_STATUS_GET(ep_num) (USBD_REG_GET(USBD_EPxCS(ep_num)) & EPxCS_RX_STA)
/* Rx and Tx transfer status setting (bits EPxCS_RX_STA[1:0] & EPxCS_TX_STA[1:0]) */
#define USBD_ENDP_RX_TX_STATUS_SET(ep_num, state_rx, state_tx) do {\
register uint16_t _regval; \
_regval = USBD_REG_GET(USBD_EPxCS(ep_num)) & (uint16_t)(EPRX_DTGMASK | EPxCS_TX_STA) ;\
USBD_REG_SET(USBD_EPxCS(ep_num), (((_regval) ^ (state_rx)) ^ (state_tx))); \
} while(0)
/* set and clear endpoint kind (bit EPxCS_KCTL) */
#define USBD_ENDP_KIND_SET(ep_num) (USBD_REG_SET(USBD_EPxCS(ep_num), ((USBD_REG_GET(USBD_EPxCS(ep_num)) | EPxCS_KCTL) & EPCS_MASK)))
#define USBD_ENDP_KIND_CLEAR(ep_num) (USBD_REG_SET(USBD_EPxCS(ep_num), (USBD_REG_GET(USBD_EPxCS(ep_num)) & EPKCTL_MASK)))
/* set and clear directly STATUS_OUT state of endpoint */
#define USBD_STATUS_OUT_SET(ep_num) USBD_ENDP_KIND_SET(ep_num)
#define USBD_STATUS_OUT_CLEAR(ep_num) USBD_ENDP_KIND_CLEAR(ep_num)
/* clear bit EPxCS_RX_ST/EPxCS_TX_ST in the endpoint control and status register */
#define USBD_ENDP_RX_STAT_CLEAR(ep_num) (USBD_REG_SET(USBD_EPxCS(ep_num), USBD_REG_GET(USBD_EPxCS(ep_num)) & 0x7FFFU & (uint16_t)EPCS_MASK))
#define USBD_ENDP_TX_STAT_CLEAR(ep_num) (USBD_REG_SET(USBD_EPxCS(ep_num), USBD_REG_GET(USBD_EPxCS(ep_num)) & 0xFF7FU & (uint16_t)EPCS_MASK))
/* toggle EPxCS_RX_DTG or EPxCS_TX_DTG bit in the endpoint control and status register */
#define USBD_DTG_RX_TOGGLE(ep_num) (USBD_REG_SET(USBD_EPxCS(ep_num), EPxCS_RX_DTG | (USBD_REG_GET(USBD_EPxCS(ep_num)) & EPCS_MASK)))
#define USBD_DTG_TX_TOGGLE(ep_num) (USBD_REG_SET(USBD_EPxCS(ep_num), EPxCS_TX_DTG | (USBD_REG_GET(USBD_EPxCS(ep_num)) & EPCS_MASK)))
/* clear EPxCS_RX_DTG or EPxCS_TX_DTG bit in the endpoint control and status register */
#define USBD_DTG_RX_CLEAR(ep_num) do {\
if ((USBD_REG_GET(USBD_EPxCS(ep_num)) & EPxCS_RX_DTG) != 0U) {\
USBD_DTG_RX_TOGGLE(ep_num);\
} else {\
}\
} while(0)
#define USBD_DTG_TX_CLEAR(ep_num) do {\
if ((USBD_REG_GET(USBD_EPxCS(ep_num)) & EPxCS_TX_DTG) != 0U) {\
USBD_DTG_TX_TOGGLE(ep_num);\
} else {\
}\
} while(0)
/* set and clear directly double buffered feature of endpoint */
#define USBD_ENDP_DOUBLE_BUF_SET(ep_num) USBD_ENDP_KIND_SET(ep_num)
#define USBD_ENDP_DOUBLE_BUF_CLEAR(ep_num) USBD_ENDP_KIND_CLEAR(ep_num)
/* toggle SW_BUF bit in the double buffered endpoint */
#define USBD_SWBUF_TX_TOGGLE(ep_num) USBD_DTG_RX_TOGGLE(ep_num)
#define USBD_SWBUF_RX_TOGGLE(ep_num) USBD_DTG_TX_TOGGLE(ep_num)
#endif /* USBD_REGS_H */

View File

@ -0,0 +1,194 @@
/*!
\file usbd_std.h
\brief USB standard definitions
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBD_STD_H
#define USBD_STD_H
#include "usbd_core.h"
#include <wchar.h>
#ifndef NULL
#define NULL 0U
#endif
/* constants definitions */
#define USB_DEV_QUALIFIER_DESC_LEN 0x0AU /* device qualifier descriptor length */
#define USB_CFG_DESC_LEN 0x09U /* configuration descriptor length */
#define USBD_LANGID_STR_IDX 0x00U /* language ID string index */
#define USBD_MFC_STR_IDX 0x01U /* manufacturer string index */
#define USBD_PRODUCT_STR_IDX 0x02U /* product string index */
#define USBD_SERIAL_STR_IDX 0x03U /* serial string index */
#define USBD_CONFIG_STR_IDX 0x04U /* configuration string index */
#define USBD_INTERFACE_STR_IDX 0x05U /* interface string index */
#define USB_STANDARD_REQ 0x00U /* standard request */
#define USB_CLASS_REQ 0x20U /* device class request */
#define USB_VENDOR_REQ 0x40U /* vendor request */
#define USB_REQ_MASK 0x60U /* request type mask */
#define USB_REQTYPE_DEVICE 0x00U /* request recipient is device */
#define USB_REQTYPE_INTERFACE 0x01U /* request recipient is interface */
#define USB_REQTYPE_ENDPOINT 0x02U /* request recipient is endpoint */
#define USB_REQ_RECIPIENT_MASK 0x1fU /* request recipient mask */
#define USBREQ_GET_STATUS 0x00U /* Get_Status standard requeset */
#define USBREQ_CLEAR_FEATURE 0x01U /* Clear_Feature standard requeset */
#define USBREQ_SET_FEATURE 0x03U /* Set_Feature standard requeset */
#define USBREQ_SET_ADDRESS 0x05U /* Set_Address standard requeset */
#define USBREQ_GET_DESCRIPTOR 0x06U /* Get_Descriptor standard requeset */
#define USBREQ_GET_CONFIGURATION 0x08U /* Get_Configuration standard requeset */
#define USBREQ_SET_CONFIGURATION 0x09U /* Set_Configuration standard requeset */
#define USBREQ_GET_INTERFACE 0x0AU /* Get_Interface standard requeset */
#define USBREQ_SET_INTERFACE 0x0BU /* Set_Interface standard requeset */
#define USB_DESCTYPE_DEVICE 0x01U /* device descriptor type */
#define USB_DESCTYPE_CONFIGURATION 0x02U /* configuration descriptor type */
#define USB_DESCTYPE_STRING 0x03U /* string descriptor type */
#define USB_DESCTYPE_INTERFACE 0x04U /* interface descriptor type */
#define USB_DESCTYPE_ENDPOINT 0x05U /* endpoint descriptor type */
#define USB_DESCTYPE_DEVICE_QUALIFIER 0x06U /* device qualifier descriptor type */
#define USB_DESCTYPE_OTHER_SPEED_CONFIGURATION 0x07U /* other speed configuration descriptor type */
#define USB_DESCTYPE_BOS 0x0FU /* BOS descriptor type */
#define USB_STATUS_REMOTE_WAKEUP 2U /* USB is in remote wakeup status */
#define USB_STATUS_SELF_POWERED 1U /* USB is in self powered status */
#define USB_FEATURE_ENDP_HALT 0U /* USB has endpoint halt feature */
#define USB_FEATURE_REMOTE_WAKEUP 1U /* USB has endpoint remote wakeup feature */
#define USB_FEATURE_TEST_MODE 2U /* USB has endpoint test mode feature */
#define ENG_LANGID 0x0409U /* english language ID */
#define CHN_LANGID 0x0804U /* chinese language ID */
#define USB_EPTYPE_MASK 0x03U
#define USB_DEVICE_DESC_SIZE 0x12U
/* USB device exported macros */
#define SWAPBYTE(addr) (((uint16_t)(*((uint8_t *)(addr)))) + \
(uint16_t)(((uint16_t)(*(((uint8_t *)(addr)) + 1U))) << 8U))
#define LOWBYTE(x) ((uint8_t)((x) & 0x00FFU))
#define HIGHBYTE(x) ((uint8_t)(((x) & 0xFF00U) >> 8U))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#define IS_NOT_EP0(ep_addr) (((ep_addr) != 0x00U) && ((ep_addr) != 0x80U))
#define WIDE_STRING(string) _WIDE_STRING(string)
#define _WIDE_STRING(string) L##string
#define USBD_STRING_DESC(string) \
(void *)&(const struct { \
uint8_t _len; \
uint8_t _type; \
wchar_t _data[sizeof(string)]; \
}) { \
sizeof(WIDE_STRING(string)) + 2U - 2U, \
USB_DESCTYPE_STRING, \
WIDE_STRING(string) \
}
typedef struct
{
uint8_t bLength; /*!< size of the descriptor */
uint8_t bDescriptorType; /*!< type of the descriptor */
} usb_descriptor_header_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size */
uint16_t bcdUSB; /*!< BCD of the supported USB specification */
uint8_t bDeviceClass; /*!< USB device class */
uint8_t bDeviceSubClass; /*!< USB device subclass */
uint8_t bDeviceProtocol; /*!< USB device protocol */
uint8_t bMaxPacketSize0; /*!< size of the control (address 0) endpoint's bank in bytes */
uint16_t idVendor; /*!< vendor ID for the USB product */
uint16_t idProduct; /*!< unique product ID for the USB product */
uint16_t bcdDevice; /*!< product release (version) number */
uint8_t iManufacturer; /*!< string index for the manufacturer's name */
uint8_t iProduct; /*!< string index for the product name/details */
uint8_t iSerialNumber; /*!< string index for the product's globally unique hexadecimal serial number */
uint8_t bNumberConfigurations; /*!< total number of configurations supported by the device */
} usb_descriptor_device_struct;
#pragma pack(1)
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size */
uint16_t wTotalLength; /*!< size of the configuration descriptor header,and all sub descriptors inside the configuration */
uint8_t bNumInterfaces; /*!< total number of interfaces in the configuration */
uint8_t bConfigurationValue; /*!< configuration index of the current configuration */
uint8_t iConfiguration; /*!< index of a string descriptor describing the configuration */
uint8_t bmAttributes; /*!< configuration attributes */
uint8_t bMaxPower; /*!< maximum power consumption of the device while in the current configuration */
} usb_descriptor_configuration_struct;
#pragma pack()
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size */
uint8_t bInterfaceNumber; /*!< index of the interface in the current configuration */
uint8_t bAlternateSetting; /*!< alternate setting for the interface number */
uint8_t bNumEndpoints; /*!< total number of endpoints in the interface */
uint8_t bInterfaceClass; /*!< interface class ID */
uint8_t bInterfaceSubClass; /*!< interface subclass ID */
uint8_t bInterfaceProtocol; /*!< interface protocol ID */
uint8_t iInterface; /*!< index of the string descriptor describing the interface */
} usb_descriptor_interface_struct;
#pragma pack(1)
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size. */
uint8_t bEndpointAddress; /*!< logical address of the endpoint */
uint8_t bmAttributes; /*!< endpoint attributes */
uint16_t wMaxPacketSize; /*!< size of the endpoint bank, in bytes */
uint8_t bInterval; /*!< polling interval in milliseconds for the endpoint if it is an INTERRUPT or ISOCHRONOUS type */
} usb_descriptor_endpoint_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size. */
uint16_t wLANGID; /*!< LANGID code */
}usb_descriptor_language_id_struct;
#pragma pack()
/* function declarations */
/* USB SETUP transaction processing */
uint8_t usbd_setup_transaction (usbd_core_handle_struct *pudev);
/* USB OUT transaction processing */
uint8_t usbd_out_transaction (usbd_core_handle_struct *pudev, uint8_t ep_num);
/* USB IN transaction processing */
uint8_t usbd_in_transaction (usbd_core_handle_struct *pudev, uint8_t ep_num);
/* handle USB standard device request */
uint8_t usbd_standard_request (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
/* handle device class request */
uint8_t usbd_device_class_request (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
/* handle USB vendor request */
uint8_t usbd_vendor_request (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
/* decode setup data packet */
void usbd_setup_request_parse (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
/* handle USB enumeration error event */
void usbd_enum_error (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
#endif /* USBD_STD_H */

View File

@ -0,0 +1,389 @@
/*!
\file usbd_core.c
\brief USB device driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbd_core.h"
#include "usbd_std.h"
uint32_t g_interrupt_mask = 0U;
uint32_t g_free_buf_addr = ENDP_BUF_ADDR;
usbd_ep_buf_struct *pbuf_reg = (usbd_ep_buf_struct *)USBD_RAM;
/*!
\brief device core register initialization
\param[in] none
\param[out] none
\retval none
*/
void usbd_core_init (usbd_core_handle_struct *pudev)
{
/* disable remote wakeup feature */
pudev->remote_wakeup = 0U;
/* just reset the CLOSE bit */
USBD_REG_SET(USBD_CTL, CTL_SETRST);
/* may be need wait some time(tSTARTUP) ... */
/* clear SETRST bit in USBD_CTL register */
USBD_REG_SET(USBD_CTL, 0U);
/* clear all pending interrupts */
USBD_REG_SET(USBD_INTF, 0U);
/* set allocation buffer address */
USBD_REG_SET(USBD_BADDR, BUFFER_ADDRESS & 0xFFF8U);
g_interrupt_mask = IER_MASK;
#ifdef LPM_ENABLED
/* enable L1REQ interrupt */
USBD_REG_SET(USBD_LPMCS, LPMCS_LPMACK | LPMCS_LPMEN);
#endif /* LPM_ENABLED */
/* enable all interrupts mask bits */
USBD_REG_SET(USBD_CTL, g_interrupt_mask);
}
/*!
\brief free buffer used from application by toggling the SW_BUF byte
\param[in] ep_num: endpoint identifier (0..7)
\param[in] dir: endpoint direction which can be OUT(0) or IN(1)
\param[out] none
\retval None
*/
void user_buffer_free (uint8_t ep_num, uint8_t dir)
{
if (DBUF_EP_OUT == dir) {
USBD_SWBUF_RX_TOGGLE(ep_num);
} else if (DBUF_EP_IN == dir) {
USBD_SWBUF_TX_TOGGLE(ep_num);
} else {
/* no operation */
}
}
/*!
\brief device core register configure when stop device
\param[in] none
\param[out] none
\retval none
*/
void usbd_core_deinit (void)
{
/* disable all interrupts and set USB reset */
USBD_REG_SET(USBD_CTL, CTL_SETRST);
/* clear all interrupt flags */
USBD_REG_SET(USBD_INTF, 0U);
/* close device */
USBD_REG_SET(USBD_CTL, CTL_SETRST | CTL_CLOSE);
}
/*!
\brief endpoint initialization
\param[in] pudev: pointer to USB core instance
\param[in] pep_desc: pointer to endpoint descriptor
\param[out] none
\retval none
*/
void usbd_ep_init (usbd_core_handle_struct *pudev, void *ep_desc)
{
usb_ep_struct *ep;
uint8_t ep_num = ((usb_descriptor_endpoint_struct *)ep_desc)->bEndpointAddress & 0x0FU;
uint32_t reg_value = ((usb_descriptor_endpoint_struct *)ep_desc)->wMaxPacketSize;
if (((usb_descriptor_endpoint_struct *)ep_desc)->bEndpointAddress >> 7U) {
ep = &pudev->in_ep[ep_num];
ep->maxpacket = reg_value;
/* set the endpoint transmit buffer address */
(pbuf_reg + ep_num)->tx_addr = (uint16_t)g_free_buf_addr;
reg_value = (reg_value + 1U) & ~1U;
/* configure the endpoint status as NAK status */
USBD_ENDP_TX_STATUS_SET(ep_num, EPTX_NAK);
} else {
ep = &pudev->out_ep[ep_num];
ep->maxpacket = reg_value;
/* set the endpoint receive buffer address */
(pbuf_reg + ep_num)->rx_addr = (uint16_t)g_free_buf_addr;
if (reg_value > 62U) {
reg_value = (reg_value + 31U) & ~31U;
(pbuf_reg + ep_num)->rx_count = ((reg_value << 5U) - 1U) | 0x8000U;
} else {
reg_value = (reg_value + 1U) & ~1U;
(pbuf_reg + ep_num)->rx_count = reg_value << 9U;
}
/* configure the endpoint status as NAK status */
USBD_ENDP_RX_STATUS_SET(ep_num, EPRX_NAK);
}
g_free_buf_addr += reg_value;
/* set the endpoint type */
switch (((usb_descriptor_endpoint_struct *)ep_desc)->bmAttributes & USB_EPTYPE_MASK) {
case ENDP_CONTROL:
reg_value = EP_CONTROL;
break;
case ENDP_BULK:
reg_value = EP_BULK;
break;
case ENDP_INT:
reg_value = EP_INTERRUPT;
break;
case ENDP_ISOC:
reg_value = EP_ISO;
break;
default:
break;
}
USBD_REG_SET(USBD_EPxCS(ep_num), reg_value | ep_num);
ep->stall = 0;
}
/*!
\brief configure the endpoint when it is disabled
\param[in] pudev: pointer to USB core instance
\param[in] ep_addr: endpoint address
in this parameter:
bit0..bit6: endpoint number (0..7)
bit7: endpoint direction which can be IN(1) or OUT(0)
\param[out] none
\retval none
*/
void usbd_ep_deinit (usbd_core_handle_struct *pudev, uint8_t ep_addr)
{
uint8_t ep_num = ep_addr & 0x7F;
if (ep_addr >> 7) {
USBD_DTG_TX_CLEAR(ep_num);
/* configure the endpoint status as DISABLED */
USBD_ENDP_TX_STATUS_SET(ep_num, EPTX_DISABLED);
} else {
USBD_DTG_RX_CLEAR(ep_num);
/* configure the endpoint status as DISABLED */
USBD_ENDP_RX_STATUS_SET(ep_num, EPRX_DISABLED);
}
}
/*!
\brief endpoint prepare to receive data
\param[in] pudev: pointer to usb core instance
\param[in] ep_addr: endpoint address
in this parameter:
bit0..bit6: endpoint number (0..7)
bit7: endpoint direction which can be IN(1) or OUT(0)
\param[in] pbuf: user buffer address pointer
\param[in] buf_len: buffer length
\param[out] none
\retval none
*/
void usbd_ep_rx (usbd_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint16_t buf_len)
{
usb_ep_struct *ep;
uint8_t ep_num = ep_addr & 0x7FU;
ep = &pudev->out_ep[ep_num];
/* configure the transaction level parameters */
ep->trs_buf = pbuf;
ep->trs_len = buf_len;
/* enable endpoint to receive */
USBD_ENDP_RX_STATUS_SET(ep_num, EPRX_VALID);
}
/*!
\brief endpoint prepare to transmit data
\param[in] pudev: pointer to USB core instance
\param[in] ep_addr: endpoint address
in this parameter:
bit0..bit6: endpoint number (0..7)
bit7: endpoint direction which can be IN(1) or OUT(0)
\param[in] pbuf: transmit buffer address pointer
\param[in] buf_len: buffer length
\param[out] none
\retval none
*/
void usbd_ep_tx (usbd_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint16_t buf_len)
{
__IO uint32_t len = 0U;
uint8_t ep_num = ep_addr & 0x7FU;
usb_ep_struct *ep = &pudev->in_ep[ep_num];
/* configure the transaction level parameters */
ep->trs_buf = pbuf;
ep->trs_len = buf_len;
ep->trs_count = 0U;
/* transmit length is more than one packet */
if (ep->trs_len > ep->maxpacket) {
len = ep->maxpacket;
} else {
len = ep->trs_len;
}
usbd_ep_data_write(ep->trs_buf, (pbuf_reg + ep_num)->tx_addr, (uint16_t)len);
(pbuf_reg + ep_num)->tx_count = (uint16_t)len;
/* enable endpoint to transmit */
USBD_ENDP_TX_STATUS_SET(ep_num, EPTX_VALID);
}
/*!
\brief set an endpoint to STALL status
\param[in] pudev: pointer to usb core instance
\param[in] ep_addr: endpoint address
in this parameter:
bit0..bit6: endpoint number (0..7)
bit7: endpoint direction which can be IN(1) or OUT(0)
\param[out] none
\retval none
*/
void usbd_ep_stall (usbd_core_handle_struct *pudev, uint8_t ep_addr)
{
uint8_t ep_num = ep_addr & 0x7FU;
usb_ep_struct *ep;
if (ep_addr >> 7U) {
ep = &pudev->in_ep[ep_num];
USBD_ENDP_TX_STATUS_SET(ep_num, EPTX_STALL);
} else {
ep = &pudev->out_ep[ep_num];
USBD_ENDP_RX_STATUS_SET(ep_num, EPRX_STALL);
}
ep->stall = 1U;
if (0U == ep_num) {
/* control endpoint need to be stalled in two directions */
USBD_ENDP_RX_TX_STATUS_SET(ep_num, EPRX_STALL, EPTX_STALL);
}
}
/*!
\brief clear endpoint stalled status
\param[in] pudev: pointer to usb core instance
\param[in] ep_addr: endpoint address
in this parameter:
bit0..bit6: endpoint number (0..7)
bit7: endpoint direction which can be IN(1) or OUT(0)
\param[out] none
\retval none
*/
void usbd_ep_clear_stall (usbd_core_handle_struct *pudev, uint8_t ep_addr)
{
uint8_t ep_num = ep_addr & 0x7FU;
usb_ep_struct *ep;
if (ep_addr >> 7U) {
ep = &pudev->in_ep[ep_num];
/* clear endpoint data toggle bit */
USBD_DTG_TX_CLEAR(ep_num);
/* clear endpoint stall status */
USBD_ENDP_TX_STATUS_SET(ep_num, EPTX_VALID);
} else {
ep = &pudev->out_ep[ep_num];
/* clear endpoint data toggle bit */
USBD_DTG_RX_CLEAR(ep_num);
/* clear endpoint stall status */
USBD_ENDP_RX_STATUS_SET(ep_num, EPRX_VALID);
}
ep->stall = 0U;
}
/*!
\brief get the endpoint status
\param[in] pudev: pointer to usb core instance
\param[in] ep_addr: endpoint address
in this parameter:
bit0..bit6: endpoint number (0..7)
bit7: endpoint direction which can be IN(1) or OUT(0)
\param[out] none
\retval endpoint status
*/
uint8_t usbd_ep_status_get (usbd_core_handle_struct *pudev, uint8_t ep_addr)
{
if (ep_addr >> 7U) {
return (uint8_t)USBD_ENDP_TX_STATUS_GET((ep_addr & 0x7FU));
} else {
return (uint8_t)USBD_ENDP_RX_STATUS_GET(ep_addr);
}
}
/*!
\brief write datas from user fifo to USBRAM
\param[in] user_fifo: pointer to user fifo
\param[in] usbram_addr: the allocation buffer address of the endpoint
\param[in] bytes: the bytes count of the write datas
\param[out] none
\retval none
*/
void usbd_ep_data_write(uint8_t *user_fifo, uint16_t usbram_addr, uint16_t bytes)
{
uint32_t n;
uint32_t *write_addr = (uint32_t *)((uint32_t)(usbram_addr * 2U + USBD_RAM));
for (n = 0U; n < (bytes + 1U) / 2U; n++) {
*write_addr++ = *((__packed uint16_t*)user_fifo);
user_fifo += 2U;
}
}
/*!
\brief read datas from USBRAM to user fifo
\param[in] user_fifo: pointer to user fifo
\param[in] usbram_addr: the allocation buffer address of the endpoint
\param[in] bytes: the bytes count of the read datas
\param[out] none
\retval none
*/
void usbd_ep_data_read(uint8_t *user_fifo, uint16_t usbram_addr, uint16_t bytes)
{
uint32_t n;
uint32_t *read_addr = (uint32_t *)((uint32_t)(usbram_addr * 2U + USBD_RAM));
for (n = 0U; n < (bytes + 1U) / 2U; n++) {
*((__packed uint16_t*)user_fifo) = (uint16_t)*read_addr++;
user_fifo += 2U;
}
}
/*!
\brief get the received data length
\param[in] pudev: pointer to USB core instance
\param[in] ep_num: endpoint identifier which is in (0..7)
\param[out] none
\retval received data length
*/
uint16_t usbd_rx_count_get (usbd_core_handle_struct *pudev, uint8_t ep_num)
{
return (uint16_t)pudev->out_ep[ep_num].trs_count;
}

View File

@ -0,0 +1,331 @@
/*!
\file usbd_int.c
\brief USB device power interrupt routines
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbd_int.h"
extern uint32_t g_interrupt_mask;
extern __IO uint8_t g_suspend_enabled;
extern __IO uint8_t g_remote_wakeup_on;
extern __IO uint8_t g_ESOF_count;
#ifdef LPM_ENABLED
__IO uint32_t L1_remote_wakeup = 0U;
__IO uint32_t L1_resume = 0U;
__IO uint32_t besl = 0U;
#endif /* LPM_ENABLED */
static uint8_t usbd_intf_lpst (usbd_core_handle_struct *pudev);
static uint8_t usbd_intf_sof (usbd_core_handle_struct *pudev);
static uint8_t usbd_intf_esof (usbd_core_handle_struct *pudev);
static uint8_t usbd_intf_reset (usbd_core_handle_struct *pudev);
static uint8_t usbd_intf_suspend (usbd_core_handle_struct *pudev);
static uint8_t usbd_intf_wakeup (usbd_core_handle_struct *pudev);
/*!
\brief USB interrupt events service routine
\param[in] none
\param[out] none
\retval none
*/
void usbd_isr (void)
{
__IO uint16_t interrupt_flag = 0U;
__IO uint16_t ctlr = 0U;
interrupt_flag = USBD_REG_GET(USBD_INTF);
if (g_interrupt_mask & INTF_STIF & interrupt_flag) {
/* the endpoint successful transfer interrupt service */
usbd_intf_lpst(&usb_device_dev);
}
if (g_interrupt_mask & INTF_WKUPIF & interrupt_flag) {
/* clear wakeup interrupt flag in INTF */
USBD_REG_SET(USBD_INTF, (uint16_t)CLR_WKUPIF);
/* USB wakeup interrupt handle */
usbd_intf_wakeup(&usb_device_dev);
#ifdef LPM_ENABLED
/* clear L1 remote wakeup flag */
L1_remote_wakeup = 0;
#endif /* LPM_ENABLED */
}
if (g_interrupt_mask & INTF_SPSIF & interrupt_flag) {
if(!(USBD_REG_GET(USBD_CTL) & CTL_RSREQ)) {
/* process library core layer suspend routine*/
usbd_intf_suspend(&usb_device_dev);
/* clear of suspend interrupt flag bit must be done after setting of CTLR_SETSPS */
USBD_REG_SET(USBD_INTF, (uint16_t)CLR_SPSIF);
}
}
if (g_interrupt_mask & INTF_SOFIF & interrupt_flag) {
/* clear SOF interrupt flag in INTF */
USBD_REG_SET(USBD_INTF, (uint16_t)CLR_SOFIF);
/* USB SOF interrupt handle */
usbd_intf_sof(&usb_device_dev);
}
if (g_interrupt_mask & INTF_ESOFIF & interrupt_flag) {
/* clear ESOF interrupt flag in INTF */
USBD_REG_SET(USBD_INTF, (uint16_t)CLR_ESOFIF);
/* USB ESOF interrupt handle */
usbd_intf_esof(&usb_device_dev);
}
if (g_interrupt_mask & INTF_RSTIF & interrupt_flag) {
/* clear reset interrupt flag in INTF */
USBD_REG_SET(USBD_INTF, (uint16_t)CLR_RSTIF);
/* USB reset interrupt handle */
usbd_intf_reset(&usb_device_dev);
}
#ifdef LPM_ENABLED
if (g_interrupt_mask & INTF_L1REQ & interrupt_flag) {
/* clear L1 ST bit in LPM INTF */
USBD_REG_SET(USBD_INTF, CLR_L1REQ);
/* read BESL field from subendpoint0 register which coressponds to HIRD parameter in LPM spec */
besl = (USBD_REG_GET(USBD_LPMCS) & LPMCS_BLSTAT) >> 4;
/* read BREMOTEWAKE bit from subendpoint0 register which corresponding to bRemoteWake bit in LPM request */
L1_remote_wakeup = (USBD_REG_GET(USBD_LPMCS) & LPMCS_REMWK) >> 8;
/* process USB device core layer suspend routine */
/* enter USB model in suspend and system in low power mode (DEEP_SLEEP mode) */
usbd_intf_suspend(&usb_device_dev);
}
#endif /* LPM_ENABLED */
}
/*!
\brief handle USB low priority successful transfer event
\param[in] pudev: pointer to USB device instance
\param[out] none
\retval USB device operation status
*/
static uint8_t usbd_intf_lpst (usbd_core_handle_struct *pudev)
{
uint8_t ep_num = 0U;
__IO uint16_t int_status = 0U;
__IO uint16_t ep_value = 0U;
usb_ep_struct *ep = NULL;
/* wait till interrupts are not pending */
while (0U != ((int_status = USBD_REG_GET(USBD_INTF)) & (uint16_t)INTF_STIF)) {
/* get endpoint number and the value of control and state register */
ep_num = (uint8_t)(int_status & INTF_EPNUM);
ep_value = USBD_REG_GET(USBD_EPxCS(ep_num));
if (0U == (int_status & INTF_DIR)) {
/* handle the in direction transaction */
ep = &(pudev->in_ep[ep_num]);
if (0U != (ep_value & EPxCS_TX_ST)) {
/* clear successful transmit interrupt flag */
USBD_ENDP_TX_STAT_CLEAR(ep_num);
/* just handle single buffer situation */
ep->trs_count = (pbuf_reg + ep_num)->tx_count & EPTCNT_CNT;
/* maybe mutiple packets */
ep->trs_buf += ep->trs_count;
usbd_in_transaction(pudev, ep_num);
}
} else {
/* handle the out direction transaction */
uint16_t count = 0U;
ep = &(pudev->out_ep[ep_num]);
if (0U != (ep_value & EPxCS_RX_ST)) {
/* clear successful receive interrupt flag */
USBD_ENDP_RX_STAT_CLEAR(ep_num);
count = (pbuf_reg + ep_num)->rx_count & (uint16_t)EPRCNT_CNT;
if (0U != count) {
if (0U != (ep_value & EPxCS_SETUP)) {
/* handle setup packet */
usbd_ep_data_read(&(pudev->setup_packet[0]), pbuf_reg->rx_addr, count);
/* enter setup status */
usbd_setup_transaction(pudev);
return USBD_OK;
} else {
usbd_ep_data_read(ep->trs_buf, (pbuf_reg + ep_num)->rx_addr, count);
}
}
/* maybe mutiple packets */
ep->trs_count += count;
ep->trs_buf += count;
ep->trs_len -= count;
if ((0U == ep->trs_len) || (count < ep->maxpacket)) {
/* enter data OUT status */
usbd_out_transaction(pudev, ep_num);
ep->trs_count = 0U;
} else {
usbd_ep_rx(pudev, ep_num, ep->trs_buf, (uint16_t)ep->trs_len);
}
}
}
}
return USBD_OK;
}
/*!
\brief handle USB SOF event
\param[in] pudev: pointer to USB device instance
\param[out] none
\retval USB device operation status
*/
static uint8_t usbd_intf_sof (usbd_core_handle_struct *pudev)
{
/* if necessary, user can add code here */
if (NULL != usbd_int_fops) {
usbd_int_fops->SOF(pudev);
}
return USBD_OK;
}
/*!
\brief handle USB expect SOF event
\param[in] pudev: pointer to USB device instance
\param[out] none
\retval USB device operation status
*/
static uint8_t usbd_intf_esof (usbd_core_handle_struct *pudev)
{
/* control resume time by ESOFs */
if (g_ESOF_count > 0U) {
g_ESOF_count--;
if (0U == g_ESOF_count) {
if (1U == g_remote_wakeup_on) {
USBD_REG_SET(USBD_CTL, USBD_REG_GET(USBD_CTL) & ~CTL_RSREQ);
g_remote_wakeup_on = 0U;
} else {
USBD_REG_SET(USBD_CTL, USBD_REG_GET(USBD_CTL) | CTL_RSREQ);
g_ESOF_count = 3U;
g_remote_wakeup_on = 1U;
}
}
}
return USBD_OK;
}
/*!
\brief handle USB reset event
\param[in] pudev: pointer to USB device instance
\param[out] none
\retval USB device operation status
*/
static uint8_t usbd_intf_reset (usbd_core_handle_struct *pudev)
{
// uint8_t i;
g_free_buf_addr = ENDP_BUF_ADDR;
/* configure endpoint 0 buffer */
pbuf_reg->tx_addr = (uint16_t)g_free_buf_addr;
g_free_buf_addr += USBD_EP0_MAX_SIZE;
pbuf_reg->rx_addr = (uint16_t)g_free_buf_addr;
g_free_buf_addr += USBD_EP0_MAX_SIZE;
/* configure endpoint 0 Rx count */
pbuf_reg->rx_count = ((USBD_EP0_MAX_SIZE << 5) - 1) | 0x8000;
pudev->in_ep[EP0].maxpacket = USBD_EP0_MAX_SIZE;
pudev->out_ep[EP0].maxpacket = USBD_EP0_MAX_SIZE;
USBD_REG_SET(USBD_EPxCS(EP0), EP_CONTROL | EPRX_VALID | EPTX_NAK);
/* set device address as default address 0 */
USBD_REG_SET(USBD_DADDR, DADDR_USBEN);
pudev->status = USBD_DEFAULT;
return USBD_OK;
}
/*!
\brief handle USB suspend event
\param[in] pudev: pointer to USB device instance
\param[out] none
\retval USB device operation status
*/
static uint8_t usbd_intf_suspend (usbd_core_handle_struct *pudev)
{
/* store the device current status */
pudev->prev_status = pudev->status;
/* set device in suspended state */
pudev->status = USBD_SUSPENDED;
/* enter USB in suspend and mcu system in low power mode */
if (g_suspend_enabled) {
usbd_suspend();
} else {
/* if not possible then resume after xx ms */
g_ESOF_count = 3U;
}
return USBD_OK;
}
/*!
\brief handle USB wakeup event
\param[in] pudev: pointer to USB device instance
\param[out] none
\retval USB device operation status
*/
static uint8_t usbd_intf_wakeup (usbd_core_handle_struct *pudev)
{
/* restore the old status */
pudev->status = pudev->prev_status;
#ifdef LPM_ENABLED
if ((0U == g_remote_wakeup_on) && (0U == L1_resume)) {
resume_mcu();
} else if (1U == g_remote_wakeup_on) {
/* no operation */
} else {
L1_resume = 0U;
}
#else
if (0U == g_remote_wakeup_on) {
resume_mcu();
}
#endif /* LPM_ENABLED */
return USBD_OK;
}

View File

@ -0,0 +1,132 @@
/*!
\file usbd_pwr.c
\brief USB device power management driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbd_pwr.h"
#ifdef USBD_LOWPWR_MODE_ENABLE
static void lowpower_mode_exit (void);
#endif /* USBD_LOWPWR_MODE_ENABLE */
__IO uint8_t g_ESOF_count = 0U;
__IO uint8_t g_suspend_enabled = 1U;
__IO uint8_t g_remote_wakeup_on = 0U;
#ifdef LPM_ENABLED
extern __IO uint32_t L1_resume;
#endif /* LPM_ENABLED */
/*!
\brief USB wakeup first operation is to wakeup mcu
\param[in] none
\param[out] none
\retval none
*/
void resume_mcu (void)
{
/* clear low_power mode bit in USBD_CTL */
USBD_REG_SET(USBD_CTL, USBD_REG_GET(USBD_CTL) & (~CTL_LOWM));
#ifdef USBD_LOWPWR_MODE_ENABLE
/* restore normal operations */
lowpower_mode_exit();
#endif /* USBD_LOWPWR_MODE_ENABLE */
/* clear SETSPS bit */
USBD_REG_SET(USBD_CTL, USBD_REG_GET(USBD_CTL) & (~CTL_SETSPS));
}
#ifdef USBD_LOWPWR_MODE_ENABLE
/*!
\brief restore system clocks and power while exiting suspend mode
\param[in] none
\param[out] none
\retval none
*/
static void lowpower_mode_exit (void)
{
/* restore system clock */
/* enable HSE */
rcu_osci_on(RCU_HXTAL);
/* wait till HSE is ready */
while(RESET == rcu_flag_get(RCU_FLAG_HXTALSTB));
/* enable PLL */
rcu_osci_on(RCU_PLL_CK);
/* wait till PLL is ready */
while(RESET == rcu_flag_get(RCU_FLAG_PLLSTB));
/* select PLL as system clock source */
rcu_system_clock_source_config(RCU_CKSYSSRC_PLL);
/* wait till PLL is used as system clock source */
while(0x08 != rcu_system_clock_source_get());
/* low power sleep on exit disabled */
system_lowpower_reset(SCB_LPM_DEEPSLEEP);
}
#endif /* USBD_LOWPWR_MODE_ENABLE */
/*!
\brief set USB device to suspend mode
\param[in] none
\param[out] none
\retval none
*/
void usbd_suspend (void)
{
/* set usb module to suspend and low-power mode */
USBD_REG_SET(USBD_CTL, USBD_REG_GET(USBD_CTL) | CTL_SETSPS | CTL_LOWM);
#ifdef USBD_LOWPWR_MODE_ENABLE
/* check wakeup flag is set */
if (0 == (USBD_REG_GET(USBD_INTF) & INTF_WKUPIF)) {
/* enter DEEP_SLEEP mode with LDO in low power mode */
pmu_to_deepsleepmode(PMU_LDO_LOWPOWER, WFI_CMD);
} else {
/* clear wakeup interrupt flag */
USBD_REG_SET(USBD_INTF, CLR_WKUPIF);
/* clear set_suspend flag */
USBD_REG_SET(USBD_CTL, USBD_REG_GET(USBD_CTL) & ~CTL_SETSPS);
}
#endif /* USBD_LOWPWR_MODE_ENABLE */
}
/*!
\brief start to remote wakeup
\param[in] none
\param[out] none
\retval none
*/
void usbd_remote_wakeup_active(void)
{
resume_mcu();
#ifdef LPM_ENABLED
USBD_REG_SET(USBD_CTL, USBD_REG_GET(USBD_CTL) | CTL_L1RSREQ);
L1_resume = 1U;
#else
g_remote_wakeup_on = 1U;
g_ESOF_count = 15U;
USBD_REG_SET(USBD_CTL, USBD_REG_GET(USBD_CTL) | CTL_RSREQ);
#endif /* LPM_ENABLED */
}

View File

@ -0,0 +1,834 @@
/*!
\file usbd_std.c
\brief USB device stand routines
\note about USB standard, please refer to the USB2.0 protocol
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbd_std.h"
uint8_t g_device_address = 0U;
/* USB enumeration handle functions */
static void usbd_getdescriptor (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setaddress (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setconfiguration (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getconfiguration (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getstatus (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setfeature (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_clearfeature (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_reserved (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setdescriptor (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getinterface (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setinterface (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_synchframe (usbd_core_handle_struct *pudev, usb_device_req_struct *req);
static uint8_t* usbd_device_descriptor_get (usbd_core_handle_struct *pudev,
uint8_t index,
uint16_t *pLen);
static uint8_t* usbd_configuration_descriptor_get (usbd_core_handle_struct *pudev,
uint8_t index,
uint16_t *pLen);
static uint8_t* usbd_string_descriptor_get (usbd_core_handle_struct *pudev,
uint8_t index,
uint16_t *pLen);
#ifdef LPM_ENABLED
static uint8_t* usbd_bos_descriptor_get (usbd_core_handle_struct *pudev, uint16_t *pLen);
#endif /* LPM_ENABLED */
/* standard device request handler */
static void (*standard_device_request[])(usbd_core_handle_struct *pudev, usb_device_req_struct *req) =
{
usbd_getstatus,
usbd_clearfeature,
usbd_reserved,
usbd_setfeature,
usbd_reserved,
usbd_setaddress,
usbd_getdescriptor,
usbd_setdescriptor,
usbd_getconfiguration,
usbd_setconfiguration,
usbd_getinterface,
usbd_setinterface,
usbd_synchframe,
};
/* get standard descriptor handler */
static uint8_t* (*standard_descriptor_get[])(usbd_core_handle_struct *pudev, uint8_t index, uint16_t *pLen) =
{
usbd_device_descriptor_get,
usbd_configuration_descriptor_get,
usbd_string_descriptor_get
};
/*!
\brief USB setup stage processing
\param[in] pudev: pointer to USB device instance
\param[out] none
\retval USB device operation status
*/
uint8_t usbd_setup_transaction (usbd_core_handle_struct *pudev)
{
usb_device_req_struct req;
usbd_setup_request_parse (pudev, &req);
switch (req.bmRequestType & USB_REQ_MASK) {
/* standard device request */
case USB_STANDARD_REQ:
usbd_standard_request(pudev, &req);
break;
/* device class request */
case USB_CLASS_REQ:
usbd_device_class_request(pudev, &req);
break;
/* vendor defined request */
case USB_VENDOR_REQ:
usbd_vendor_request(pudev, &req);
break;
default:
usbd_ep_stall(pudev, 0x00U);
break;
}
return USBD_OK;
}
/*!
\brief data out stage processing
\param[in] pudev: pointer to USB device instance
\param[in] ep_num: endpoint identifier(0..7)
\param[out] none
\retval USB device operation status
*/
uint8_t usbd_out_transaction (usbd_core_handle_struct *pudev, uint8_t ep_num)
{
usb_ep_struct *ep = &pudev->out_ep[ep_num];
if (0U == ep_num) {
if (0U != pudev->ctl_count) {
if (ep->trs_len > ep->maxpacket) {
/* one data packet has been received, update trs_len */
ep->trs_len -= ep->maxpacket;
/* continue to receive remain data */
usbd_ep_rx(pudev, EP0_OUT, ep->trs_buf, (uint16_t)ep->trs_len);
} else {
if (USBD_CONFIGURED == pudev->status) {
/* device class handle */
pudev->class_data_handler(pudev, USBD_RX, EP0);
}
/* enter the control transaction status stage */
USBD_CONTRL_STATUS_TX();
pudev->ctl_count = 0U;
}
} else {
/* clear endpoint status_out status */
USBD_STATUS_OUT_CLEAR(EP0);
}
} else {
if (USBD_CONFIGURED == pudev->status) {
pudev->class_data_handler(pudev, USBD_RX, ep_num);
}
}
return USBD_OK;
}
/*!
\brief data in stage processing
\param[in] pudev: pointer to USB device instance
\param[in] ep_num: endpoint identifier(0..7)
\param[out] none
\retval USB device operation status
*/
uint8_t usbd_in_transaction (usbd_core_handle_struct *pudev, uint8_t ep_num)
{
usb_ep_struct *ep = &pudev->in_ep[ep_num];
if (0U == ep_num) {
if (0U != pudev->ctl_count) {
if (ep->trs_len > ep->maxpacket) {
/* one data packet has been transmited, update trs_len */
ep->trs_len -= ep->maxpacket;
/* continue to transmit remain data */
usbd_ep_tx (pudev, EP0_IN, ep->trs_buf, (uint16_t)ep->trs_len);
// usbd_ep_rx (pudev, 0, NULL, 0);
} else {
#ifndef USB_DFU
/* transmit length is maxpacket multiple, so send zero length packet */
if ((0U == (ep->trs_len % ep->maxpacket)) && (ep->trs_len < pudev->ctl_count)) {
usbd_ep_tx (pudev, EP0_IN, NULL, 0U);
pudev->ctl_count = 0U;
// usbd_ep_rx (pudev, 0, NULL, 0);
} else
#endif /* USB_DFU */
{
ep->trs_len = 0U;
if (USBD_CONFIGURED == pudev->status) {
pudev->class_data_handler(pudev, USBD_TX, EP0);
}
USBD_CONTRL_STATUS_RX();
pudev->ctl_count = 0U;
}
}
} else {
if (0U != g_device_address) {
USBD_REG_SET(USBD_DADDR, DADDR_USBEN | g_device_address);
g_device_address = 0U;
}
}
} else {
ep->trs_len -= ep->trs_count;
if (0U == ep->trs_len) {
if (USBD_CONFIGURED == pudev->status) {
pudev->class_data_handler(pudev, USBD_TX, ep_num);
}
} else {
usbd_ep_tx(pudev, ep_num, ep->trs_buf, (uint16_t)ep->trs_len);
}
}
return USBD_OK;
}
/*!
\brief handle USB standard device request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval USB device operation status
*/
uint8_t usbd_standard_request (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* call device request handle function */
(*standard_device_request[req->bRequest])(pudev, req);
return USBD_OK;
}
/*!
\brief handle USB device class request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device class request
\param[out] none
\retval USB device operation status
*/
uint8_t usbd_device_class_request (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
usbd_status_enum ret;
switch (pudev->status) {
case USBD_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
/* call device class handle function */
ret = (usbd_status_enum)(pudev->class_req_handler(pudev, req));
if ((0U == req->wLength) && (USBD_OK == ret)) {
/* no data stage */
USBD_CONTRL_STATUS_TX();
}
} else {
usbd_enum_error(pudev, req);
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
return USBD_OK;
}
/*!
\brief handle USB vendor request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB vendor request
\param[out] none
\retval USB device operation status
*/
uint8_t usbd_vendor_request (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* added by user */
return USBD_OK;
}
/*!
\brief no operation, just for reserved
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_reserved (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* no operation */
}
#ifdef LPM_ENABLED
static uint8_t* usbd_bos_descriptor_get (usbd_core_handle_struct *pudev, uint16_t *pLen)
{
*pLen = pudev->bos_desc[2] | ((uint16_t)pudev->bos_desc[3] << 8);
return pudev->bos_desc;
}
#endif /* LPM_ENABLED */
/*!
\brief get the device descriptor
\param[in] pudev: pointer to USB device instance
\param[in] index: no use
\param[out] pLen: data length pointer
\retval descriptor buffer pointer
*/
static uint8_t* usbd_device_descriptor_get (usbd_core_handle_struct *pudev, uint8_t index, uint16_t *pLen)
{
*pLen = pudev->dev_desc[0];
return pudev->dev_desc;
}
/*!
\brief get the configuration descriptor
\brief[in] pudev: pointer to USB device instance
\brief[in] index: no use
\param[out] pLen: data length pointer
\retval descriptor buffer pointer
*/
static uint8_t* usbd_configuration_descriptor_get (usbd_core_handle_struct *pudev, uint8_t index, uint16_t *pLen)
{
*pLen = pudev->config_desc[2];
return pudev->config_desc;
}
/*!
\brief get string descriptor
\param[in] pudev: pointer to USB device instance
\param[in] index: string descriptor index
\param[out] pLen: pointer to string length
\retval none
*/
static uint8_t* usbd_string_descriptor_get (usbd_core_handle_struct *pudev, uint8_t index, uint16_t *pLen)
{
uint8_t *desc = pudev->strings[index];
*pLen = desc[0];
return desc;
}
/*!
\brief handle Get_Status request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getstatus (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t ep_addr;
uint16_t config_status = 0x0000U;
uint16_t endp_status = 0x0000U;
switch(req->bmRequestType & USB_REQ_RECIPIENT_MASK) {
case USB_REQTYPE_DEVICE:
switch (pudev->status) {
case USBD_ADDRESSED:
case USBD_CONFIGURED:
#ifdef USBD_SELF_POWERED
config_status = USB_STATUS_SELF_POWERED;
#endif /* USBD_SELF_POWERED */
if (pudev->remote_wakeup) {
config_status |= USB_STATUS_REMOTE_WAKEUP;
}
usbd_ep_tx(pudev, EP0_IN, (uint8_t *)&config_status, 2U);
break;
default:
break;
}
break;
case USB_REQTYPE_INTERFACE:
switch (pudev->status) {
case USBD_ADDRESSED:
usbd_enum_error(pudev, req);
break;
case USBD_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
usbd_ep_tx(pudev, EP0_IN, (uint8_t *)&config_status, 2U);
} else {
usbd_enum_error(pudev, req);
}
break;
default:
break;
}
break;
case USB_REQTYPE_ENDPOINT:
/* get enndpoint address */
ep_addr = LOWBYTE(req->wIndex);
switch (pudev->status) {
case USBD_ADDRESSED:
if (IS_NOT_EP0(ep_addr)) {
usbd_enum_error(pudev, req);
}
break;
case USBD_CONFIGURED:
if ((ep_addr & 0x80U) == 0x80U) {
if(pudev->in_ep[ep_addr & 0x7FU].stall) {
endp_status = 0x0001U;
}
} else {
if (pudev->out_ep[ep_addr].stall) {
endp_status = 0x0001U;
}
}
usbd_ep_tx(pudev, EP0_IN, (uint8_t *)&endp_status, 2U);
break;
default:
break;
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
/*!
\brief handle USB Clear_Feature request
\param[in] pudev: pointer to USB device instance
\param[in] req: USB device request
\param[out] none
\retval none
*/
static void usbd_clearfeature (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t ep_addr = 0U;
switch (req->bmRequestType & USB_REQ_RECIPIENT_MASK) {
case USB_REQTYPE_DEVICE:
switch (pudev->status) {
case USBD_ADDRESSED:
case USBD_CONFIGURED:
/* clear device remote wakeup feature */
if (USB_FEATURE_REMOTE_WAKEUP == req->wValue) {
pudev->remote_wakeup = 0U;
pudev->class_req_handler(pudev, req);
USBD_CONTRL_STATUS_TX();
} else if (USB_FEATURE_TEST_MODE == req->wValue) {
/* can not clear test_mode feature */
usbd_enum_error(pudev, req);
} else {
/* no operation */
}
break;
default:
break;
}
break;
case USB_REQTYPE_INTERFACE:
switch (pudev->status) {
case USBD_ADDRESSED:
usbd_enum_error (pudev, req);
break;
case USBD_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
/* no operation */
} else {
usbd_enum_error(pudev, req);
}
break;
default:
break;
}
break;
case USB_REQTYPE_ENDPOINT:
/* get endpoint address */
ep_addr = LOWBYTE(req->wIndex);
switch (pudev->status) {
case USBD_ADDRESSED:
if (IS_NOT_EP0(ep_addr)) {
usbd_enum_error(pudev, req);
}
break;
case USBD_CONFIGURED:
/* clear endpoint halt feature */
if (USB_FEATURE_ENDP_HALT == req->wValue) {
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_clear_stall(pudev, ep_addr);
}
}
pudev->class_req_handler(pudev, req);
USBD_CONTRL_STATUS_TX();
break;
default:
break;
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
/*!
\brief handle USB Set_Feature request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setfeature (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t ep_addr = 0U;
switch (req->bmRequestType & USB_REQ_RECIPIENT_MASK) {
case USB_REQTYPE_DEVICE:
switch (pudev->status) {
case USBD_ADDRESSED:
case USBD_CONFIGURED:
/* set device remote wakeup feature */
if (USB_FEATURE_REMOTE_WAKEUP == req->wValue) {
pudev->remote_wakeup = 1U;
USBD_CONTRL_STATUS_TX();
}
break;
default:
break;
}
break;
case USB_REQTYPE_INTERFACE:
switch (pudev->status) {
case USBD_ADDRESSED:
usbd_enum_error(pudev, req);
break;
case USBD_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
/* no operation */
} else {
usbd_enum_error(pudev, req);
}
break;
default:
break;
}
break;
case USB_REQTYPE_ENDPOINT:
/* get endpoint address */
ep_addr = LOWBYTE(req->wIndex);
switch (pudev->status) {
case USBD_ADDRESSED:
if (IS_NOT_EP0(ep_addr)) {
usbd_enum_error(pudev, req);
}
break;
case USBD_CONFIGURED:
/* set endpoint halt feature */
if (USB_FEATURE_ENDP_HALT == req->wValue) {
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_stall(pudev, ep_addr);
}
}
USBD_CONTRL_STATUS_TX();
break;
default:
break;
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
/*!
\brief handle USB Set_Address request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setaddress (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
if ((0U == req->wIndex) && (0U == req->wLength)) {
g_device_address = (uint8_t)(req->wValue) & 0x7FU;
if (USBD_CONFIGURED == pudev->status) {
usbd_enum_error(pudev, req);
} else {
USBD_CONTRL_STATUS_TX();
if (0U != g_device_address) {
pudev->status = USBD_ADDRESSED;
} else {
pudev->status = USBD_DEFAULT;
}
}
} else {
usbd_enum_error(pudev, req);
}
}
/*!
\brief handle USB Get_Descriptor request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getdescriptor (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
if (USB_REQTYPE_DEVICE == (req->bmRequestType & USB_REQ_RECIPIENT_MASK)) {
uint8_t *pbuf = NULL;
uint8_t desc_index = (uint8_t)(req->wValue >> 8);
uint16_t len = 0U;
if (desc_index <= 0x03U) {
/* call corresponding descriptor get function */
pbuf = standard_descriptor_get[desc_index - 1U](pudev, (uint8_t)(req->wValue) & 0xFFU, &len);
}
#ifdef LPM_ENABLED
else if (USB_DESCTYPE_BOS == desc_index) {
pbuf = usbd_bos_descriptor_get(pudev, &len);
}
#endif /* LPM_ENABLED */
else {
usbd_enum_error(pudev, req);
}
if ((0U != len) && (0U != req->wLength)) {
len = MIN(len, req->wLength);
usbd_ep_tx (pudev, EP0_IN, pbuf, len);
}
} else if (USB_REQTYPE_INTERFACE == (req->bmRequestType & USB_REQ_RECIPIENT_MASK)) {
if (NULL != pudev->class_req_handler) {
/* get device class special descriptor */
pudev->class_req_handler(pudev, req);
}
} else {
}
}
/*!
\brief handle USB Set_Descriptor request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setdescriptor (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* no handle */
}
/*!
\brief handle USB Get_Configuration request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getconfiguration (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint32_t usbd_default_config = 0U;
if (req->wLength != 1) {
usbd_enum_error(pudev, req);
} else {
switch (pudev->status) {
case USBD_ADDRESSED:
usbd_ep_tx (pudev, EP0_IN, (uint8_t *)&usbd_default_config, 1U);
break;
case USBD_CONFIGURED:
usbd_ep_tx (pudev, EP0_IN, &pudev->config_num, 1);
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
}
/*!
\brief handle USB Set_Configuration request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setconfiguration (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
static uint8_t cfgidx;
cfgidx = (uint8_t)(req->wValue);
if (cfgidx > USBD_CFG_MAX_NUM) {
usbd_enum_error(pudev, req);
} else {
switch (pudev->status) {
case USBD_ADDRESSED:
if (cfgidx){
pudev->config_num = cfgidx;
pudev->status = USBD_CONFIGURED;
pudev->class_init(pudev, cfgidx);
USBD_CONTRL_STATUS_TX();
} else {
USBD_CONTRL_STATUS_TX();
}
break;
case USBD_CONFIGURED:
if (0U == cfgidx) {
pudev->status = USBD_ADDRESSED;
pudev->config_num = cfgidx;
pudev->class_deinit(pudev, cfgidx);
USBD_CONTRL_STATUS_TX();
} else if (cfgidx != pudev->config_num) {
/* clear old configuration */
pudev->class_deinit(pudev, pudev->config_num);
/* set new configuration */
pudev->config_num = cfgidx;
pudev->class_init(pudev, cfgidx);
USBD_CONTRL_STATUS_TX();
} else {
USBD_CONTRL_STATUS_TX();
}
break;
default:
break;
}
}
}
/*!
\brief handle USB Get_Interface request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getinterface (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
switch (pudev->status) {
case USBD_ADDRESSED:
usbd_enum_error(pudev, req);
break;
case USBD_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
if (NULL != pudev->class_req_handler) {
pudev->class_req_handler(pudev, req);
}
} else {
usbd_enum_error(pudev, req);
}
break;
default:
break;
}
}
/*!
\brief handle USB Set_Interface request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setinterface (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
switch (pudev->status) {
case USBD_ADDRESSED:
usbd_enum_error(pudev, req);
break;
case USBD_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
if (NULL != pudev->class_req_handler) {
pudev->class_req_handler(pudev, req);
}
USBD_CONTRL_STATUS_TX();
} else {
usbd_enum_error(pudev, req);
}
break;
default:
break;
}
}
/*!
\brief handle USB SynchFrame request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_synchframe (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* no handle */
}
/*!
\brief decode setup data packet
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
void usbd_setup_request_parse (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t *setup_data = pudev->setup_packet;
req->bmRequestType = *setup_data;
req->bRequest = *(uint8_t *)(setup_data + 1U);
req->wValue = SWAPBYTE (setup_data + 2U);
req->wIndex = SWAPBYTE (setup_data + 4U);
req->wLength = SWAPBYTE (setup_data + 6U);
pudev->ctl_count = req->wLength;
}
/*!
\brief handle USB enumeration error event
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
void usbd_enum_error (usbd_core_handle_struct *pudev, usb_device_req_struct *req)
{
usbd_ep_stall(pudev, EP0);
}

View File

@ -0,0 +1,276 @@
/*!
\file usb_core.h
\brief USB core driver header file
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USB_CORE_H
#define USB_CORE_H
#include "usb_conf.h"
#include "usb_regs.h"
#include "usb_defines.h"
#define USB_MAX_EP0_SIZE 64U /* endpoint 0 max packet size */
#define RX_MAX_DATA_LENGTH 512U /* host rx buffer max data length */
#define HC_MAX_PACKET_COUNT 140U /* host channel max packet count */
#define USB_MAX_DEV_EPCOUNT USBFS_MAX_DEV_EPCOUNT
#define USB_MAX_FIFOS (USBFS_MAX_HOST_CHANNELCOUNT * 2U - 1U)
/* USB core status */
typedef enum
{
USB_OK = 0, /* USB core OK status */
USB_FAIL /* USB core fail status */
}usb_status_enum;
/* USB host channel status */
typedef enum
{
HC_IDLE = 0, /* USB host channel idle status */
HC_XF, /* USB host channel transfer status */
HC_HALTED, /* USB host channel halted status */
HC_NAK, /* USB host channel nak status */
HC_NYET, /* USB host channel nyet status */
HC_STALL, /* USB host channel stall status */
HC_TRACERR, /* USB host channel tracerr status */
HC_BBERR, /* USB host channel bberr status */
HC_DTGERR, /* USB host channel dtgerr status */
}hc_status_enum;
/* USB URB(USB request block) state */
typedef enum
{
URB_IDLE = 0, /* USB URB idle status */
URB_DONE, /* USB URB done status */
URB_NOTREADY, /* USB URB notready status */
URB_ERROR, /* USB URB error status */
URB_STALL, /* USB URB stall status */
URB_PING /* USB URB ping status */
}urb_state_enum;
/* USB core configuration */
typedef struct
{
uint8_t core_id; /* USB core id */
uint8_t core_speed; /* USB core speed */
uint8_t phy_interface; /* USB PHY interface */
uint8_t host_channel_num; /* USB host channel number */
uint8_t dev_endp_num; /* USB device endpoint number */
uint8_t sof_output; /* USB SOF output */
uint8_t low_power; /* USB low power */
uint16_t max_packet_size; /* USB max packet size */
uint16_t max_fifo_size; /* USB fifo size */
}usb_core_cfgs_struct;
typedef enum
{
USBD_OK = 0, /* USB device ok status */
USBD_BUSY, /* USB device busy status */
USBD_FAIL, /* USB device fail stauts */
}usbd_status_enum;
/* USB control transfer state */
typedef enum
{
USB_CTRL_IDLE = 0, /* USB control transfer idle state */
USB_CTRL_SETUP, /* USB control transfer setup state */
USB_CTRL_DATA_IN, /* USB control transfer data in state */
USB_CTRL_DATA_OUT, /* USB control transfer data out state */
USB_CTRL_STATUS_IN, /* USB control transfer status in state*/
USB_CTRL_STATUS_OUT, /* USB control transfer status out state */
USB_CTRL_STALL /* USB control transfer stall state */
}usbd_control_state_enum;
/* USB transfer direction */
typedef enum
{
USB_RX = 0, /* receive direction type value */
USB_TX /* transmit direction type value */
}usb_dir_enum;
/* USB endpoint in device mode */
typedef struct
{
uint8_t endp_type; /* USB endpoint type */
uint8_t endp_frame; /* USB endpoint frame */
uint32_t endp_mps; /* USB endpoint max packet size */
/* Transaction level variables */
uint8_t *xfer_buff; /* USB transfer buffer */
uint32_t xfer_len; /* USB transfer length */
uint32_t xfer_count; /* USB transfer count */
uint32_t dma_addr; /* USBHS can use DMA */
}usb_ep_struct;
/* USB device standard request */
typedef struct
{
uint8_t bmRequestType; /* USB device request type */
uint8_t bRequest; /* USB device request */
uint16_t wValue; /* USB device request value */
uint16_t wIndex; /* USB device request index */
uint16_t wLength; /* USB device request length */
}usb_device_req_struct;
/* USB core device driver */
typedef struct
{
uint8_t config_num; /* USB configuration number */
uint8_t status; /* USB status */
uint8_t ctl_status; /* USB control status */
uint8_t prev_status; /* USB previous status */
uint8_t connection_status; /* USB connection status */
uint32_t remote_wakeup; /* USB remote wakeup */
/* transfer level variables */
uint32_t remain_len; /* USB remain length */
uint32_t sum_len; /* USB sum length */
uint32_t ctl_len; /* USB control length */
uint8_t setup_packet[8 * 3]; /* USB setup packet */
usb_ep_struct in_ep[USB_MAX_DEV_EPCOUNT]; /* USB IN endpoint */
usb_ep_struct out_ep[USB_MAX_DEV_EPCOUNT]; /* USB OUT endpoint */
uint8_t *dev_desc; /* device descriptor */
uint8_t *config_desc; /* configuration descriptor */
uint8_t* *strings; /* configuration strings */
/* device class handler */
uint8_t (*class_init) (void *pudev, uint8_t config_index); /* device class initialize */
uint8_t (*class_deinit) (void *pudev, uint8_t config_index); /* device class deinitialize */
uint8_t (*class_req_handler) (void *pudev, usb_device_req_struct *req); /* device request handler */
uint8_t (*class_data_handler) (void *pudev, usb_dir_enum rx_tx, uint8_t ep_num); /* device data handler */
}dcd_dev_struct;
/* USB core host mode channel */
typedef struct
{
uint8_t dev_addr; /* device address */
uint8_t dev_speed; /* device speed */
uint8_t DPID; /* endpoint transfer data pid */
uint8_t endp_id; /* endpoint number */
uint8_t endp_in; /* endpoint in */
uint8_t endp_type; /* endpoint type */
uint16_t endp_mps; /* endpoint max pactet size */
uint16_t info; /* channel information */
uint8_t *xfer_buff; /* transfer buffer */
uint32_t xfer_len; /* transfer length */
uint32_t xfer_count; /* trasnfer count */
uint32_t err_count; /* USB transfer error count */
hc_status_enum status; /* channel status */
urb_state_enum urb_state; /* URB state */
uint8_t data_tg_in; /* data in toggle */
uint8_t data_tg_out; /* data out toggle */
}usb_hostchannel_struct;
/* USB core host driver */
typedef struct
{
uint8_t rx_buffer[RX_MAX_DATA_LENGTH]; /* rx buffer */
uint8_t connect_status; /* device connect status */
usb_hostchannel_struct host_channel[USB_MAX_FIFOS]; /* host channel */
void (*vbus_drive) (void *pudev, uint8_t state); /* the vbus driver function */
}hcd_dev_struct;
#ifdef USE_OTG_MODE
/* USB core OTG-mode driver */
typedef struct
{
uint8_t OTG_State; /* OTG state */
uint8_t OTG_PrevState; /* OTG previous state */
uint8_t OTG_Mode; /* OTG mode */
}otg_dev_struct;
#endif /* USE_OTG_MODE */
/* USB core driver */
typedef struct
{
usb_core_cfgs_struct cfg;
#ifdef USE_DEVICE_MODE
dcd_dev_struct dev;
#endif /* USE_DEVICE_MODE */
#ifdef USE_HOST_MODE
hcd_dev_struct host;
#endif /* USE_HOST_MODE */
#ifdef USE_OTG_MODE
otg_dev_struct otg;
#endif /* USE_OTG_MODE */
void (*udelay) (const uint32_t usec);
void (*mdelay) (const uint32_t msec);
}usb_core_handle_struct;
/* function declarations */
/* global APIs */
/* initializes the USB controller registers and prepares the core device mode or host mode operation */
usb_status_enum usb_core_init (usb_core_handle_struct *pudev);
/* initialize core parameters */
usb_status_enum usb_core_select (usb_core_handle_struct *pudev, usb_core_id_enum core_id);
/* read a packet from the Rx FIFO associated with the endpoint */
void* usb_fifo_read (uint8_t *dest, uint16_t len);
/* write a packet into the Tx FIFO associated with the endpoint */
usb_status_enum usb_fifo_write (uint8_t *src, uint8_t chep_num, uint16_t len);
/* flush a Tx FIFO or all Tx FIFOs */
usb_status_enum usb_txfifo_flush (usb_core_handle_struct *pudev, uint8_t fifo_num);
/* flush the entire Rx FIFO */
usb_status_enum usb_rxfifo_flush (usb_core_handle_struct *pudev);
/* set operation mode (host or device) */
usb_status_enum usb_mode_set (usb_core_handle_struct *pudev, uint8_t mode);
/* host APIs */
#ifdef USE_HOST_MODE
/* initializes USB core for host mode */
usb_status_enum usb_hostcore_init (usb_core_handle_struct *pudev);
/* enables the host mode interrupts */
usb_status_enum usb_hostint_enable (usb_core_handle_struct *pudev);
/* initialize host channel */
usb_status_enum usb_hostchannel_init (usb_core_handle_struct *pudev, uint8_t hc_num);
/* halt channel */
usb_status_enum usb_hostchannel_halt (usb_core_handle_struct *pudev, uint8_t hc_num);
/* prepare host channel for transferring packets */
usb_status_enum usb_hostchannel_startxfer (usb_core_handle_struct *pudev, uint8_t hc_num);
/* reset host port */
uint32_t usb_port_reset (usb_core_handle_struct *pudev);
/* control the VBUS to power */
void usb_vbus_drive (usb_core_handle_struct *pudev, uint8_t state);
/* stop the USB host and clean up fifos */
void usb_host_stop (usb_core_handle_struct *pudev);
#endif /* USE_HOST_MODE */
/* device APIs */
#ifdef USE_DEVICE_MODE
/* initialize USB core registers for device mode */
usb_status_enum usb_devcore_init (usb_core_handle_struct *pudev);
/* configures endpoint 0 to receive SETUP packets */
void usb_ep0_startout (usb_core_handle_struct *pudev);
/* active remote wakeup signalling */
void usb_remotewakeup_active (usb_core_handle_struct *pudev);
/* active USB core clock */
void usb_clock_ungate (usb_core_handle_struct *pudev);
/* stop the device and clean up fifos */
void usb_device_stop (usb_core_handle_struct *pudev);
#endif /* USE_DEVICE_MODE */
#endif /* USB_CORE_H */

View File

@ -0,0 +1,100 @@
/*!
\file usb_defines.h
\brief USB core defines
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USB_DEFINES_H
#define USB_DEFINES_H
#include "usb_conf.h"
#ifndef NULL
#define NULL (void *)0 /*!< USB null marco value*/
#endif /* NULL */
#define USB_CORE_SPEED_HIGH 0U /* USB core speed is high-speed */
#define USB_CORE_SPEED_FULL 1U /* USB core speed is full-speed */
#define USBFS_MAX_PACKET_SIZE 64U /* USBFS max packet size */
#define USBFS_MAX_HOST_CHANNELCOUNT 8U /* USBFS host channel count */
#define USBFS_MAX_DEV_EPCOUNT 4U /* USBFS device endpoint count */
#define USBFS_MAX_FIFO_WORDLEN 320U /* USBFS max fifo size in words */
#define USBHS_MAX_PACKET_SIZE 512U /* USBHS max packet size */
#define USBHS_MAX_HOST_CHANNELCOUNT 12U /* USBHS host channel count */
#define USBHS_MAX_DEV_EPCOUNT 6U /* USBHS device endpoint count */
#define USBHS_MAX_FIFO_WORDLEN 1280U /* USBHS max fifo size in words */
#define USB_CORE_ULPI_PHY 1U /* USB core use external ULPI PHY */
#define USB_CORE_EMBEDDED_PHY 2U /* USB core use embedded PHY */
#define DSTAT_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0U /* USB enumerate speed use high-speed PHY clock in 30MHz or 60MHz */
#define DSTAT_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1U /* USB enumerate speed use full-speed PHY clock in 30MHz or 60MHz */
#define DSTAT_ENUMSPD_LS_PHY_6MHZ 2U /* USB enumerate speed use low-speed PHY clock in 6MHz */
#define DSTAT_ENUMSPD_FS_PHY_48MHZ 3U /* USB enumerate speed use full-speed PHY clock in 48MHz */
#define GRSTATR_RPCKST_IN 2U /* IN data packet received */
#define GRSTATR_RPCKST_IN_XFER_COMP 3U /* IN transfer completed (generates an interrupt if poped) */
#define GRSTATR_RPCKST_DATA_TOGGLE_ERR 5U /* data toggle error (generates an interrupt if poped) */
#define GRSTATR_RPCKST_CH_HALTED 7U /* channel halted (generates an interrupt if poped) */
#define DEVICE_MODE 0U /* USB core in device mode */
#define HOST_MODE 1U /* USB core in host mode */
#define OTG_MODE 2U /* USB core in OTG mode */
#define USB_EPTYPE_CTRL 0U /* USB control endpoint type */
#define USB_EPTYPE_ISOC 1U /* USB synchronous endpoint type */
#define USB_EPTYPE_BULK 2U /* USB bulk endpoint type */
#define USB_EPTYPE_INTR 3U /* USB interrupt endpoint type */
#define USB_EPTYPE_MASK 3U /* USB endpoint type mask */
#define RXSTAT_GOUT_NAK 1U /* global OUT NAK (triggers an interrupt) */
#define RXSTAT_DATA_UPDT 2U /* OUT data packet received */
#define RXSTAT_XFER_COMP 3U /* OUT transfer completed (triggers an interrupt) */
#define RXSTAT_SETUP_COMP 4U /* SETUP transaction completed (triggers an interrupt) */
#define RXSTAT_SETUP_UPDT 6U /* SETUP data packet received */
#define DPID_DATA0 0U /* device endpoint data PID is DATA0 */
#define DPID_DATA1 2U /* device endpoint data PID is DATA1 */
#define DPID_DATA2 1U /* device endpoint data PID is DATA2 */
#define DPID_MDATA 3U /* device endpoint data PID is MDATA */
#define HC_PID_DATA0 0U /* host channel data PID is DATA0 */
#define HC_PID_DATA2 1U /* host channel data PID is DATA2 */
#define HC_PID_DATA1 2U /* host channel data PID is DATA1 */
#define HC_PID_SETUP 3U /* host channel data PID is SETUP */
#define HPRT_PRTSPD_HIGH_SPEED 0U /* host port speed use high speed */
#define HPRT_PRTSPD_FULL_SPEED 1U /* host port speed use full speed */
#define HPRT_PRTSPD_LOW_SPEED 2U /* host port speed use low speed */
#define HCTLR_30_60_MHZ 0U /* USB PHY(ULPI) clock is 60MHz */
#define HCTLR_48_MHZ 1U /* USB PHY(embedded full-speed) clock is 48MHz */
#define HCTLR_6_MHZ 2U /* USB PHY(embedded low-speed) clock is 6MHz */
#define HCCHAR_CTRL 0U /* control channel type */
#define HCCHAR_ISOC 1U /* synchronous channel type */
#define HCCHAR_BULK 2U /* bulk channel type */
#define HCCHAR_INTR 3U /* interrupt channel type */
typedef enum
{
USB_HS_CORE_ID = 0,
USB_FS_CORE_ID = 1
}usb_core_id_enum;
typedef enum
{
USB_SPEED_UNKNOWN = 0,
USB_SPEED_LOW,
USB_SPEED_FULL,
USB_SPEED_HIGH
}usb_speed_enum;
#endif /* USB_DEFINES_H */

View File

@ -0,0 +1,630 @@
/*!
\file usb_regs.h
\brief USB FS cell registers definition and handle macros
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USB_REGS_H
#define USB_REGS_H
#include "usb_conf.h"
#define USBFS USBFS_BASE /*!< base address of USBFS registers */
/* registers location definitions */
#define LOCATE_DIEPTFLEN(x) (0x104U + 4U * ((x) - 1U)) /*!< locate device IN endpoint-x transfer length registers */
#define LOCATE_HCHCTL(x) (0x500U + 0x20U * (x)) /*!< locate host channel-x control registers */
#define LOCATE_HCHSTCTL(x) (0x504U + 0x20U * (x)) /*!< locate host channel-x split transaction control registers */
#define LOCATE_HCHINTF(x) (0x508U + 0x20U * (x)) /*!< locate host channel-x interrupt flag registers */
#define LOCATE_HCHINTEN(x) (0x50CU + 0x20U * (x)) /*!< locate host channel-x interrupt enable registers */
#define LOCATE_HCHLEN(x) (0x510U + 0x20U * (x)) /*!< locate host channel-x transfer length registers */
#define LOCATE_HCHDMAADDR(x) (0x514U + 0x20U * (x)) /*!< locate host channel-x DMA address registers */
#define LOCATE_DIEPCTL(x) (0x900U + 0x20U * (x)) /*!< locate device IN endpoint-x control registers */
#define LOCATE_DOEPCTL(x) (0xB00U + 0x20U * (x)) /*!< locate device OUT endpoint-x control registers */
#define LOCATE_DIEPINTF(x) (0x908U + 0x20U * (x)) /*!< locate device IN endpoint-x interrupt flag registers */
#define LOCATE_DOEPINTF(x) (0xB08U + 0x20U * (x)) /*!< locate device OUT endpoint-x interrupt flag registers */
#define LOCATE_DIEPLEN(x) (0x910U + 0x20U * (x)) /*!< locate device IN endpoint-x transfer length registers */
#define LOCATE_DOEPLEN(x) (0xB10U + 0x20U * (x)) /*!< locate device OUT endpoint-x transfer length registers */
#define LOCATE_DIEPxDMAADDR(x) (0x914U + 0x20U * (x)) /*!< locate device IN endpoint-x DMA address registers */
#define LOCATE_DOEPxDMAADDR(x) (0xB14U + 0x20U * (x)) /*!< locate device OUT endpoint-x DMA address registers */
#define LOCATE_DIEPxTFSTAT(x) (0x918U + 0x20U * (x)) /*!< locate Device IN endpoint-x transmit FIFO status register */
#define LOCATE_FIFO(x) (((x) + 1U) << 12U) /*!< locate FIFO-x memory */
/* registers definitions */
#define USB_GOTGCS REG32(((USBFS) + 0x0000U)) /*!< global OTG control and status register */
#define USB_GOTGINTF REG32(((USBFS) + 0x0004U)) /*!< global OTG interrupt flag register */
#define USB_GAHBCS REG32(((USBFS) + 0x0008U)) /*!< global AHB control and status register */
#define USB_GUSBCS REG32(((USBFS) + 0x000CU)) /*!< global USB control and status register */
#define USB_GRSTCTL REG32(((USBFS) + 0x0010U)) /*!< global reset control register */
#define USB_GINTF REG32(((USBFS) + 0x0014U)) /*!< global interrupt flag register */
#define USB_GINTEN REG32(((USBFS) + 0x0018U)) /*!< global interrupt enable register */
#define USB_GRSTATR REG32(((USBFS) + 0x001CU)) /*!< global receive status read register */
#define USB_GRSTATP REG32(((USBFS) + 0x0020U)) /*!< global receive status read and pop register */
#define USB_GRFLEN REG32(((USBFS) + 0x0024U)) /*!< global receive FIFO length register */
#define USB_HNPTFLEN REG32(((USBFS) + 0x0028U)) /*!< host non-periodic transmit FIFO length register */
#define USB_DIEP0TFLEN REG32(((USBFS) + 0x0028U)) /*!< device IN endpoint 0 transmit FIFO length register */
#define USB_HNPTFQSTAT REG32(((USBFS) + 0x002CU)) /*!< host non-periodic transmint FIFO/queue status register */
#define USB_GCCFG REG32(((USBFS) + 0x0038U)) /*!< global core configuration register */
#define USB_CID REG32(((USBFS) + 0x003CU)) /*!< core id register */
#define USB_HPTFLEN REG32(((USBFS) + 0x0100U)) /*!< host periodic transmit FIFO length register */
#define USB_DIEPxTFLEN(x) REG32(((USBFS) + LOCATE_DIEPTFLEN(x))) /*!< device IN endpoint transmit FIFO length register */
#define USB_HCTL REG32(((USBFS) + 0x0400U)) /*!< host control register */
#define USB_HFT REG32(((USBFS) + 0x0404U)) /*!< host frame interval register */
#define USB_HFINFR REG32(((USBFS) + 0x0408U)) /*!< host frame information remaining register */
#define USB_HPTFQSTAT REG32(((USBFS) + 0x0410U)) /*!< host periodic transmit FIFO/queue status register */
#define USB_HACHINT REG32(((USBFS) + 0x0414U)) /*!< host all channels interrupt register */
#define USB_HACHINTEN REG32(((USBFS) + 0x0418U)) /*!< host all channels interrupt enable register */
#define USB_HPCS REG32(((USBFS) + 0x0440U)) /*!< host port control and status register */
#define USB_HCHxCTL(x) REG32(((USBFS) + LOCATE_HCHCTL(x))) /*!< host channel-x control register */
#define USB_HCHxSTCTL(x) REG32(((USBFS) + LOCATE_HCHSTCTL(x))) /*!< host channel-x split transaction control register */
#define USB_HCHxINTF(x) REG32(((USBFS) + LOCATE_HCHINTF(x))) /*!< host channel-x interrupt flag register */
#define USB_HCHxINTEN(x) REG32(((USBFS) + LOCATE_HCHINTEN(x))) /*!< host channel-x interrupt enable register */
#define USB_HCHxLEN(x) REG32(((USBFS) + LOCATE_HCHLEN(x))) /*!< host channel-x tranfer length register */
#define USB_HCHxDMAADDR(x) REG32(((USBFS) + LOCATE_HCHDMAADDR(x))) /*!< host channel-x DMA address register */
#define USB_DCFG REG32(((USBFS) + 0x0800U)) /*!< device configuration register */
#define USB_DCTL REG32(((USBFS) + 0x0804U)) /*!< device control register */
#define USB_DSTAT REG32(((USBFS) + 0x0808U)) /*!< device status register */
#define USB_DIEPINTEN REG32(((USBFS) + 0x0810U)) /*!< device IN endpoint common interrupt enable register */
#define USB_DOEPINTEN REG32(((USBFS) + 0x0814U)) /*!< device OUT endpoint common interrupt enable register */
#define USB_DAEPINT REG32(((USBFS) + 0x0818U)) /*!< device all endpoints interrupt register */
#define USB_DAEPINTEN REG32(((USBFS) + 0x081CU)) /*!< device all endpoints interrupt enable register */
#define USB_DVBUSDT REG32(((USBFS) + 0x0828U)) /*!< device vbus discharge time register */
#define USB_DVBUSPT REG32(((USBFS) + 0x082CU)) /*!< device vbus pulsing time register */
#define USB_DIEPFEINTEN REG32(((USBFS) + 0x0834U)) /*!< device IN endpoint FIFO empty interrupt enable register */
#define USB_DEP1INT REG32(((USBFS) + 0x0838U)) /*!< device endpoint 1 interrupt register */
#define USB_DEP1INTEN REG32(((USBFS) + 0x083CU)) /*!< device endpoint 1 interrupt enable register */
#define USB_DIEP1INTEN REG32(((USBFS) + 0x0844U)) /*!< device IN endpoint 1 interrupt enable register */
#define USB_DOEP1INTEN REG32(((USBFS) + 0x0884U)) /*!< device OUT endpoint 1 interrupt enable register */
#define USB_DIEP0CTL REG32(((USBFS) + 0x0900U)) /*!< device IN endpoint 0 control register */
#define USB_DIEP0LEN REG32(((USBFS) + 0x0910U)) /*!< device IN endpoint 0 transfer length register */
#define USB_DOEP0CTL REG32(((USBFS) + 0x0B00U)) /*!< device OUT endpoint 0 control register */
#define USB_DOEP0LEN REG32(((USBFS) + 0x0B10U)) /*!< device OUT endpoint 0 transfer length register */
#define USB_DIEPxCTL(x) REG32(((USBFS) + LOCATE_DIEPCTL(x))) /*!< device IN endpoint-x control register */
#define USB_DOEPxCTL(x) REG32(((USBFS) + LOCATE_DOEPCTL(x))) /*!< device OUT endpoint-x control register */
#define USB_DIEPxINTF(x) REG32(((USBFS) + LOCATE_DIEPINTF(x))) /*!< device IN endpoint-x interrupt flag register */
#define USB_DOEPxINTF(x) REG32(((USBFS) + LOCATE_DOEPINTF(x))) /*!< device OUT endpoint-x interrupt flag register */
#define USB_DIEPxLEN(x) REG32(((USBFS) + LOCATE_DIEPLEN(x))) /*!< device IN endpoint-x transfer length register */
#define USB_DOEPxLEN(x) REG32(((USBFS) + LOCATE_DOEPLEN(x))) /*!< device OUT endpoint-x transfer length register */
#define USB_DIEPxDMAADDR(x) REG32(((USBFS) + LOCATE_DIEPxDMAADDR(x)))/*!< device IN endpoint-x DMA address register */
#define USB_DOEPxDMAADDR(x) REG32(((USBFS) + LOCATE_DOEPxDMAADDR(x)))/*!< device OUT endpoint-x DMA address register */
#define USB_DIEPxTFSTAT(x) REG32(((USBFS) + LOCATE_DIEPxTFSTAT(x))) /*!< device IN endpoint-x transmit FIFO status register */
#define USB_PWRCLKCTL REG32(((USBFS) + 0x0E00U)) /*!< power and clock register */
#define USB_FIFO(x) (&REG32(((USBFS) + LOCATE_FIFO(x)))) /*!< FIFO memory */
/* global OTG control and status register bits definitions */
#define GOTGCS_BSV BIT(19) /*!< B-Session Valid */
#define GOTGCS_ASV BIT(18) /*!< A-session valid */
#define GOTGCS_DI BIT(17) /*!< debounce interval */
#define GOTGCS_CIDPS BIT(16) /*!< id pin status */
#define GOTGCS_DHNPEN BIT(11) /*!< device HNP enable */
#define GOTGCS_HHNPEN BIT(10) /*!< host HNP enable */
#define GOTGCS_HNPREQ BIT(9) /*!< HNP request */
#define GOTGCS_HNPS BIT(8) /*!< HNP successes */
#define GOTGCS_SRPREQ BIT(1) /*!< SRP request */
#define GOTGCS_SRPS BIT(0) /*!< SRP successes */
/* global OTG interrupt flag register bits definitions */
#define GOTGINTF_DF BIT(19) /*!< debounce finish */
#define GOTGINTF_ADTO BIT(18) /*!< A-device timeout */
#define GOTGINTF_HNPDET BIT(17) /*!< host negotiation request detected */
#define GOTGINTF_HNPEND BIT(9) /*!< HNP end */
#define GOTGINTF_SRPEND BIT(8) /*!< SRP end */
#define GOTGINTF_SESEND BIT(2) /*!< session end */
/* global AHB control and status register bits definitions */
#define GAHBCS_PTXFTH BIT(8) /*!< periodic Tx FIFO threshold */
#define GAHBCS_TXFTH BIT(7) /*!< tx FIFO threshold */
#define GAHBCS_DMAEN BIT(5) /*!< DMA function Enable */
#define GAHBCS_BURST BITS(1, 4) /*!< the AHB burst type used by DMA */
#define GAHBCS_GINTEN BIT(0) /*!< global interrupt enable */
/* global USB control and status register bits definitions */
#define GUSBCS_FDM BIT(30) /*!< force device mode */
#define GUSBCS_FHM BIT(29) /*!< force host mode */
#define GUSBCS_ULPIEOI BIT(21) /*!< ULPI external over-current indicator */
#define GUSBCS_ULPIEVD BIT(20) /*!< ULPI external VBUS driver */
#define GUSBCS_UTT BITS(10, 13) /*!< USB turnaround time */
#define GUSBCS_HNPCEN BIT(9) /*!< HNP capability enable */
#define GUSBCS_SRPCEN BIT(8) /*!< SRP capability enable */
#define GUSBCS_EMBPHY BIT(6) /*!< embedded PHY selected */
#define GUSBCS_TOC BITS(0, 2) /*!< timeout calibration */
/* global reset control register bits definitions */
#define GRSTCTL_DMAIDL BIT(31) /*!< DMA idle state */
#define GRSTCTL_DMABSY BIT(30) /*!< DMA busy */
#define GRSTCTL_TXFNUM BITS(6, 10) /*!< tx FIFO number */
#define GRSTCTL_TXFF BIT(5) /*!< tx FIFO flush */
#define GRSTCTL_RXFF BIT(4) /*!< rx FIFO flush */
#define GRSTCTL_HFCRST BIT(2) /*!< host frame counter reset */
#define GRSTCTL_HCSRST BIT(1) /*!< HCLK soft reset */
#define GRSTCTL_CSRST BIT(0) /*!< core soft reset */
/* global interrupt flag register bits definitions */
#define GINTF_WKUPIF BIT(31) /*!< wakeup interrupt flag */
#define GINTF_SESIF BIT(30) /*!< session interrupt flag */
#define GINTF_DISCIF BIT(29) /*!< disconnect interrupt flag */
#define GINTF_IDPSC BIT(28) /*!< id pin status change */
#define GINTF_PTXFEIF BIT(26) /*!< periodic tx FIFO empty interrupt flag */
#define GINTF_HCIF BIT(25) /*!< host channels interrupt flag */
#define GINTF_HPIF BIT(24) /*!< host port interrupt flag */
#define GINTF_PXNCIF BIT(21) /*!< periodic transfer not complete interrupt flag */
#define GINTF_ISOONCIF BIT(21) /*!< isochronous OUT transfer not complete interrupt flag */
#define GINTF_ISOINCIF BIT(20) /*!< isochronous IN transfer not complete interrupt flag */
#define GINTF_OEPIF BIT(19) /*!< OUT endpoint interrupt flag */
#define GINTF_IEPIF BIT(18) /*!< IN endpoint interrupt flag */
#define GINTF_EOPFIF BIT(15) /*!< end of periodic frame interrupt flag */
#define GINTF_ISOOPDIF BIT(14) /*!< isochronous OUT packet dropped interrupt flag */
#define GINTF_ENUMFIF BIT(13) /*!< enumeration finished */
#define GINTF_RST BIT(12) /*!< USB reset */
#define GINTF_SP BIT(11) /*!< USB suspend */
#define GINTF_ESP BIT(10) /*!< early suspend */
#define GINTF_GONAK BIT(7) /*!< global OUT NAK effective */
#define GINTF_GNPINAK BIT(6) /*!< global IN non-periodic NAK effective */
#define GINTF_NPTXFEIF BIT(5) /*!< non-periodic tx FIFO empty interrupt flag */
#define GINTF_RXFNEIF BIT(4) /*!< rx FIFO non-empty interrupt flag */
#define GINTF_SOF BIT(3) /*!< start of frame */
#define GINTF_OTGIF BIT(2) /*!< OTG interrupt flag */
#define GINTF_MFIF BIT(1) /*!< mode fault interrupt flag */
#define GINTF_COPM BIT(0) /*!< current operation mode */
/* global interrupt enable register bits definitions */
#define GINTEN_WKUPIE BIT(31) /*!< wakeup interrupt enable */
#define GINTEN_SESIE BIT(30) /*!< session interrupt enable */
#define GINTEN_DISCIE BIT(29) /*!< disconnect interrupt enable */
#define GINTEN_IDPSCIE BIT(28) /*!< id pin status change interrupt enable */
#define GINTEN_PTXFEIE BIT(26) /*!< periodic tx FIFO empty interrupt enable */
#define GINTEN_HCIE BIT(25) /*!< host channels interrupt enable */
#define GINTEN_HPIE BIT(24) /*!< host port interrupt enable */
#define GINTEN_IPXIE BIT(21) /*!< periodic transfer not complete interrupt enable */
#define GINTEN_ISOONCIE BIT(21) /*!< isochronous OUT transfer not complete interrupt enable */
#define GINTEN_ISOINCIE BIT(20) /*!< isochronous IN transfer not complete interrupt enable */
#define GINTEN_OEPIE BIT(19) /*!< OUT endpoints interrupt enable */
#define GINTEN_IEPIE BIT(18) /*!< IN endpoints interrupt enable */
#define GINTEN_EOPFIE BIT(15) /*!< end of periodic frame interrupt enable */
#define GINTEN_ISOOPDIE BIT(14) /*!< isochronous OUT packet dropped interrupt enable */
#define GINTEN_ENUMFIE BIT(13) /*!< enumeration finish enable */
#define GINTEN_RSTIE BIT(12) /*!< USB reset interrupt enable */
#define GINTEN_SPIE BIT(11) /*!< USB suspend interrupt enable */
#define GINTEN_ESPIE BIT(10) /*!< early suspend interrupt enable */
#define GINTEN_GONAKIE BIT(7) /*!< global OUT NAK effective interrupt enable */
#define GINTEN_GNPINAKIE BIT(6) /*!< global non-periodic IN NAK effective interrupt enable */
#define GINTEN_NPTXFEIE BIT(5) /*!< non-periodic Tx FIFO empty interrupt enable */
#define GINTEN_RXFNEIE BIT(4) /*!< receive FIFO non-empty interrupt enable */
#define GINTEN_SOFIE BIT(3) /*!< start of frame interrupt enable */
#define GINTEN_OTGIE BIT(2) /*!< OTG interrupt enable */
#define GINTEN_MFIE BIT(1) /*!< mode fault interrupt enable */
/* global receive status read and pop register bits definitions */
#define GRSTATRP_RPCKST BITS(17, 20) /*!< received packet status */
#define GRSTATRP_DPID BITS(15, 16) /*!< data PID */
#define GRSTATRP_BCOUNT BITS(4, 14) /*!< byte count */
#define GRSTATRP_CNUM BITS(0, 3) /*!< channel number */
#define GRSTATRP_EPNUM BITS(0, 3) /*!< endpoint number */
/* global receive FIFO length register bits definitions */
#define GRFLEN_RXFD BITS(0, 15) /*!< rx FIFO depth */
/* host non-periodic transmit FIFO length register bits definitions */
#define HNPTFLEN_HNPTXFD BITS(16, 31) /*!< non-periodic Tx FIFO depth */
#define HNPTFLEN_HNPTXRSAR BITS(0, 15) /*!< non-periodic Tx RAM start address */
/* IN endpoint 0 transmit FIFO length register bits definitions */
#define DIEP0TFLEN_IEP0TXFD BITS(16, 31) /*!< IN Endpoint 0 Tx FIFO depth */
#define DIEP0TFLEN_IEP0TXRSAR BITS(0, 15) /*!< IN Endpoint 0 TX RAM start address */
/* host non-periodic transmit FIFO/queue status register bits definitions */
#define HNPTFQSTAT_NPTXRQTOP BITS(24, 30) /*!< top entry of the non-periodic Tx request queue */
#define HNPTFQSTAT_NPTXRQS BITS(16, 23) /*!< non-periodic Tx request queue space */
#define HNPTFQSTAT_NPTXFS BITS(0, 15) /*!< non-periodic Tx FIFO space */
#define HNPTFQSTAT_CNUM BITS(27, 30) /*!< channel number*/
#define HNPTFQSTAT_EPNUM BITS(27, 30) /*!< endpoint number */
#define HNPTFQSTAT_TYPE BITS(25, 26) /*!< token type */
#define HNPTFQSTAT_TMF BIT(24) /*!< terminate flag */
/* global core configuration register bits definitions */
#define GCCFG_VBUSIG BIT(21) /*!< vbus ignored */
#define GCCFG_SOFOEN BIT(20) /*!< SOF output enable */
#define GCCFG_VBUSBCEN BIT(19) /*!< the VBUS B-device comparer enable */
#define GCCFG_VBUSACEN BIT(18) /*!< the VBUS A-device comparer enable */
#define GCCFG_PWRON BIT(16) /*!< power on */
/* core ID register bits definitions */
#define CID_CID BITS(0, 31) /*!< core ID */
/* host periodic transmit FIFO length register bits definitions */
#define HPTFLEN_HPTXFD BITS(16, 31) /*!< host periodic Tx FIFO depth */
#define HPTFLEN_HPTXFSAR BITS(0, 15) /*!< host periodic Tx RAM start address */
/* device IN endpoint transmit FIFO length register bits definitions */
#define DIEPTFLEN_IEPTXFD BITS(16, 31) /*!< IN endpoint Tx FIFO x depth */
#define DIEPTFLEN_IEPTXRSAR BITS(0, 15) /*!< IN endpoint FIFOx Tx x RAM start address */
/* host control register bits definitions */
#define HCTL_SPDFSLS BIT(2) /*!< speed limited to FS and LS */
#define HCTL_CLKSEL BITS(0, 1) /*!< clock select for USB clock */
/* host frame interval register bits definitions */
#define HFT_FRI BITS(0, 15) /*!< frame interval */
/* host frame information remaining register bits definitions */
#define HFINFR_FRT BITS(16, 31) /*!< frame remaining time */
#define HFINFR_FRNUM BITS(0, 15) /*!< frame number */
/* host periodic transmit FIFO/queue status register bits definitions */
#define HPTFQSTAT_PTXREQT BITS(24, 31) /*!< top entry of the periodic Tx request queue */
#define HPTFQSTAT_PTXREQS BITS(16, 23) /*!< periodic Tx request queue space */
#define HPTFQSTAT_PTXFS BITS(0, 15) /*!< periodic Tx FIFO space */
#define HPTFQSTAT_OEFRM BIT(31) /*!< odd/eveb frame */
#define HPTFQSTAT_CNUM BITS(27, 30) /*!< channel number */
#define HPTFQSTAT_EPNUM BITS(27, 30) /*!< endpoint number */
#define HPTFQSTAT_TYPE BITS(25, 26) /*!< token type */
#define HPTFQSTAT_TMF BIT(24) /*!< terminate flag */
/* host all channels interrupt register bits definitions */
#define HACHINT_HACHINT BITS(0, 11) /*!< host all channel interrupts */
/* host all channels interrupt enable register bits definitions */
#define HACHINTEN_CINTEN BITS(0, 11) /*!< channel interrupt enable */
/* host port control and status register bits definitions */
#define HPCS_PS BITS(17, 18) /*!< port speed */
#define HPCS_PP BIT(12) /*!< port power */
#define HPCS_PLST BITS(10, 11) /*!< port line status */
#define HPCS_PRST BIT(8) /*!< port reset */
#define HPCS_PSP BIT(7) /*!< port suspend */
#define HPCS_PREM BIT(6) /*!< port resume */
#define HPCS_PEDC BIT(3) /*!< port enable/disable change */
#define HPCS_PE BIT(2) /*!< port enable */
#define HPCS_PCD BIT(1) /*!< port connect detected */
#define HPCS_PCST BIT(0) /*!< port connect status */
/* host channel-x control register bits definitions */
#define HCHCTL_CEN BIT(31) /*!< channel enable */
#define HCHCTL_CDIS BIT(30) /*!< channel disable */
#define HCHCTL_ODDFRM BIT(29) /*!< odd frame */
#define HCHCTL_DAR BITS(22, 28) /*!< device address */
#define HCHCTL_MPC BITS(20, 21) /*!< multiple packet count */
#define HCHCTL_EPTYPE BITS(18, 19) /*!< endpoint type */
#define HCHCTL_LSD BIT(17) /*!< low-speed device */
#define HCHCTL_EPDIR BIT(15) /*!< endpoint direction */
#define HCHCTL_EPNUM BITS(11, 14) /*!< endpoint number */
#define HCHCTL_MPL BITS(0, 10) /*!< maximum packet length */
/* host channel-x split transaction register bits definitions */
#define HCHSTCTL_SPLEN BIT(31) /*!< enable high-speed split transaction */
#define HCHSTCTL_CSPLT BIT(16) /*!< complete-split enable */
#define HCHSTCTL_ISOPCE BITS(14, 15) /*!< isochronous OUT payload continuation encoding */
#define HCHSTCTL_HADDR BITS(7, 13) /*!< HUB address */
#define HCHSTCTL_PADDR BITS(0, 6) /*!< port address */
/* host channel-x interrupt flag register bits definitions */
#define HCHINTF_DTER BIT(10) /*!< data toggle error */
#define HCHINTF_REQOVR BIT(9) /*!< request queue overrun */
#define HCHINTF_BBER BIT(8) /*!< babble error */
#define HCHINTF_USBER BIT(7) /*!< USB bus Error */
#define HCHINTF_NYET BIT(6) /*!< NYET */
#define HCHINTF_ACK BIT(5) /*!< ACK */
#define HCHINTF_NAK BIT(4) /*!< NAK */
#define HCHINTF_STALL BIT(3) /*!< STALL */
#define HCHINTF_DMAER BIT(2) /*!< DMA error */
#define HCHINTF_CH BIT(1) /*!< channel halted */
#define HCHINTF_TF BIT(0) /*!< transfer finished */
/* host channel-x interrupt enable register bits definitions */
#define HCHINTEN_DTERIE BIT(10) /*!< data toggle error interrupt enable */
#define HCHINTEN_REQOVRIE BIT(9) /*!< request queue overrun interrupt enable */
#define HCHINTEN_BBERIE BIT(8) /*!< babble error interrupt enable */
#define HCHINTEN_USBERIE BIT(7) /*!< USB bus error interrupt enable */
#define HCHINTEN_NYETIE BIT(6) /*!< NYET interrupt enable */
#define HCHINTEN_ACKIE BIT(5) /*!< ACK interrupt enable */
#define HCHINTEN_NAKIE BIT(4) /*!< NAK interrupt enable */
#define HCHINTEN_STALLIE BIT(3) /*!< STALL interrupt enable */
#define HCHINTEN_DMAERIE BIT(2) /*!< DMA error interrupt enable */
#define HCHINTEN_CHIE BIT(1) /*!< channel halted interrupt enable */
#define HCHINTEN_TFIE BIT(0) /*!< transfer finished interrupt enable */
/* host channel-x transfer length register bits definitions */
#define HCHLEN_PING BIT(31) /*!< PING token request */
#define HCHLEN_DPID BITS(29, 30) /*!< data PID */
#define HCHLEN_PCNT BITS(19, 28) /*!< packet count */
#define HCHLEN_TLEN BITS(0, 18) /*!< transfer length */
/* host channel-x DMA address register bits definitions */
#define HCHDMAADDR_DMAADDR BITS(0, 31) /*!< DMA address */
/* device control and status registers */
/* device configuration registers bits definitions */
#define DCFG_EOPFT BITS(11, 12) /*!< end of periodic frame time */
#define DCFG_DAR BITS(4, 10) /*!< device address */
#define DCFG_NZLSOH BIT(2) /*!< non-zero-length status OUT handshake */
#define DCFG_DS BITS(0, 1) /*!< device speed */
/* device control registers bits definitions */
#define DCTL_POIF BIT(11) /*!< power-on initialization finished */
#define DCTL_CGONAK BIT(10) /*!< clear global OUT NAK */
#define DCTL_SGONAK BIT(9) /*!< set global OUT NAK */
#define DCTL_CGINAK BIT(8) /*!< clear global IN NAK */
#define DCTL_SGINAK BIT(7) /*!< set global IN NAK */
#define DCTL_GONS BIT(3) /*!< global OUT NAK status */
#define DCTL_GINS BIT(2) /*!< global IN NAK status */
#define DCTL_SD BIT(1) /*!< soft disconnect */
#define DCTL_RWKUP BIT(0) /*!< remote wakeup */
/* device status registers bits definitions */
#define DSTAT_FNRSOF BITS(8, 21) /*!< the frame number of the received SOF. */
#define DSTAT_ES BITS(1, 2) /*!< enumerated speed */
#define DSTAT_SPST BIT(0) /*!< suspend status */
/* device IN endpoint common interrupt enable registers bits definitions */
#define DIEPINTEN_NAKEN BIT(13) /*!< NAK handshake sent by USBHS interrupt enable bit */
#define DIEPINTEN_TXFEEN BIT(7) /*!< transmit FIFO empty interrupt enable bit */
#define DIEPINTEN_IEPNEEN BIT(6) /*!< IN endpoint NAK effective interrupt enable bit */
#define DIEPINTEN_EPTXFUDEN BIT(4) /*!< endpoint Tx FIFO underrun interrupt enable bit */
#define DIEPINTEN_CITOEN BIT(3) /*!< control In Timeout interrupt enable bit */
#define DIEPINTEN_EPDISEN BIT(1) /*!< endpoint disabled interrupt enable bit */
#define DIEPINTEN_TFEN BIT(0) /*!< transfer finished interrupt enable bit */
/* device OUT endpoint common interrupt enable registers bits definitions */
#define DOEPINTEN_NYETEN BIT(14) /*!< NYET handshake is sent interrupt enable bit */
#define DOEPINTEN_BTBSTPEN BIT(6) /*!< back-to-back SETUP packets interrupt enable bit */
#define DOEPINTEN_EPRXFOVREN BIT(4) /*!< endpoint Rx FIFO overrun interrupt enable bit */
#define DOEPINTEN_STPFEN BIT(3) /*!< SETUP phase finished interrupt enable bit */
#define DOEPINTEN_EPDISEN BIT(1) /*!< endpoint disabled interrupt enable bit */
#define DOEPINTEN_TFEN BIT(0) /*!< transfer finished interrupt enable bit */
/* device all endpoints interrupt registers bits definitions */
#define DAEPINT_OEPITB BITS(16, 21) /*!< device all OUT endpoint interrupt bits */
#define DAEPINT_IEPITB BITS(0, 5) /*!< device all IN endpoint interrupt bits */
/* device all endpoints interrupt enable registers bits definitions */
#define DAEPINTEN_OEPIE BITS(16, 21) /*!< OUT endpoint interrupt enable */
#define DAEPINTEN_IEPIE BITS(0, 3) /*!< IN endpoint interrupt enable */
/* device Vbus discharge time registers bits definitions */
#define DVBUSDT_DVBUSDT BITS(0, 15) /*!< device VBUS discharge time */
/* device Vbus pulsing time registers bits definitions */
#define DVBUSPT_DVBUSPT BITS(0, 11) /*!< device VBUS pulsing time */
/* device IN endpoint FIFO empty interrupt enable register bits definitions */
#define DIEPFEINTEN_IEPTXFEIE BITS(0, 5) /*!< IN endpoint Tx FIFO empty interrupt enable bits */
/* device endpoint 1 interrupt register bits definitions */
#define DEP1INT_OEP1INT BIT(17) /*!< OUT Endpoint 1 interrupt */
#define DEP1INT_IEP1INT BIT(1) /*!< IN Endpoint 1 interrupt */
/* device endpoint 1 interrupt register enable bits definitions */
#define DEP1INTEN_OEP1INTEN BIT(17) /*!< OUT Endpoint 1 interrupt enable */
#define DEP1INTEN_IEP1INTEN BIT(1) /*!< IN Endpoint 1 interrupt enable */
/* device IN endpoint 1 interrupt enable register bits definitions */
#define DIEP1INTEN_NAKEN BIT(13) /*!< NAK handshake sent by USBHS interrupt enable bit */
#define DIEP1INTEN_IEPNEEN BIT(6) /*!< IN endpoint NAK effective interrupt enable bit */
#define DIEP1INTEN_EPTXFUDEN BIT(4) /*!< endpoint Tx FIFO underrun interrupt enable bit */
#define DIEP1INTEN_CITOEN BIT(3) /*!< control In Timeout interrupt enable bit */
#define DIEP1INTEN_EPDISEN BIT(1) /*!< endpoint disabled interrupt enable bit */
#define DIEP1INTEN_TFEN BIT(0) /*!< transfer finished interrupt enable bit */
/* device OUT endpoint 1 interrupt enable register bits definitions */
#define DOEP1INTEN_NYETEN BIT(14) /*!< NYET handshake is sent interrupt enable bit */
#define DOEP1INTEN_BTBSTPEN BIT(6) /*!< back-to-back SETUP packets interrupt enable bit */
#define DOEP1INTEN_EPRXOVREN BIT(4) /*!< endpoint Rx FIFO over run interrupt enable bit */
#define DOEP1INTEN_STPFEN BIT(3) /*!< SETUP phase finished interrupt enable bit */
#define DOEP1INTEN_EPDISEN BIT(1) /*!< endpoint disabled interrupt enable bit */
#define DOEP1INTEN_TFEN BIT(0) /*!< back-to-back SETUP packets interrupt enable bit */
/* device endpoint 0 control register bits definitions */
#define DEP0CTL_EPEN BIT(31) /*!< endpoint enable */
#define DEP0CTL_EPD BIT(30) /*!< endpoint disable */
#define DEP0CTL_SNAK BIT(27) /*!< set NAK */
#define DEP0CTL_CNAK BIT(26) /*!< clear NAK */
#define DIEP0CTL_TXFNUM BITS(22, 25) /*!< tx FIFO number */
#define DEP0CTL_STALL BIT(21) /*!< STALL handshake */
#define DOEP0CTL_SNOOP BIT(20) /*!< snoop mode */
#define DEP0CTL_EPTYPE BITS(18, 19) /*!< endpoint type */
#define DEP0CTL_NAKS BIT(17) /*!< NAK status */
#define DEP0CTL_EPACT BIT(15) /*!< endpoint active */
#define DEP0CTL_MPL BITS(0, 1) /*!< maximum packet length */
/* device endpoint x control register bits definitions */
#define DEPCTL_EPEN BIT(31) /*!< endpoint enable */
#define DEPCTL_EPD BIT(30) /*!< endpoint disable */
#define DEPCTL_SODDFRM BIT(29) /*!< set odd frame */
#define DEPCTL_SD1PID BIT(29) /*!< set DATA1 PID */
#define DEPCTL_SEVNFRM BIT(28) /*!< set even frame */
#define DEPCTL_SD0PID BIT(28) /*!< set DATA0 PID */
#define DEPCTL_SNAK BIT(27) /*!< set NAK */
#define DEPCTL_CNAK BIT(26) /*!< clear NAK */
#define DIEPCTL_TXFNUM BITS(22, 25) /*!< tx FIFO number */
#define DEPCTL_STALL BIT(21) /*!< STALL handshake */
#define DOEPCTL_SNOOP BIT(20) /*!< snoop mode */
#define DEPCTL_EPTYPE BITS(18, 19) /*!< endpoint type */
#define DEPCTL_NAKS BIT(17) /*!< NAK status */
#define DEPCTL_EOFRM BIT(16) /*!< even/odd frame */
#define DEPCTL_DPID BIT(16) /*!< endpoint data PID */
#define DEPCTL_EPACT BIT(15) /*!< endpoint active */
#define DEPCTL_MPL BITS(0, 10) /*!< maximum packet length */
/* device IN endpoint-x interrupt flag register bits definitions */
#define DIEPINTF_NAK BIT(13) /*!< NAK handshake sent by USBHS */
#define DIEPINTF_TXFE BIT(7) /*!< transmit FIFO empty */
#define DIEPINTF_IEPNE BIT(6) /*!< IN endpoint NAK effective */
#define DIEPINTF_EPTXFUD BIT(4) /*!< endpoint Tx FIFO underrun */
#define DIEPINTF_CITO BIT(3) /*!< control In Timeout interrupt */
#define DIEPINTF_EPDIS BIT(1) /*!< endpoint disabled */
#define DIEPINTF_TF BIT(0) /*!< transfer finished */
/* device OUT endpoint-x interrupt flag register bits definitions */
#define DOEPINTF_NYET BIT(14) /*!< NYET handshake is sent */
#define DOEPINTF_BTBSTP BIT(6) /*!< back-to-back SETUP packets */
#define DOEPINTF_EPRXFOVR BIT(4) /*!< endpoint Rx FIFO overrun */
#define DOEPINTF_STPF BIT(3) /*!< SETUP phase finished */
#define DOEPINTF_EPDIS BIT(1) /*!< endpoint disabled */
#define DOEPINTF_TF BIT(0) /*!< transfer finished */
/* device IN endpoint 0 transfer length register bits definitions */
#define DIEP0LEN_PCNT BITS(19, 20) /*!< packet count */
#define DIEP0LEN_TLEN BITS(0, 6) /*!< transfer length */
/* device OUT endpoint 0 transfer length register bits definitions */
#define DOEP0LEN_STPCNT BITS(29, 30) /*!< SETUP packet count */
#define DOEP0LEN_PCNT BIT(19) /*!< packet count */
#define DOEP0LEN_TLEN BITS(0, 6) /*!< transfer length */
/* device OUT endpoint-x transfer length register bits definitions */
#define DOEPLEN_RXDPID BITS(29, 30) /*!< received data PID */
#define DOEPLEN_STPCNT BITS(29, 30) /*!< SETUP packet count */
#define DIEPLEN_MCNT BITS(29, 30) /*!< multi count */
#define DEPLEN_PCNT BITS(19, 28) /*!< packet count */
#define DEPLEN_TLEN BITS(0, 18) /*!< transfer length */
/* device IN endpoint-x DMA address register bits definitions */
#define DIEPDMAADDR_DMAADDR BITS(0, 31) /*!< DMA address */
/* device OUT endpoint-x DMA address register bits definitions */
#define DOEPDMAADDR_DMAADDR BITS(0, 31) /*!< DMA address */
/* device IN endpoint-x transmit FIFO status register bits definitions */
#define DIEPTFSTAT_IEPTFS BITS(0, 15) /*!< IN endpoint¡¯s Tx FIFO space remaining */
/* USB power and clock registers bits definition */
#define PWRCLKCTL_SHCLK BIT(1) /*!< stop HCLK */
#define PWRCLKCTL_SUCLK BIT(0) /*!< stop the USB clock */
/* register options defines */
#define DCFG_DEVSPEED(regval) (DCFG_DS & ((regval) << 0U)) /*!< device speed configuration */
#define USB_SPEED_EXP_HIGH DCFG_DEVSPEED(0U) /*!< device external PHY high speed */
#define USB_SPEED_EXP_FULL DCFG_DEVSPEED(1U) /*!< device external PHY full speed */
#define USB_SPEED_INP_FULL DCFG_DEVSPEED(3U) /*!< device internal PHY full speed */
#define GAHBCS_TFEL(regval) (GAHBCS_TXFTH & ((regval) << 7U)) /*!< device speed configuration */
#define TXFIFO_EMPTY_HALF GAHBCS_TFEL(0U) /*!< Tx FIFO half empty */
#define TXFIFO_EMPTY GAHBCS_TFEL(1U) /*!< Tx FIFO completely empty */
#define GAHBCS_DMAINCR(regval) (GAHBCS_BURST & ((regval) << 1U)) /*!< AHB burst type used by DMA*/
#define DMA_INCR0 GAHBCS_DMAINCR(0U) /*!< single burst type used by DMA*/
#define DMA_INCR1 GAHBCS_DMAINCR(1U) /*!< 4-beat incrementing burst type used by DMA*/
#define DMA_INCR4 GAHBCS_DMAINCR(3U) /*!< 8-beat incrementing burst type used by DMA*/
#define DMA_INCR8 GAHBCS_DMAINCR(5U) /*!< 16-beat incrementing burst type used by DMA*/
#define DMA_INCR16 GAHBCS_DMAINCR(7U) /*!< 32-beat incrementing burst type used by DMA*/
#define DCFG_PFRI(regval) (DCFG_EOPFT & ((regval) << 11U)) /*!< end of periodic frame time configuration */
#define FRAME_INTERVAL_80 DCFG_PFRI(0U) /*!< 80% of the frame time */
#define FRAME_INTERVAL_85 DCFG_PFRI(1U) /*!< 85% of the frame time */
#define FRAME_INTERVAL_90 DCFG_PFRI(2U) /*!< 90% of the frame time */
#define FRAME_INTERVAL_95 DCFG_PFRI(3U) /*!< 95% of the frame time */
#define DEP0_MPL(regval) (DEP0CTL_MPL & ((regval) << 0U)) /*!< maximum packet length configuration */
#define EP0MPL_64 DEP0_MPL(0U) /*!< maximum packet length 64 bytes */
#define EP0MPL_32 DEP0_MPL(1U) /*!< maximum packet length 32 bytes */
#define EP0MPL_16 DEP0_MPL(2U) /*!< maximum packet length 16 bytes */
#define EP0MPL_8 DEP0_MPL(3U) /*!< maximum packet length 8 bytes */
/* endpoints address */
/* first bit is direction(0 for Rx and 1 for Tx) */
#define EP0_OUT ((uint8_t)0x00U) /*!< endpoint out 0 */
#define EP0_IN ((uint8_t)0x80U) /*!< endpoint in 0 */
#define EP1_OUT ((uint8_t)0x01U) /*!< endpoint out 1 */
#define EP1_IN ((uint8_t)0x81U) /*!< endpoint in 1 */
#define EP2_OUT ((uint8_t)0x02U) /*!< endpoint out 2 */
#define EP2_IN ((uint8_t)0x82U) /*!< endpoint in 2 */
#define EP3_OUT ((uint8_t)0x03U) /*!< endpoint out 3 */
#define EP3_IN ((uint8_t)0x83U) /*!< endpoint in 3 */
/* enable global interrupt */
#define USB_GLOBAL_INT_ENABLE() (USB_GAHBCS |= GAHBCS_GINTEN)
/* disable global interrupt */
#define USB_GLOBAL_INT_DISABLE() (USB_GAHBCS &= ~GAHBCS_GINTEN)
/* get current operation mode */
#define USB_CURRENT_MODE_GET() (USB_GINTF & GINTF_COPM)
/* read global interrupt flag */
#define USB_CORE_INTR_READ(x) \
do { \
uint32_t global_intf = USB_GINTF; \
(x) = global_intf & USB_GINTEN; \
} while(0)
/* read global interrupt flag */
#define USB_DAOEP_INTR_READ(x) \
do { \
uint32_t dev_all_ep_inten = USB_DAEPINTEN; \
uint32_t dev_all_ep_int = USB_DAEPINT; \
uint32_t out_ep_intb = DAEPINT_OEPITB; \
(x) = (dev_all_ep_inten & dev_all_ep_int & out_ep_intb) >> 16; \
} while(0)
/* read out endpoint-x interrupt flag */
#define USB_DOEP_INTR_READ(x, EpID) \
do { \
uint32_t out_epintf = USB_DOEPxINTF(EpID); \
(x) = out_epintf & USB_DOEPINTEN; \
} while(0)
/* read all in endpoint interrupt flag */
#define USB_DAIEP_INTR_READ(x) \
do { \
uint32_t dev_all_ep_inten = USB_DAEPINTEN; \
uint32_t dev_all_ep_int = USB_DAEPINT; \
uint32_t in_ep_intb = DAEPINT_IEPITB; \
(x) = dev_all_ep_inten & dev_all_ep_int & in_ep_intb; \
} while(0)
/* read in endpoint-x interrupt flag */
#define USB_DIEP_INTR_READ(x, EpID) \
do { \
uint32_t dev_ep_intf = USB_DIEPxINTF(EpID); \
uint32_t dev_ep_fifoempty_intf = (((USB_DIEPFEINTEN >> (EpID)) & 0x1U) << 7U); \
uint32_t dev_inep_inten = USB_DIEPINTEN; \
(x) = dev_ep_intf & (dev_ep_fifoempty_intf | dev_inep_inten); \
} while(0)
/* generate remote wakup signal */
#define USB_REMOTE_WAKEUP_SET() (USB_DCTL |= DCTL_RWKUP)
/* no remote wakup signal generate */
#define USB_REMOTE_WAKEUP_RESET() (USB_DCTL &= ~DCTL_RWKUP)
/* generate soft disconnect */
#define USB_SOFT_DISCONNECT_ENABLE() (USB_DCTL |= DCTL_SD)
/* no soft disconnect generate */
#define USB_SOFT_DISCONNECT_DISABLE() (USB_DCTL &= ~DCTL_SD)
/* set device address */
#define USB_SET_DEVADDR(DevAddr) (USB_DCFG |= (DevAddr) << 4U)
/* check whether frame is even */
#define USB_EVEN_FRAME() (!(USB_HFINFR & 0x01U))
/* read port status */
#define USB_PORT_READ() (USB_HPCS & (~HPCS_PE) & (~HPCS_PCD) & (~HPCS_PEDC))
/* usb clock initialize */
#define USB_FSLSCLOCK_INIT(ClockFreq) (USB_HCTL &= ~HCTL_CLKSEL | (ClockFreq))
/* get usb current speed */
#define USB_CURRENT_SPEED_GET() ((USB_HPCS & HPCS_PS) >> 17)
/* get usb current frame */
#define USB_CURRENT_FRAME_GET() (USB_HFINFR & 0xFFFFU)
#endif /* USB_REGS_H */

View File

@ -0,0 +1,188 @@
/*!
\file usb_std.h
\brief USB 2.0 standard defines
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USB_STD_H
#define USB_STD_H
#include "usb_conf.h"
#define USB_DEV_QUALIFIER_DESC_LEN 0x0AU /*!< USB device qualifier descriptor length */
#define USB_DEV_DESC_LEN 0x12U /*!< USB device descriptor length */
#define USB_CFG_DESC_LEN 0x09U /*!< USB device configuration descriptor length */
#define USB_IF_DESC_LEN 0x09U /*!< USB device interface descriptor length */
#define USB_EP_DESC_LEN 0x07U /*!< USB device endpoint descriptor length */
#define USB_OTG_DESC_LEN 0x03U /*!< USB device OTG descriptor length */
/* bit 7 of bmRequestType: data phase transfer direction */
#define USB_DIR_MASK 0x80U /*!< USB transfer direction mask */
#define USB_DIR_OUT 0x00U /*!< USB transfer OUT direction */
#define USB_DIR_IN 0x80U /*!< USB transfer IN direction */
/* bit 6..5 of bmRequestType: request type */
#define USB_STANDARD_REQ 0x00U /*!< USB standard request */
#define USB_CLASS_REQ 0x20U /*!< USB class request */
#define USB_VENDOR_REQ 0x40U /*!< USB vebdor request */
#define USB_REQ_MASK 0x60U /*!< USB request mask */
/* bit 4..0 of bmRequestType: recipient type */
#define USB_REQTYPE_DEVICE 0x00U /*!< USB device request type */
#define USB_REQTYPE_INTERFACE 0x01U /*!< USB interface request type*/
#define USB_REQTYPE_ENDPOINT 0x02U /*!< USB endpoint request type*/
#define USB_REQTYPE_MASK 0x03U /*!< USB request type mask*/
/* bRequest value */
#define USBREQ_GET_STATUS 0x00U /*!< USB get status request*/
#define USBREQ_CLEAR_FEATURE 0x01U /*!< USB clear feature request*/
#define USBREQ_SET_FEATURE 0x03U /*!< USB set feature request*/
#define USBREQ_SET_ADDRESS 0x05U /*!< USB set address request*/
#define USBREQ_GET_DESCRIPTOR 0x06U /*!< USB get descriptor request*/
#define USBREQ_SET_DESCRIPTOR 0x07U /*!< USB set descriptor request*/
#define USBREQ_GET_CONFIGURATION 0x08U /*!< USB get configuration request*/
#define USBREQ_SET_CONFIGURATION 0x09U /*!< USB set configuration request*/
#define USBREQ_GET_INTERFACE 0x0AU /*!< USB get interface request*/
#define USBREQ_SET_INTERFACE 0x0BU /*!< USB set interface request*/
#define USBREQ_SYNCH_FRAME 0x0CU /*!< USB synchronize frame request*/
/* descriptor types of usb specifications */
#define USB_DESCTYPE_DEVICE 0x01U /*!< USB device descriptor type*/
#define USB_DESCTYPE_CONFIGURATION 0x02U /*!< USB configuration descriptor type*/
#define USB_DESCTYPE_STRING 0x03U /*!< USB string descriptor type*/
#define USB_DESCTYPE_INTERFACE 0x04U /*!< USB interface descriptor type*/
#define USB_DESCTYPE_ENDPOINT 0x05U /*!< USB endpoint descriptor type*/
#define USB_DESCTYPE_DEVICE_QUALIFIER 0x06U /*!< USB device qualtfier descriptor type*/
#define USB_DESCTYPE_OTHER_SPEED_CONFIGURATION 0x07U /*!< USB other speed configuration descriptor type*/
#define USB_DESCTYPE_INTERFACE_POWER 0x08U /*!< USB interface power descriptor type*/
#define USB_DESCTYPE_HID 0x21U /*!< USB HID descriptor type*/
#define USB_DESCTYPE_HID_REPORT 0x22U /*!< USB HID report descriptor type*/
#define USB_DEVDESC_SIZE 18U /*!< USB device descriptor size*/
#define USB_CFGDESC_SIZE 9U /*!< USB configure descriptor size*/
#define USB_INTDESC_SIZE 9U /*!< USB interface descriptor size*/
#define USB_EPDESC_SIZE 7U /*!< USB endpoint descriptor size*/
/* descriptor type and descriptor index */
/* use the following values when USB host need to get descriptor */
#define USB_DEVDESC ((USB_DESCTYPE_DEVICE << 8U) & 0xFF00U) /*!< USB device operation marco */
#define USB_CFGDESC ((USB_DESCTYPE_CONFIGURATION << 8U) & 0xFF00U) /*!< USB configuration operation marco */
#define USB_STRDESC ((USB_DESCTYPE_STRING << 8U) & 0xFF00U) /*!< USB string operation marco */
#define USB_INTDESC ((USB_DESCTYPE_INTERFACE << 8U) & 0xFF00U) /*!< USB interface operation marco */
#define USB_EPDESC ((USB_DESCTYPE_INTERFACE << 8U) & 0xFF00U) /*!< USB endpoint operation marco */
#define USB_DEVQUADESC ((USB_DESCTYPE_DEVICE_QUALIFIER << 8U) & 0xFF00U) /*!< USB device qualifier operation marco */
#define USB_OSPCFGDESC ((USB_DESCTYPE_OTHER_SPEED_CONFIGURATION << 8U) & 0xFF00U) /*!< USB other speed configuration operation marco */
#define USB_INTPWRDESC ((USB_DESCTYPE_INTERFACE_POWER << 8U) & 0xFF00U) /*!< USB interface power operation marco */
#define USB_HIDREPDESC ((USB_DESCTYPE_HID_REPORT << 8U) & 0xFF00U) /*!< USB HID report operation marco */
#define USB_HIDDESC ((USB_DESCTYPE_HID << 8U) & 0xFF00U) /*!< USB HID operation marco */
#define SWAPBYTE(addr) (((uint16_t)(*((uint8_t *)(addr)))) + \
(uint16_t)(((uint16_t)(*(((uint8_t *)(addr)) + 1U))) << 8U))
/* supported classes */
#define USB_MSC_CLASS 0x08U /*!< USB MSC class*/
#define USB_HID_CLASS 0x03U /*!< USB HID class*/
/* interface descriptor field values for hid boot protocol */
#define HID_BOOT_CODE 0x01U /*!< USB HID boot code*/
#define HID_KEYBRD_BOOT_CODE 0x01U /*!< USB HID keyboard boot code*/
#define HID_MOUSE_BOOT_CODE 0x02U /*!< USB HID mouse boot code*/
/* as per usb specs 9.2.6.4 :standard request with data request timeout: 5sec
standard request with no data stage timeout : 50ms */
#define DATA_STAGE_TIMEOUT 5000U /*!< USB data stage timeout*/
#define NODATA_STAGE_TIMEOUT 50U /*!< USB no data stage timeout*/
#define USBH_CFG_DESC_SET_SIZE (USB_CFGDESC_SIZE + USB_INTDESC_SIZE \
+ (USBH_MAX_EP_NUM * USB_EPDESC_SIZE)) /*!< USB host set configuration descriptor size */
#pragma pack(1)
typedef union
{
uint8_t data[8];
struct _setup_packet_struct
{
uint8_t bmRequestType; /*!< type of request */
uint8_t bRequest; /*!< request of setup packet */
uint16_t wValue; /*!< value of setup packet */
uint16_t wIndex; /*!< index of setup packet */
uint16_t wLength; /*!< length of setup packet */
} b;
}usb_setup_union;
typedef struct
{
uint8_t bLength; /*!< size of the descriptor */
uint8_t bDescriptorType; /*!< type of the descriptor */
} usb_descriptor_header_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size */
uint16_t bcdUSB; /*!< BCD of the supported USB specification */
uint8_t bDeviceClass; /*!< USB device class */
uint8_t bDeviceSubClass; /*!< USB device subclass */
uint8_t bDeviceProtocol; /*!< USB device protocol */
uint8_t bMaxPacketSize0; /*!< size of the control (address 0) endpoint's bank in bytes */
uint16_t idVendor; /*!< vendor ID for the USB product */
uint16_t idProduct; /*!< unique product ID for the USB product */
uint16_t bcdDevice; /*!< product release (version) number */
uint8_t iManufacturer; /*!< string index for the manufacturer's name */
uint8_t iProduct; /*!< string index for the product name/details */
uint8_t iSerialNumber; /*!< string index for the product's globally unique hexadecimal serial number */
uint8_t bNumberConfigurations; /*!< total number of configurations supported by the device */
} usb_descriptor_device_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size */
uint16_t wTotalLength; /*!< size of the configuration descriptor header,and all sub descriptors inside the configuration */
uint8_t bNumInterfaces; /*!< total number of interfaces in the configuration */
uint8_t bConfigurationValue; /*!< configuration index of the current configuration */
uint8_t iConfiguration; /*!< index of a string descriptor describing the configuration */
uint8_t bmAttributes; /*!< configuration attributes */
uint8_t bMaxPower; /*!< maximum power consumption of the device while in the current configuration */
} usb_descriptor_configuration_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size */
uint8_t bInterfaceNumber; /*!< index of the interface in the current configuration */
uint8_t bAlternateSetting; /*!< alternate setting for the interface number */
uint8_t bNumEndpoints; /*!< total number of endpoints in the interface */
uint8_t bInterfaceClass; /*!< interface class ID */
uint8_t bInterfaceSubClass; /*!< interface subclass ID */
uint8_t bInterfaceProtocol; /*!< interface protocol ID */
uint8_t iInterface; /*!< index of the string descriptor describing the interface */
} usb_descriptor_interface_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size. */
uint8_t bEndpointAddress; /*!< logical address of the endpoint */
uint8_t bmAttributes; /*!< endpoint attributes */
uint16_t wMaxPacketSize; /*!< size of the endpoint bank, in bytes */
uint8_t bInterval; /*!< polling interval in milliseconds for the endpoint if it is an INTERRUPT or ISOCHRONOUS type */
} usb_descriptor_endpoint_struct;
typedef struct
{
usb_descriptor_header_struct Header; /*!< descriptor header, including type and size. */
uint16_t wLANGID; /*!< LANGID code */
}usb_descriptor_language_id_struct;
#pragma pack()
#endif /* USB_STD_H */

View File

@ -0,0 +1,54 @@
/*!
\file usbd_core.h
\brief USB device mode core driver header file
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBD_CORE_H
#define USBD_CORE_H
#include "usbd_conf.h"
#include "usb_core.h"
#include "usbd_std.h"
/* device status */
#define USB_STATUS_DEFAULT 1U /* default status */
#define USB_STATUS_ADDRESSED 2U /* addressed status */
#define USB_STATUS_CONFIGURED 3U /* configured status */
#define USB_STATUS_SUSPENDED 4U /* suspended status */
/* function declarations */
/* initailizes the USB device-mode handler stack */
void usbd_init (usb_core_handle_struct *pudev, usb_core_id_enum core_id);
/* endpoint initialization */
void usbd_ep_init (usb_core_handle_struct *pudev, const usb_descriptor_endpoint_struct *ep_desc);
/* endpoint deinitialize */
void usbd_ep_deinit (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* endpoint prepare to receive data */
void usbd_ep_rx (usb_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint16_t buf_len);
/* endpoint prepare to transmit data */
void usbd_ep_tx (usb_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint32_t buf_len);
/* transmit data on the control channel */
usbd_status_enum usbd_ctltx (usb_core_handle_struct *pudev, uint8_t *pbuf, uint16_t len);
/* receive data on the control channel */
usbd_status_enum usbd_ctlrx (usb_core_handle_struct *pudev, uint8_t *pbuf, uint16_t len);
/* transmit status on the control channel */
usbd_status_enum usbd_ctlstatus_tx (usb_core_handle_struct *pudev);
/* receive status on the control channel */
usbd_status_enum usbd_ctlstatus_rx (usb_core_handle_struct *pudev);
/* set an endpoint to STALL status */
void usbd_ep_stall (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* clear endpoint stalled status */
void usbd_ep_clear_stall (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* flushes the FIFOs */
void usbd_ep_fifo_flush (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* get the received data length */
uint16_t usbd_rxcount_get (usb_core_handle_struct *pudev, uint8_t ep_num);
#endif /* USBD_CORE_H */

View File

@ -0,0 +1,29 @@
/*!
\file usbd_int.h
\brief USB device mode interrupt handler header file
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBD_INT_H
#define USBD_INT_H
#include "usbd_core.h"
typedef struct
{
uint8_t (*SOF) (usb_core_handle_struct *pudev);
}usbd_int_cb_struct;
extern usbd_int_cb_struct *usbd_int_fops;
/* function declarations */
/* USB device-mode interrupts global service routine handler */
uint32_t usbd_isr (usb_core_handle_struct *pudev);
#endif /* USBD_INT_H */

View File

@ -0,0 +1,70 @@
/*!
\file usbd_std.h
\brief USB 2.0 standard defines
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBD_STD_H
#define USBD_STD_H
#include "usb_std.h"
#include "usbd_core.h"
#include "usbd_conf.h"
#include <wchar.h>
#define USBD_LANGID_STR_IDX 0x00U /*!< USB language ID string index*/
#define USBD_MFC_STR_IDX 0x01U /*!< USB manufacturer string index*/
#define USBD_PRODUCT_STR_IDX 0x02U /*!< USB product string index*/
#define USBD_SERIAL_STR_IDX 0x03U /*!< USB serial string index*/
#define USBD_CONFIG_STR_IDX 0x04U /*!< USB configuration string index*/
#define USBD_INTERFACE_STR_IDX 0x05U /*!< USB interface string index*/
#define USB_STATUS_REMOTE_WAKEUP 0x02U /*!< USB remote wakeup status*/
#define USB_STATUS_SELF_POWERED 0x01U /*!< USB self power status*/
#define USB_FEATURE_ENDP_HALT 0x00U /*!< USB halt endpoint feature*/
#define USB_FEATURE_REMOTE_WAKEUP 0x01U /*!< USB remote wakeup feature*/
#define USB_FEATURE_TEST_MODE 0x02U /*!< USB test mode feature*/
#define ENG_LANGID 0x0409U /*!< USB english language id*/
#define CHN_LANGID 0x0804U /*!< USB chinese language id*/
#define USB_DEVICE_DESC_SIZE 0x12U /*!< USB device descriptor size*/
#define LOWBYTE(x) ((uint8_t)((x) & 0x00FFU)) /*!< USB lowbyte operation marco*/
#define HIGHBYTE(x) ((uint8_t)(((x) & 0xFF00U) >> 8U)) /*!< USB highbyte operation marco*/
#define USB_MIN(a, b) (((a) < (b)) ? (a) : (b)) /*!< USB minimum operation marco*/
#define WIDE_STRING(string) _WIDE_STRING(string)
#define _WIDE_STRING(string) L##string
#define USBD_STRING_DESC(string) \
(uint8_t *)&(struct { \
uint8_t _len; \
uint8_t _type; \
wchar_t _data[sizeof(string)]; \
}) { \
sizeof(WIDE_STRING(string)) + 2U - 2U, \
USB_DESCTYPE_STRING, \
WIDE_STRING(string) \
}
#define IS_NOT_EP0(ep_addr) (((ep_addr) != 0x00U) && ((ep_addr) != 0x80U))
/* function declarations */
/* USB device setup transaction*/
usbd_status_enum usbd_setup_transaction (usb_core_handle_struct *pudev);
/* USB device out transaction*/
usbd_status_enum usbd_out_transaction (usb_core_handle_struct *pudev, uint8_t endp_num);
/* USB device in transaction*/
usbd_status_enum usbd_in_transaction (usb_core_handle_struct *pudev, uint8_t endp_num);
/* USB device enum error handle*/
void usbd_enum_error (usb_core_handle_struct *pudev, usb_device_req_struct *req);
#endif /* USBD_STD_H */

View File

@ -0,0 +1,283 @@
/*!
\file usbh_core.h
\brief header file for usbh_core.c
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBH_CORE_H
#define USBH_CORE_H
#include "usbh_conf.h"
#include "usb_std.h"
#include "usb_core.h"
#define MSC_CLASS 0x08 /*!< the MSC class define */
#define HID_CLASS 0x03 /*!< the HID class define */
#define MSC_PROTOCOL 0x50 /*!< the MSC protocal define */
#define CBI_PROTOCOL 0x01 /*!< the CBI protocal define */
#define USBH_DEVICE_ADDRESS_DEFAULT 0U /*!< the default device address define */
#define USBH_DEVICE_ADDRESS 1U /*!< the device address define */
#define USBH_MAX_ERROR_COUNT 2U /*!< the max error count define */
#define HOST_USER_SELECT_CONFIGURATION 1U /*!< the user select configuration define */
#define HOST_USER_CLASS_ACTIVE 2U /*!< the user class active define */
#define HOST_USER_CLASS_SELECTED 3U /*!< the user class selected define */
#define HOST_USER_CONNECTION 4U /*!< the user connecttion define */
#define HOST_USER_DISCONNECTION 5U /*!< the user disconnection define */
#define HOST_USER_UNRECOVERED_ERROR 6U /*!< the user unrecovered error define */
#define MAX_USBH_STATE_STACK_DEEP 4 /*!< the max state stack deep define */
#define MAX_USBH_STATE_TABLE_NUM 10U /*!< the max state table number */
#define HOST_FSM_ID 0U /*!< the host state table id */
#define ENUM_FSM_ID 1U /*!< the enum state table id */
#define CMD_FSM_ID 2U /*!< the cmd state table id */
#define CTRL_FSM_ID 3U /*!< the ctrl state table id */
#define CLASS_REQ_FSM_ID 4U /*!< the class req state table id */
#define CLASS_FSM_ID 5U /*!< the class state table id */
#define UP_STATE 100U /*!< up state define */
#define GO_TO_UP_STATE_EVENT 100U /*!< go to up state event define */
#define HOST_HANDLE_TABLE_SIZE 9U /*!< the host handle table size define */
/* the enum of host state */
typedef enum
{
HOST_IDLE = 0, /* the host idle state definition */
HOST_DEV_ATTACHED, /* the host device attached state definition */
HOST_DEV_DETACHED, /* the host device detached state definition */
HOST_DETECT_DEV_SPEED, /* the host detect device speed state definition */
HOST_ENUMERATION, /* the host enumeration state definition */
HOST_CLASS_REQUEST, /* the host class request state definition */
HOST_CLASS, /* the host class state definition */
HOST_USER_INPUT, /* the host user input state definition */
HOST_SUSPENDED, /* the host suspended state definition */
HOST_ERROR /* the host error state definition */
}host_state_enum;
/* the enum of host event */
typedef enum
{
HOST_EVENT_ATTACHED = 0, /* the host attached event */
HOST_EVENT_ENUM, /* the host enum event */
HOST_EVENT_USER_INPUT, /* the host user input event */
HOST_EVENT_CLASS_REQ, /* the host class request event */
HOST_EVENT_CLASS, /* the host class event */
HOST_EVENT_ERROR, /* the host error event */
HOST_EVENT_DEV_DETACHED, /* the host device detached event */
HOST_EVENT_IDLE /* the host idle event */
}host_event_enum;
/* the enum of enum state */
typedef enum
{
ENUM_IDLE = 0, /* the enum idle state definition */
ENUM_SET_ADDR, /* the enum set address state definition */
ENUM_GET_FULL_DEV_DESC, /* the enum get full device descripter state definition */
ENUM_GET_CFG_DESC, /* the enum get configuration descripter state definition */
ENUM_GET_FULL_CFG_DESC, /* the enum get full configuration descripter state definition */
ENUM_GET_MFC_STRING_DESC, /* the enum get MFC string descripter state definition */
ENUM_GET_PRODUCT_STRING_DESC, /* the enum get product string descripter state definition */
ENUM_GET_SERIALNUM_STRING_DESC, /* the enum get serialnum string descripter state definition */
ENUM_SET_CONFIGURATION, /* the enum set congiguration state definition */
ENUM_DEV_CONFIGURED /* the enum device configuration state definition */
}enum_state_enum;
/* the enum of ctrl state */
typedef enum
{
CTRL_IDLE = 0, /* the ctrl idle state definition */
CTRL_SETUP, /* the ctrl setup state definition */
CTRL_DATA, /* the ctrl data state definition */
CTRL_STATUS, /* the ctrl status state definition */
CTRL_ERROR, /* the ctrl error state definition */
CTRL_STALLED, /* the ctrl stalled state definition */
CTRL_COMPLETE /* the ctrl complete state definition */
}ctrl_state_enum;
/* the enum of host status */
typedef enum
{
USBH_OK = 0, /* the usbh ok status definition */
USBH_BUSY, /* the usbh busy status definition */
USBH_FAIL, /* the usbh fail status definition */
USBH_NOT_SUPPORTED, /* the usbh not supported status definition */
USBH_UNRECOVERED_ERROR, /* the usbh unrecovered error status definition */
USBH_SPEED_UNKNOWN_ERROR, /* the usbh speed unknown error status definition */
USBH_APPLY_DEINIT /* the usbh apply deinit status definition */
}usbh_status_enum;
/* the state of user action */
typedef enum
{
USBH_USER_NO_RESP = 0, /* the user no response */
USBH_USER_RESP_OK = 1, /* the user response ok */
}usbh_user_status_enum;
/* control transfer information */
typedef struct
{
uint8_t hc_in_num; /* the host in channel number */
uint8_t hc_out_num; /* the host out channel number */
uint8_t ep0_size; /* the endpoint 0 max packet size */
uint8_t error_count; /* the error count */
uint16_t length; /* the length */
uint16_t timer; /* the timer */
uint8_t *buff; /* the buffer */
usb_setup_union setup; /* the setup packet */
}usbh_ctrl_struct;
/* device property */
typedef struct
{
uint8_t address; /* the device address */
uint8_t speed; /* the device speed */
usb_descriptor_device_struct dev_desc; /* the device descripter */
usb_descriptor_configuration_struct cfg_desc; /* the configuration descripter */
usb_descriptor_interface_struct itf_desc[USBH_MAX_INTERFACES_NUM]; /* the interface descripter */
usb_descriptor_endpoint_struct ep_desc[USBH_MAX_INTERFACES_NUM][USBH_MAX_EP_NUM]; /* the endpoint descripter */
}usbh_device_struct;
/* user callbacks */
typedef struct
{
void (*init) (void); /* the user callback init function */
void (*deinit) (void); /* the user callback deinit function */
void (*device_connected) (void); /* the user callback device connected function */
void (*device_reset) (void); /* the user callback device reset function */
void (*device_disconnected) (void); /* the user callback device disconnected function */
void (*over_current_detected) (void); /* the user callback over current detected function */
void (*device_speed_detected) (uint8_t device_speed); /* the user callback device speed detected function */
void (*device_desc_available) (void *devDesc); /* the user callback device descrpiter available function */
void (*device_address_set) (void); /* the user callback set device address function */
void (*configuration_desc_available)(usb_descriptor_configuration_struct *cfg_desc,
usb_descriptor_interface_struct *itf_desc,
usb_descriptor_endpoint_struct *ep_desc);
/* the configuration descripter available function */
void (*manufacturer_string) (void *mfc_string); /* the user callback manufacturer string function */
void (*product_string) (void *prod_string); /* the user callback product string function */
void (*serial_num_string) (void *serial_string); /* the user callback serial number string function */
void (*enumeration_finish) (void); /* the user callback enumeration finish function */
usbh_user_status_enum (*user_input) (void); /* the user callback user input function */
int (*user_application) (usb_core_handle_struct *pudev, uint8_t id);
/* the user callback user appliction function */
void (*device_not_supported) (void); /* the user callback device not supported function */
void (*unrecovered_error) (void); /* the user callback unrecovered error function */
}usbh_user_callback_struct;
/* the backup state struct */
typedef struct
{
host_state_enum host_backup_state; /* the host backup state */
enum_state_enum enum_backup_state; /* the enum backup state */
ctrl_state_enum ctrl_backup_state; /* the ctrl backup state */
uint8_t class_req_backup_state;/* the class request backup state */
uint8_t class_backup_state; /* the class backup state */
} backup_state_struct;
/* host information */
typedef struct
{
backup_state_struct usbh_backup_state; /* the usbh backup state variable */
usbh_ctrl_struct control; /* the control struct variable */
usbh_device_struct device; /* the device struct variable */
usbh_user_callback_struct *usr_cb; /* the user callback function */
usbh_status_enum (*class_init) (usb_core_handle_struct *pudev, void *phost); /* the class init function */
void (*class_deinit) (usb_core_handle_struct *pudev, void *phost); /* the class deinit function */
}usbh_host_struct;
/* the action function definition */
typedef usbh_status_enum (*ACT_FUN) (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void* pustate);
/* the state table struct */
typedef struct
{
uint8_t cur_state; /* the current state */
uint8_t cur_event; /* the current event */
uint8_t next_state; /* the next state */
ACT_FUN event_action_fun; /* the event action function entry */
} state_table_struct;
/* the state stack struct */
typedef struct
{
uint8_t state; /* the state in state stack */
state_table_struct* table; /* the table in state stack */
uint8_t table_size; /* the table size in state stack */
} usbh_state_stack_struct;
/* the state regist table struct */
typedef struct
{
uint8_t id; /* the id of the state table */
state_table_struct* table; /* the table entry to regist */
uint8_t table_size; /* the table size to regist */
} usbh_state_regist_table_struct;
/* the state handle struct */
typedef struct
{
uint8_t usbh_current_state; /* current state */
uint8_t usbh_current_state_table_size; /* current state table size */
state_table_struct* usbh_current_state_table; /* current state table */
usbh_state_stack_struct stack[MAX_USBH_STATE_STACK_DEEP]; /* the stack of state table */
int8_t usbh_current_state_stack_top; /* the current state top */
usbh_state_regist_table_struct usbh_regist_state_table[MAX_USBH_STATE_TABLE_NUM]; /* the array of regist state table */
uint8_t usbh_regist_state_table_num; /* the number of regist state table */
} usbh_state_handle_struct;
/* function declarations */
/* the host core driver function */
usbh_status_enum host_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* initialize the host portion of the driver */
uint32_t hcd_init (usb_core_handle_struct *pudev, usb_core_id_enum core_id);
/* check if the device is connected */
uint32_t hcd_is_device_connected (usb_core_handle_struct *pudev);
/* this function returns the last URBstate */
urb_state_enum hcd_urb_state_get (usb_core_handle_struct *pudev, uint8_t channel_num);
/* this function returns the last URBstate */
uint32_t hcd_xfer_count_get (usb_core_handle_struct *pudev, uint8_t channel_num);
/* de-initialize host */
usbh_status_enum usbh_deinit (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct* pustate);
/* the state core driver function */
/* state core driver init */
void scd_init (usbh_state_handle_struct* pustate);
/* state core driver table regist */
void scd_table_regist (usbh_state_handle_struct* pustate,
state_table_struct* pstate_table,
uint8_t table_id,
uint8_t current_table_size);
/* state core driver begin */
void scd_begin (usbh_state_handle_struct* pustate, uint8_t table_id);
/* state core driver move state */
void scd_state_move (usbh_state_handle_struct* pustate, uint8_t state);
/* state core driver event handle */
usbh_status_enum scd_event_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct* pustate,
uint8_t event,
uint8_t state);
/* state core driver table push */
void scd_table_push (usbh_state_handle_struct* pustate);
/* state core driver table pop */
void scd_table_pop (usbh_state_handle_struct* pustate);
/* the function is only used to state move */
usbh_status_enum only_state_move (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* the function to the up state */
usbh_status_enum goto_up_state_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
#endif /* USBH_CORE_H */

View File

@ -0,0 +1,45 @@
/*!
\file usbh_ctrl.h
\brief header file for usbh_ctrl.c
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBH_CTRL_H
#define USBH_CTRL_H
#include "usbh_core.h"
#include "usbh_usr.h"
#define CTRL_HANDLE_TABLE_SIZE 13U /*!< the ctrl handle table size define */
extern state_table_struct ctrl_handle_table[CTRL_HANDLE_TABLE_SIZE];
extern uint8_t ctrl_polling_handle_flag;
/* the enum of CTRL event */
typedef enum
{
CTRL_EVENT_IDLE = 0, /* the ctrl idle event */
CTRL_EVENT_SETUP, /* the ctrl setup event */
CTRL_EVENT_DATA, /* the ctrl data event */
CTRL_EVENT_STATUS, /* the ctrl status event */
CTRL_EVENT_COMPLETE, /* the ctrl complete event */
CTRL_EVENT_ERROR, /* the ctrl error event */
CTRL_EVENT_STALLED, /* the ctrl stalled event */
}ctrl_event_enum;
/* function declarations */
/* the polling function of control transfer state handle */
usbh_status_enum ctrl_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* send datas from the host channel */
usbh_status_enum usbh_xfer (usb_core_handle_struct *pudev, uint8_t *buf, uint8_t hc_num, uint16_t len);
/* send the setup packet to the device */
usbh_status_enum usbh_ctltx_setup (usb_core_handle_struct *pudev, uint8_t *buf, uint8_t hc_num);
/* this function prepare a hc and start a transfer */
uint32_t hcd_submit_request (usb_core_handle_struct *pudev, uint8_t channel_num);
#endif /* USBH_CTRL_H */

View File

@ -0,0 +1,46 @@
/*!
\file usbh_hcs.h
\brief header file for usbh_hcs.c
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBH_HCS_H
#define USBH_HCS_H
#include "usbh_core.h"
#define HC_MAX 8U
#define HC_OK 0x0000U
#define HC_USED 0x8000U
#define HC_ERROR 0xFFFFU
#define HC_USED_MASK 0x7FFFU
/* function declarations */
/* allocate a new channel for the pipe */
uint8_t usbh_channel_alloc (usb_core_handle_struct *pudev, uint8_t ep_addr);
/* free all usb host channel */
uint8_t usbh_allchannel_dealloc (usb_core_handle_struct *pudev);
/* free the usb host channel */
uint8_t usbh_channel_free (usb_core_handle_struct *pudev, uint8_t index);
/* open a channel */
uint8_t usbh_channel_open (usb_core_handle_struct *pudev,
uint8_t channel_num,
uint8_t dev_addr,
uint8_t dev_speed,
uint8_t ep_type,
uint16_t ep_mps);
/* modify a channel */
uint8_t usbh_channel_modify (usb_core_handle_struct *pudev,
uint8_t channel_num,
uint8_t dev_addr,
uint8_t dev_speed,
uint8_t ep_type,
uint16_t ep_mps);
#endif /* USBH_HCS_H */

View File

@ -0,0 +1,30 @@
/*!
\file usbh_int.h
\brief USB host mode interrupt handler header file
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBH_INT_H
#define USBH_INT_H
#include "usb_core.h"
typedef struct
{
uint8_t (*sof) (usb_core_handle_struct *pudev);
uint8_t (*device_connected) (usb_core_handle_struct *pudev);
uint8_t (*device_disconnected) (usb_core_handle_struct *pudev);
}usbh_hcd_int_cb_struct;
extern usbh_hcd_int_cb_struct *usbh_hcd_int_fops;
/* function declarations */
/* handle global host interrupt */
uint32_t usbh_isr (usb_core_handle_struct *pudev);
#endif /* USBH_INT_H */

View File

@ -0,0 +1,74 @@
/*!
\file usbh_std.h
\brief header file for usbh_std.c
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#ifndef USBH_STD_H
#define USBH_STD_H
#include "usbh_core.h"
#include "usbh_usr.h"
/* standard feature selector for clear feature command */
#define FEATURE_SELECTOR_ENDPOINT 0x00U
#define FEATURE_SELECTOR_DEVICE 0x01U
#define USBH_SETUP_PACKET_SIZE 8U /* setup packet size */
#define ENUM_HANDLE_TABLE_SIZE 10U /* enumerate handle table size */
extern uint8_t usbh_cfg_desc[512];
extern uint8_t enum_polling_handle_flag;
extern state_table_struct enum_handle_table[ENUM_HANDLE_TABLE_SIZE];
typedef enum
{
ENUN_EVENT_IDLE = 0, /* the enum idle event */
ENUM_EVENT_SET_ADDR, /* the enum set address event */
ENUN_EVENT_GET_FULL_DEV_DESC, /* the enum get full device descripter event */
ENUN_EVENT_GET_CFG_DESC, /* the enum get congiguration descripter event */
ENUN_EVENT_GET_FULL_CFG_DESC, /* the enum get full configuration descripter event */
ENUN_EVENT_GET_MFC_STRING_DESC, /* the enum get MFC string descripter event */
ENUN_EVENT_GET_PRODUCT_STRING_DESC, /* the enum get product string event */
ENUN_EVENT_GET_SERIALNUM_STRING_DESC, /* the enum get serialnum string event */
ENUN_EVENT_SET_CONFIGURATION, /* the enum set configuration event */
ENUN_EVENT_DEV_CONFIGURED /* the enum device configured event */
}enum_event_enum;
/* function declarations */
/* the polling function of enumeration state */
usbh_status_enum enum_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* get descriptor in usb host enumeration stage */
void usbh_enum_desc_get (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
uint8_t *buf,
uint8_t req_type,
uint16_t value_idx,
uint16_t len);
/* set address in usb host enumeration stage */
void usbh_enum_addr_set (usb_core_handle_struct *pudev, usbh_host_struct *puhost, uint8_t device_address);
/* set configuration in usb host enumeration stage */
void usbh_enum_cfg_set (usb_core_handle_struct *pudev, usbh_host_struct *puhost, uint16_t cfg_idx);
/* parse the device descriptor */
void usbh_device_desc_parse (usb_descriptor_device_struct *dev_desc, uint8_t *buf, uint16_t len);
/* parse the configuration descriptor */
void usbh_cfg_desc_parse (usb_descriptor_configuration_struct *cfg_desc,
usb_descriptor_interface_struct *itf_desc,
usb_descriptor_endpoint_struct ep_desc[][USBH_MAX_EP_NUM],
uint8_t *buf,
uint16_t len);
/* parse the interface descriptor */
void usbh_interface_desc_parse (usb_descriptor_interface_struct *itf_desc, uint8_t *buf);
/* parse the endpoint descriptor */
void usbh_endpoint_desc_parse (usb_descriptor_endpoint_struct *ep_desc, uint8_t *buf);
/* parse the string descriptor */
void usbh_string_desc_parse (uint8_t *psrc, uint8_t *pdest, uint16_t len);
/* get the next descriptor header */
usb_descriptor_header_struct *usbh_next_desc_get (uint8_t *pbuf, uint16_t *ptr);
#endif /* USBH_STD_H */

View File

@ -0,0 +1,935 @@
/*!
\file usb_core.c
\brief USB core driver which can operate in host-mode and device-mode
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usb_core.h"
static void usb_commonint_enable (usb_core_handle_struct *pudev);
static usb_status_enum usb_core_reset (usb_core_handle_struct *pudev);
/*!
\brief enable the commmon interrupts which are used in both device and host modes
\param[in] pudev: pointer to selected usb device
\param[out] none
\retval none
*/
static void usb_commonint_enable (usb_core_handle_struct *pudev)
{
#ifndef USE_OTG_MODE
/* clear any pending USB interrupts */
USB_GOTGINTF = 0xFFFFFFFFU;
#endif /* USE_OTG_MODE */
/* enable the usb wakeup and suspend interrupts */
USB_GINTEN = GINTEN_WKUPIE | GINTEN_SPIE;
#ifdef USE_OTG_MODE
/* enable the OTG interrupts, session interrrupts and connector ID pin interrupt */
USB_GINTEN |= GINTEN_OTGIE | GINTEN_SESIE | GINTEN_CIDPSCIE;
#endif /* USE_OTG_MODE */
}
/*!
\brief soft reset of the OTG_FS core
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
static usb_status_enum usb_core_reset (usb_core_handle_struct *pudev)
{
uint32_t count = 0U;
/* enable core soft reset */
USB_GRSTCTL |= GRSTCTL_CSRST;
/* wait for the core to be soft reset */
do {
if (++count > 200000U) {
break;
}
} while (1U == (USB_GRSTCTL & GRSTCTL_CSRST));
/* wait for addtional 3 PHY clocks */
if (NULL != pudev->udelay) {
pudev->udelay(3U);
}
return USB_OK;
}
/*!
\brief write a packet into the Tx FIFO associated with the endpoint
\param[in] src: pointer to source buffer
\param[in] chep_num: channel or endpoint identifier which is in (0..3)
\param[in] len: packet length
\param[out] none
\retval operation status
*/
usb_status_enum usb_fifo_write (uint8_t *src, uint8_t chep_num, uint16_t len)
{
uint32_t count32b = 0U, i = 0U;
__IO uint32_t *fifo = USB_FIFO(chep_num);
count32b = (len + 3U) / 4U;
for (i = 0U; i < count32b; i++) {
*fifo = *((__packed uint32_t *)src);
src += 4U;
}
return USB_OK;
}
/*!
\brief read a packet from the Rx FIFO associated with the endpoint
\param[in] dest: pointer to destination buffer
\param[in] len: packet length
\param[out] none
\retval void type pointer
*/
void *usb_fifo_read (uint8_t *dest, uint16_t len)
{
uint32_t i = 0U;
uint32_t count32b = (len + 3U) / 4U;
__IO uint32_t *fifo = USB_FIFO(0U);
for (i = 0U; i < count32b; i++) {
*(__packed uint32_t *)dest = *fifo;
dest += 4U;
}
return ((void *)dest);
}
/*!
\brief initialize core parameters
\param[in] pudev: pointer to usb device
\param[in] core_id: USB core id
\param[out] none
\retval operation status
*/
usb_status_enum usb_core_select (usb_core_handle_struct *pudev, usb_core_id_enum core_id)
{
/* at startup the core is in FS mode */
pudev->cfg.core_speed = USB_CORE_SPEED_FULL;
pudev->cfg.max_packet_size = USBFS_MAX_PACKET_SIZE;
/* initialize the core parameters */
if (USB_FS_CORE_ID == core_id) {
pudev->cfg.core_id = USB_FS_CORE_ID;
/* set the host channel numbers */
pudev->cfg.host_channel_num = USBFS_MAX_HOST_CHANNELCOUNT;
/* set the device endpoint numbers */
pudev->cfg.dev_endp_num = USBFS_MAX_DEV_EPCOUNT;
/* fifo size is in terms of DWORD */
pudev->cfg.max_fifo_size = USBFS_MAX_FIFO_WORDLEN;
/* OTG_FS core use embedded physical layer */
pudev->cfg.phy_interface = USB_CORE_EMBEDDED_PHY;
#ifdef USBFS_SOF_OUTPUT_ENABLED
pudev->cfg.sof_output = 1U;
#endif /* USBFS_SOF_OUTPUT_ENABLED */
#ifdef USBFS_LOW_PWR_MGMT_SUPPORT
pudev->cfg.low_power = 1U;
#endif /* USBFS_LOW_PWR_MGMT_SUPPORT */
}
return USB_OK;
}
/*!
\brief initializes the USB controller registers and
prepares the core device mode or host mode operation
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
usb_status_enum usb_core_init (usb_core_handle_struct *pudev)
{
/* soft reset the core */
usb_core_reset(pudev);
/* active the transceiver and enable vbus sensing */
USB_GCCFG |= GCCFG_PWRON | GCCFG_VBUSACEN | GCCFG_VBUSBCEN;
/* set Tx FIFO empty level to half empty mode */
USB_GAHBCS &= ~GAHBCS_TXFTH | TXFIFO_EMPTY_HALF;
#ifndef VBUS_SENSING_ENABLED
USB_GCCFG |= GCCFG_VBUSIG;
#endif /* VBUS_SENSING_ENABLED */
if (pudev->cfg.sof_output) {
USB_GCCFG |= GCCFG_SOFOEN;
}
if (NULL != pudev->mdelay) {
pudev->mdelay(20U);
}
#ifdef USE_OTG_MODE
/* enable OTG features */
USB_GUSBCS |= GUSBCS_HNPCAP | GUSBCS_SRPCAP;
USB_OTG_EnableCommonInt(pudev);
#endif /* USE_OTG_MODE */
return USB_OK;
}
/*!
\brief flush a Tx FIFO or all Tx FIFOs
\param[in] pudev: pointer to usb device
\param[in] fifo_num: FIFO number which is in (0..3)
\param[out] none
\retval operation status
*/
usb_status_enum usb_txfifo_flush (usb_core_handle_struct *pudev, uint8_t fifo_num)
{
uint32_t count = 0U;
USB_GRSTCTL &= ~GRSTCTL_TXFNUM;
USB_GRSTCTL = ((uint32_t)fifo_num << 6U) | GRSTCTL_TXFF;
/* wait for Tx FIFO flush bit is set */
do {
if (++count > 200000U) {
break;
}
} while (USB_GRSTCTL & GRSTCTL_TXFF);
/* wait for 3 PHY clocks */
if (NULL != pudev->udelay) {
pudev->udelay(3U);
}
return USB_OK;
}
/*!
\brief flush the entire Rx FIFO
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
usb_status_enum usb_rxfifo_flush (usb_core_handle_struct *pudev)
{
uint32_t count = 0U;
USB_GRSTCTL = GRSTCTL_RXFF;
/* wait for Rx FIFO flush bit is set */
do {
if (++count > 200000U) {
break;
}
} while (USB_GRSTCTL & GRSTCTL_RXFF);
/* wait for 3 PHY clocks */
if (NULL != pudev->udelay) {
pudev->udelay(3U);
}
return USB_OK;
}
/*!
\brief set operation mode (host or device)
\param[in] pudev: pointer to usb device
\param[in] mode: operation mode which need to set
\arg HOST_MODE
\arg DEVICE_MODE
\param[out] none
\retval operation status
*/
usb_status_enum usb_mode_set (usb_core_handle_struct *pudev, uint8_t mode)
{
if (HOST_MODE == mode) {
USB_GUSBCS &= ~GUSBCS_FDM;
USB_GUSBCS |= GUSBCS_FHM;
} else if (DEVICE_MODE == mode) {
USB_GUSBCS &= ~GUSBCS_FHM;
USB_GUSBCS |= GUSBCS_FDM;
} else {
/* no operation */
}
if (NULL != pudev->mdelay) {
pudev->mdelay(50U);
}
return USB_OK;
}
#ifdef USE_HOST_MODE
/*!
\brief initializes USB core for host mode
\param[in] pudev: pointer to selected usb host
\param[out] none
\retval operation status
*/
usb_status_enum usb_hostcore_init (usb_core_handle_struct *pudev)
{
uint32_t i = 0U;
__IO uint32_t nptxfifolen = 0U;
__IO uint32_t ptxfifolen = 0U;
#ifdef USE_OTG_MODE
__IO uint32_t otgctl = 0;
#endif /* USE_OTG_MODE */
/* restart the PHY clock */
USB_PWRCLKCTL = 0U;
/* initialize host configuration register */
if (USB_CORE_ULPI_PHY == pudev->cfg.phy_interface) {
USB_FSLSCLOCK_INIT(HCTLR_30_60_MHZ);
} else {
USB_FSLSCLOCK_INIT(HCTLR_48_MHZ);
}
/* configure data FIFO sizes */
if (USB_FS_CORE_ID == pudev->cfg.core_id) {
/* set Rx FIFO size */
USB_GRFLEN = USBFS_RX_FIFO_SIZE;
/* set non-periodic Tx FIFO size and address */
nptxfifolen &= ~HNPTFLEN_HNPTXRSAR;
nptxfifolen |= USBFS_RX_FIFO_SIZE;
nptxfifolen &= ~HNPTFLEN_HNPTXFD;
nptxfifolen |= USBFS_HTX_NPFIFO_SIZE << 16;
USB_HNPTFLEN = nptxfifolen;
/* set periodic Tx FIFO size and address */
ptxfifolen &= ~HPTFLEN_HPTXFSAR;
ptxfifolen |= USBFS_RX_FIFO_SIZE + USBFS_HTX_PFIFO_SIZE;
ptxfifolen &= ~HPTFLEN_HPTXFD;
ptxfifolen |= USBFS_HTX_PFIFO_SIZE << 16;
USB_HPTFLEN = ptxfifolen;
}
#ifdef USE_OTG_MODE
/* clear Host Set HNP Enable bit in the USB OTG Control Register */
otgctl |= GOTGCS_HHNPEN;
USB_GOTGCS &= ~otgctl;
USB_GOTGCS |= 0;
#endif /* USE_OTG_MODE */
/* make sure the FIFOs are flushed */
/* flush all Tx FIFOs in device or host mode */
usb_txfifo_flush(pudev, 0x10U);
/* flush the entire Rx FIFO */
usb_rxfifo_flush(pudev);
/* clear all pending host channel interrupts */
USB_HACHINTEN &= ~HACHINTEN_CINTEN;
for (i = 0U; i < pudev->cfg.host_channel_num; i++) {
USB_HCHxINTEN(i) = 0U;
USB_HCHxINTF(i) = 0xFFFFFFFFU;
}
#ifndef USE_OTG_MODE
usb_vbus_drive(pudev, 1U);
#endif /* USE_OTG_MODE */
usb_hostint_enable(pudev);
return USB_OK;
}
/*!
\brief control the VBUS to power
\param[in] pudev: pointer to selected usb host
\param[in] state: VBUS state
\param[out] none
\retval none
*/
void usb_vbus_drive (usb_core_handle_struct *pudev, uint8_t state)
{
__IO uint32_t host_port = 0U;
/* enable or disable the external charge pump */
if ((void *)0 != pudev->host.vbus_drive) {
pudev->host.vbus_drive(pudev, state);
}
/* turn on the host port power. */
host_port = USB_PORT_READ();
if ((0U == (host_port & HPCS_PP)) && (1U == state)) {
host_port |= HPCS_PP;
} else if ((1U == (host_port & HPCS_PP)) && (0U == state)) {
host_port &= ~HPCS_PP;
} else {
/* no operation */
}
USB_HPCS = host_port;
if (NULL != pudev->mdelay) {
pudev->mdelay(200U);
}
}
/*!
\brief enables the host mode interrupts
\param[in] pudev: pointer to selected usb host
\param[out] none
\retval operation status
*/
usb_status_enum usb_hostint_enable (usb_core_handle_struct *pudev)
{
uint32_t gintf = 0U;
/* disable all interrupts */
USB_GINTEN = 0U;
/* clear any pending interrupts */
USB_GINTF = 0xFFFFFFFFU;
/* enable the common interrupts */
usb_commonint_enable(pudev);
gintf |= GINTF_RXFNEIF;
/* enable host_mode-related interrupts */
gintf |= GINTF_HPIF | GINTF_HCIF | GINTF_DISCIF | GINTF_SOF | GINTF_ISOONCIF;
USB_GINTEN &= ~gintf;
USB_GINTEN |= gintf;
return USB_OK;
}
/*!
\brief reset host port
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
uint32_t usb_port_reset (usb_core_handle_struct *pudev)
{
USB_HPCS = USB_PORT_READ() | HPCS_PRST;
if (NULL != pudev->mdelay) {
pudev->mdelay(100U);
}
USB_HPCS &= ~HPCS_PRST;
if (NULL != pudev->mdelay) {
pudev->mdelay(20U);
}
return USB_OK;
}
/*!
\brief initialize host channel
\param[in] pudev: pointer to usb device
\param[in] hc_num: host channel number which is in (0..7)
\param[out] none
\retval operation status
*/
usb_status_enum usb_hostchannel_init(usb_core_handle_struct *pudev, uint8_t hc_num)
{
uint8_t is_low_speed = 0U;
__IO uint32_t chinten = 0U;
__IO uint32_t chctl = 0U;
usb_hostchannel_struct *puhc = &pudev->host.host_channel[hc_num];
/* clear old interrupt conditions for this host channel */
USB_HCHxINTF((uint16_t)hc_num) = 0xFFFFFFFFU;
/* enable channel interrupts required for this transfer */
switch (puhc->endp_type) {
case USB_EPTYPE_CTRL:
case USB_EPTYPE_BULK:
chinten |= HCHINTEN_TFIE | HCHINTEN_STALLIE | HCHINTEN_USBERIE \
| HCHINTEN_DTERIE | HCHINTEN_NAKIE;
if (puhc->endp_in) {
chinten |= HCHINTEN_BBERIE;
} else {
chinten |= HCHINTEN_NYETIE;
}
break;
case USB_EPTYPE_INTR:
chinten |= HCHINTEN_TFIE | HCHINTEN_STALLIE | HCHINTEN_USBERIE | HCHINTEN_DTERIE \
| HCHINTEN_NAKIE | HCHINTEN_REQOVRIE;
if (puhc->endp_in) {
chinten |= HCHINTEN_BBERIE;
}
break;
case USB_EPTYPE_ISOC:
chinten |= HCHINTEN_TFIE | HCHINTEN_REQOVRIE | HCHINTEN_ACKIE;
if (puhc->endp_in) {
chinten |= HCHINTEN_USBERIE | HCHINTEN_BBERIE;
}
break;
default:
break;
}
USB_HCHxINTEN((uint16_t)hc_num) = chinten;
/* enable the top level host channel interrupt */
USB_HACHINTEN |= 1U << hc_num;
/* make sure host channel interrupts are enabled */
USB_GINTEN |= GINTEN_HCIE;
/* program the hcctlr register */
chctl = 0U;
if (HPRT_PRTSPD_LOW_SPEED == puhc->dev_speed) {
is_low_speed = 1U;
}
chctl |= (uint32_t)puhc->dev_addr << 22U;
chctl |= (uint32_t)puhc->endp_type << 18U;
chctl |= (uint32_t)puhc->endp_id << 11U;
chctl |= (uint32_t)puhc->endp_in << 15U;
chctl |= (uint32_t)is_low_speed << 17U;
chctl |= puhc->endp_mps;
if (HCCHAR_INTR == puhc->endp_type) {
chctl |= HCHCTL_ODDFRM;
}
USB_HCHxCTL((uint16_t)hc_num) = chctl;
return USB_OK;
}
/*!
\brief prepare host channel for transferring packets
\param[in] pudev: pointer to usb device
\param[in] hc_num: host channel number which is in (0..7)
\param[out] none
\retval operation status
*/
usb_status_enum usb_hostchannel_startxfer(usb_core_handle_struct *pudev, uint8_t hc_num)
{
uint16_t dword_len = 0U;
uint16_t packet_num = 0U;
__IO uint32_t chxlen = 0U;
__IO uint32_t chctl = 0U;
usb_hostchannel_struct *puhc = &pudev->host.host_channel[hc_num];
/* compute the expected number of packets associated to the transfer */
if (puhc->xfer_len > 0U) {
packet_num = ((uint16_t)puhc->xfer_len + puhc->endp_mps - 1U) / puhc->endp_mps;
if (packet_num > HC_MAX_PACKET_COUNT) {
packet_num = HC_MAX_PACKET_COUNT;
puhc->xfer_len = (uint32_t)(packet_num) * (uint32_t)(puhc->endp_mps);
}
} else {
packet_num = 1U;
}
if (puhc->endp_in) {
puhc->xfer_len = (uint32_t)(packet_num) * (uint32_t)(puhc->endp_mps);
}
/* initialize the host channel length register */
chxlen &= ~HCHLEN_TLEN;
chxlen |= puhc->xfer_len;
chxlen &= ~HCHLEN_PCNT;
chxlen |= (uint32_t)packet_num << 19;
chxlen &= ~HCHLEN_DPID;
chxlen |= (uint32_t)(puhc->DPID) << 29;
USB_HCHxLEN((uint16_t)hc_num) = (uint32_t)chxlen;
/* set host channel enable */
chctl = USB_HCHxCTL((uint16_t)hc_num);
if (1 == USB_EVEN_FRAME()) {
chctl |= HCHCTL_ODDFRM;
} else {
chctl &= ~HCHCTL_ODDFRM;
}
chctl |= HCHCTL_CEN;
chctl &= ~HCHCTL_CDIS;
USB_HCHxCTL((uint16_t)hc_num) = chctl;
if ((0U == puhc->endp_in) && (puhc->xfer_len > 0U)) {
dword_len = (uint16_t)(puhc->xfer_len + 3U) / 4U;
switch (puhc->endp_type) {
/* non-periodic transfer */
case USB_EPTYPE_CTRL:
case USB_EPTYPE_BULK:
/* check if there is enough space in fifo space */
if (dword_len > (USB_HNPTFQSTAT & HNPTFQSTAT_NPTXFS)) {
/* need to process data in non-periodic transfer fifo empty interrupt */
USB_GINTEN |= GINTEN_NPTXFEIE;
}
break;
/* periodic transfer */
case USB_EPTYPE_INTR:
case USB_EPTYPE_ISOC:
/* check if there is enough space in FIFO space */
if (dword_len > (USB_HPTFQSTAT & HPTFQSTAT_PTXFS)) {
/* need to process data in periodic transfer fifo empty interrupt */
USB_GINTEN |= GINTEN_PTXFEIE;
}
break;
default:
break;
}
/* write packet into the Tx FIFO. */
usb_fifo_write(puhc->xfer_buff, hc_num, (uint16_t)puhc->xfer_len);
}
return USB_OK;
}
/*!
\brief halt channel
\param[in] pudev: pointer to usb device
\param[in] hc_num: host channel number which is in (0..7)
\param[out] none
\retval operation status
*/
usb_status_enum usb_hostchannel_halt(usb_core_handle_struct *pudev, uint8_t hc_num)
{
uint8_t endp_type = 0U;
__IO uint32_t chctl = USB_HCHxCTL((uint16_t)hc_num);
chctl |= HCHCTL_CEN | HCHCTL_CDIS;
endp_type = (uint8_t)((chctl & HCHCTL_EPTYPE) >> 18U);
/* check for space in the request queue to issue the halt. */
if ((HCCHAR_CTRL == endp_type) || (HCCHAR_BULK == endp_type)) {
if (0U == (USB_HNPTFQSTAT & HNPTFQSTAT_NPTXFS)) {
chctl &= ~HCHCTL_CEN;
}
} else {
if (0U == (USB_HPTFQSTAT & HPTFQSTAT_PTXFS)) {
chctl &= ~HCHCTL_CEN;
}
}
USB_HCHxCTL((uint16_t)hc_num) = chctl;
return USB_OK;
}
/*!
\brief stop the USB host and clean up fifos
\param[in] none
\param[out] none
\retval none
*/
void usb_host_stop(usb_core_handle_struct *pudev)
{
uint32_t i;
/* disable all host channel interrupt */
USB_HACHINTEN = 0U;
USB_HACHINT = 0xFFFFFFFFU;
/* flush out any leftover queued requests */
for (i = 0U; i < pudev->cfg.host_channel_num; i++) {
USB_HCHxCTL(i) |= HCHCTL_CEN | HCHCTL_CDIS | HCHCTL_EPDIR;
}
/* flush the FIFO */
usb_rxfifo_flush(pudev);
usb_txfifo_flush(pudev, 0x10U);
}
#endif /* USE_HOST_MODE */
#ifdef USE_DEVICE_MODE
/* USB endpoint Tx FIFO size */
static uint16_t USBFS_TX_FIFO_SIZE[USBFS_MAX_DEV_EPCOUNT] =
{
(uint16_t)TX0_FIFO_FS_SIZE,
(uint16_t)TX1_FIFO_FS_SIZE,
(uint16_t)TX2_FIFO_FS_SIZE,
(uint16_t)TX3_FIFO_FS_SIZE
};
static usb_status_enum usb_devint_enable(usb_core_handle_struct *pudev);
/*!
\brief initialize USB core registers for device mode
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
usb_status_enum usb_devcore_init (usb_core_handle_struct *pudev)
{
uint32_t i, ram_address = 0U;
__IO uint32_t devinep0intf = USB_DIEP0TFLEN;
__IO uint32_t devinepintf = 0U;
/* restart the Phy Clock (Maybe don't need to...) */
USB_PWRCLKCTL = 0U;
/* config periodic frmae interval to default */
USB_DCFG &= ~DCFG_EOPFT;
USB_DCFG |= FRAME_INTERVAL_80;
if (USB_FS_CORE_ID == pudev->cfg.core_id) {
/* set full speed PHY */
USB_DCFG &= ~DCFG_DS;
USB_DCFG |= USB_SPEED_INP_FULL;
/* set Rx FIFO size */
USB_GRFLEN &= ~GRFLEN_RXFD;
USB_GRFLEN |= (uint32_t)RX_FIFO_FS_SIZE;
/* set endpoint 0 Tx FIFO length and RAM address */
devinep0intf &= ~DIEP0TFLEN_IEP0TXFD;
devinep0intf |= (uint32_t)TX0_FIFO_FS_SIZE << 16;
devinep0intf &= ~DIEP0TFLEN_IEP0TXRSAR;
devinep0intf |= (uint32_t)RX_FIFO_FS_SIZE;
USB_DIEP0TFLEN = devinep0intf;
ram_address = (uint32_t)RX_FIFO_FS_SIZE;
/* set endpoint 1 to 3's Tx FIFO length and RAM address */
for (i = 1U; i < USBFS_MAX_DEV_EPCOUNT; i++) {
ram_address += USBFS_TX_FIFO_SIZE[i - 1U];
devinepintf &= ~DIEPTFLEN_IEPTXFD;
devinepintf |= (uint32_t)USBFS_TX_FIFO_SIZE[i] << 16U;
devinepintf &= ~DIEPTFLEN_IEPTXRSAR;
devinepintf |= ram_address;
USB_DIEPxTFLEN(i) = devinepintf;
}
}
/* make sure all FIFOs are flushed */
/* flush all Tx FIFOs */
usb_txfifo_flush(pudev, 0x10U);
/* flush entire Rx FIFO */
usb_rxfifo_flush(pudev);
/* clear all pending device interrupts */
USB_DIEPINTEN = 0U;
USB_DOEPINTEN = 0U;
USB_DAEPINT = 0xFFFFFFFFU;
USB_DAEPINTEN = 0U;
/* configure all IN/OUT endpoints */
for (i = 0U; i < pudev->cfg.dev_endp_num; i++) {
if (USB_DIEPxCTL(i) & DEPCTL_EPEN) {
USB_DIEPxCTL(i) |= DEPCTL_EPD | DEPCTL_SNAK;
} else {
USB_DIEPxCTL(i) = 0U;
}
if (USB_DOEPxCTL(i) & DEPCTL_EPEN) {
USB_DOEPxCTL(i) |= DEPCTL_EPD | DEPCTL_SNAK;
} else {
USB_DOEPxCTL(i) = 0U;
}
/* set IN/OUT endpoint transfer length to 0 */
USB_DIEPxLEN(i) = 0U;
USB_DOEPxLEN(i) = 0U;
/* clear all pending IN/OUT endpoints interrupts */
USB_DIEPxINTF(i) = 0xFFU;
USB_DOEPxINTF(i) = 0xFFU;
}
usb_devint_enable(pudev);
return USB_OK;
}
/*!
\brief enable the device mode interrupts
\param[in] pudev: pointer to usb device
\param[out] none
\retval status
*/
static usb_status_enum usb_devint_enable(usb_core_handle_struct *pudev)
{
uint32_t int_mask = 0U;
/* disable all interrupts */
USB_GINTEN = 0U;
/* clear any pending interrupts */
USB_GINTF = 0xBFFFFFFFU;
/* enable the common interrupts */
usb_commonint_enable(pudev);
int_mask = GINTEN_RXFNEIE;
/* enable device_mode-related interrupts */
int_mask |= GINTEN_SPIE | GINTEN_RSTIE | GINTEN_ENUMFIE \
| GINTEN_IEPIE | GINTEN_OEPIE | GINTEN_SOFIE | GINTEN_ISOONCIE \
| GINTEN_ISOINCIE;
#ifdef VBUS_SENSING_ENABLED
int_mask |= GINTEN_SESIE | GINTEN_OTGIE;
#endif /* VBUS_SENSING_ENABLED */
USB_GINTEN &= ~int_mask;
USB_GINTEN |= int_mask;
return USB_OK;
}
/*!
\brief configures endpoint 0 to receive SETUP packets
\param[in] pudev: pointer to usb device
\param[out] none
\retval none
*/
void usb_ep0_startout(usb_core_handle_struct *pudev)
{
__IO uint32_t ep0len = 0U;
/* set OUT endpoint 0 receive length to 24 bytes */
ep0len &= ~DOEP0LEN_TLEN;
ep0len |= 8U * 3U;
/* set OUT endpoint 0 receive length to 1 packet */
ep0len &= ~DOEP0LEN_PCNT;
ep0len |= 1U << 19;
/* set SETUP packet count to 3 */
ep0len &= ~DOEP0LEN_STPCNT;
ep0len |= 3U << 29;
USB_DOEPxLEN(0U) = ep0len;
}
/*!
\brief active remote wakeup signalling
\param[in] pudev: pointer to usb device
\param[out] none
\retval none
*/
void usb_remotewakeup_active(usb_core_handle_struct *pudev)
{
__IO uint32_t power_clock;
if (pudev->dev.remote_wakeup) {
if (1U == (USB_DSTAT & DSTAT_SPST)) {
if (pudev->cfg.low_power) {
/* ungate USB core clock */
power_clock = USB_PWRCLKCTL;
power_clock &= ~PWRCLKCTL_SHCLK;
power_clock &= ~PWRCLKCTL_SUCLK;
USB_PWRCLKCTL = power_clock;
}
/* active remote wakeup signaling */
USB_DCTL |= DCTL_RWKUP;
if (pudev->mdelay != (void *)0) {
pudev->mdelay(5U);
}
USB_DCTL &= ~DCTL_RWKUP;
}
}
}
/*!
\brief active USB core clock
\param[in] pudev: pointer to usb device
\param[out] none
\retval none
*/
void usb_clock_ungate(usb_core_handle_struct *pudev)
{
if (pudev->cfg.low_power) {
__IO uint32_t power_clock;
if (1U == (USB_DSTAT & DSTAT_SPST)) {
/* un-gate USB core clock */
power_clock = USB_PWRCLKCTL;
power_clock &= ~PWRCLKCTL_SHCLK;
power_clock &= ~PWRCLKCTL_SUCLK;
USB_PWRCLKCTL = power_clock;
}
}
}
/*!
\brief stop the device and clean up fifos
\param[in] pudev: pointer to usb device
\param[out] none
\retval none
*/
void usb_device_stop (usb_core_handle_struct *pudev)
{
uint32_t i;
pudev->dev.status = 1U;
for (i = 0U; i < pudev->cfg.dev_endp_num; i++) {
USB_DIEPxINTF(i) = 0xFFU;
USB_DOEPxINTF(i) = 0xFFU;
}
USB_DIEPINTEN = 0U;
USB_DOEPINTEN = 0U;
USB_DAEPINTEN = 0U;
USB_DAEPINT = 0xFFFFFFFFU;
/* flush the FIFO */
usb_rxfifo_flush(pudev);
usb_txfifo_flush(pudev, 0x10U);
}
#endif /* USE_DEVICE_MODE */

View File

@ -0,0 +1,476 @@
/*!
\file usbd_core.c
\brief USB device mode core driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbd_core.h"
#include "usbd_std.h"
/*!
\brief initailizes the USB device-mode handler stack
\param[in] pudev: pointer to usb device instance
\param[in] core_id: USB core ID
\param[out] none
\retval none
*/
void usbd_init (usb_core_handle_struct *pudev, usb_core_id_enum core_id)
{
/* select USB core */
usb_core_select (pudev, core_id);
pudev->dev.status = USB_STATUS_DEFAULT;
/* disable USB global interrupt */
USB_GLOBAL_INT_DISABLE();
/* init the core (common init.) */
usb_core_init(pudev);
/* force device mode*/
usb_mode_set(pudev, DEVICE_MODE);
/* set device disconnect */
USB_SOFT_DISCONNECT_ENABLE();
if ((void *)0 != pudev->mdelay) {
pudev->mdelay(3U);
}
/* init device */
usb_devcore_init(pudev);
/* set device Connect */
USB_SOFT_DISCONNECT_DISABLE();
if ((void *)0 != pudev->mdelay) {
pudev->mdelay(3U);
}
/* enable USB global interrupt */
USB_GLOBAL_INT_ENABLE();
}
/*!
\brief endpoint initialization
\param[in] pudev: pointer to usb device instance
\param[in] ep_desc: pointer to usb endpoint descriptor
\param[out] none
\retval none
*/
void usbd_ep_init (usb_core_handle_struct *pudev, const usb_descriptor_endpoint_struct *ep_desc)
{
usb_ep_struct *ep;
usb_dir_enum ep_dir;
uint32_t devepinten = 0U;
uint32_t devepctl = 0U;
uint8_t ep_num = ep_desc->bEndpointAddress & 0x7FU;
uint8_t ep_type = ep_desc->bmAttributes & USB_EPTYPE_MASK;
uint16_t ep_mps = ep_desc->wMaxPacketSize;
if (ep_desc->bEndpointAddress >> 7) {
ep = &pudev->dev.in_ep[ep_num];
devepinten |= 1U << ep_num;
devepctl = USB_DIEPxCTL((uint16_t)ep_num);
ep_dir = USB_TX;
} else {
ep = &pudev->dev.out_ep[ep_num];
devepinten |= (1U << ep_num) << 16;
devepctl = USB_DOEPxCTL((uint16_t)ep_num);
ep_dir = USB_RX;
}
/* if the endpoint is not active, need change the endpoint control register */
if (!(devepctl & DEPCTL_EPACT)) {
devepctl &= ~DEPCTL_MPL;
devepctl |= ep_mps;
devepctl &= ~DEPCTL_EPTYPE;
devepctl |= (uint32_t)ep_type << 18;
if (USB_TX == ep_dir) {
devepctl &= ~DIEPCTL_TXFNUM;
devepctl |= (uint32_t)ep_num << 22;
}
devepctl |= DEPCTL_SD0PID;
devepctl |= DEPCTL_EPACT;
}
if (USB_TX == ep_dir) {
USB_DIEPxCTL((uint16_t)ep_num) = devepctl;
} else if (USB_RX == ep_dir) {
USB_DOEPxCTL((uint16_t)ep_num) = devepctl;
} else {
/* no operation */
}
ep->endp_mps = ep_mps;
ep->endp_type = ep_type;
/* enable the interrupts for this endpoint */
USB_DAEPINTEN |= devepinten;
}
/*!
\brief endpoint deinitialize
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[out] none
\retval none
*/
void usbd_ep_deinit (usb_core_handle_struct *pudev, uint8_t ep_addr)
{
uint32_t devepinten = 0U;
uint8_t ep_num = ep_addr & 0x7FU;
if (ep_addr >> 7) {
devepinten |= 1U << ep_num;
USB_DIEPxCTL((uint16_t)ep_num) &= ~DEPCTL_EPACT;
} else {
devepinten |= (1U << ep_num) << 16U;
USB_DOEPxCTL((uint16_t)ep_num) &= ~DEPCTL_EPACT;
}
/* disable the interrupts for this endpoint */
USB_DAEPINTEN &= ~devepinten;
}
/*!
\brief endpoint prepare to receive data
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[in] pbuf: pointer to buffer
\param[in] buf_len: buffer length
\param[out] none
\retval none
*/
void usbd_ep_rx (usb_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint16_t buf_len)
{
usb_ep_struct *ep;
uint8_t ep_num = ep_addr & 0x7FU;
uint32_t devepctl = 0U, devepxlen = 0U;
ep = &pudev->dev.out_ep[ep_num];
/* setup and start the Xfer */
ep->xfer_buff = pbuf;
ep->xfer_len = buf_len;
ep->xfer_count = 0U;
devepctl = USB_DOEPxCTL((uint16_t)ep_num);
devepxlen = USB_DOEPxLEN((uint16_t)ep_num);
devepxlen &= ~DEPLEN_TLEN;
devepxlen &= ~DEPLEN_PCNT;
/* zero length packet */
if (0U == ep->xfer_len) {
/* set the transfer length to max packet size */
devepxlen |= ep->endp_mps;
/* set the transfer packet count to 1 */
devepxlen |= 1U << 19U;
} else {
if (0U == ep_num) {
/* set the transfer length to max packet size */
devepxlen |= ep->endp_mps;
/* set the transfer packet count to 1 */
devepxlen |= 1U << 19U;
} else {
/* configure the transfer size and packet count as follows:
* pktcnt = N
* xfersize = N * maxpacket
*/
devepxlen |= ((ep->xfer_len + ep->endp_mps - 1U) / ep->endp_mps) << 19U;
devepxlen |= ((devepxlen & DEPLEN_PCNT) >> 19U) * ep->endp_mps;
}
}
USB_DOEPxLEN((uint16_t)ep_num) = devepxlen;
if (USB_EPTYPE_ISOC == ep->endp_type) {
if (ep->endp_frame) {
devepctl |= DEPCTL_SODDFRM;
} else {
devepctl |= DEPCTL_SEVNFRM;
}
}
/* enable the endpoint and clear the NAK */
devepctl |= DEPCTL_EPEN | DEPCTL_CNAK;
USB_DOEPxCTL((uint16_t)ep_num) = devepctl;
}
/*!
\brief endpoint prepare to transmit data
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[in] pbuf: pointer to buffer
\param[in] len: buffer length
\param[out] none
\retval none
*/
void usbd_ep_tx (usb_core_handle_struct *pudev, uint8_t ep_addr, uint8_t *pbuf, uint32_t buf_len)
{
usb_ep_struct *ep;
uint8_t ep_num = ep_addr & 0x7FU;
__IO uint32_t devepctl = 0U;
__IO uint32_t deveplen = 0U;
ep = &pudev->dev.in_ep[ep_num];
/* setup and start the transfer */
ep->xfer_buff = pbuf;
ep->xfer_len = buf_len;
ep->xfer_count = 0U;
devepctl = USB_DIEPxCTL((uint16_t)ep_num);
deveplen = USB_DIEPxLEN((uint16_t)ep_num);
/* clear transfer length to 0 */
deveplen &= ~DEPLEN_TLEN;
/* clear transfer packet to 0 */
deveplen &= ~DEPLEN_PCNT;
/* zero length packet */
if (0U == ep->xfer_len) {
/* set transfer packet count to 1 */
deveplen |= 1U << 19U;
} else {
if (0U == ep_num) {
if (ep->xfer_len > ep->endp_mps) {
ep->xfer_len = ep->endp_mps;
}
deveplen |= 1U << 19U;
} else {
deveplen |= ((ep->xfer_len - 1U + ep->endp_mps) / ep->endp_mps) << 19U;
}
/* configure the transfer size and packet count as follows:
* xfersize = N * maxpacket + short_packet
* pktcnt = N + (short_packet exist ? 1 : 0)
*/
deveplen |= ep->xfer_len;
if (USB_EPTYPE_ISOC == ep->endp_type) {
deveplen |= DIEPLEN_MCNT & (1U << 29U);
}
}
USB_DIEPxLEN((uint16_t)ep_num) = deveplen;
if (USB_EPTYPE_ISOC == ep->endp_type) {
if (0U == (((USB_DSTAT & DSTAT_FNRSOF) >> 8U) & 0x1U)) {
devepctl |= DEPCTL_SODDFRM;
} else {
devepctl |= DEPCTL_SEVNFRM;
}
}
/* enable the endpoint and clear the NAK */
devepctl |= DEPCTL_EPEN | DEPCTL_CNAK;
USB_DIEPxCTL((uint16_t)ep_num) = devepctl;
if (USB_EPTYPE_ISOC != ep->endp_type) {
/* enable the Tx FIFO empty interrupt for this endpoint */
if (ep->xfer_len > 0U) {
USB_DIEPFEINTEN |= 1U << ep_num;
}
} else {
usb_fifo_write(ep->xfer_buff, ep_num, (uint16_t)ep->xfer_len);
}
}
/*!
\brief transmit data on the control channel
\param[in] pudev: pointer to usb device instance
\param[in] pbuf: pointer to buffer
\param[in] len: buffer length
\param[out] none
\retval usb device operation status
*/
usbd_status_enum usbd_ctltx (usb_core_handle_struct *pudev, uint8_t *pbuf, uint16_t len)
{
usbd_status_enum ret = USBD_OK;
pudev->dev.sum_len = len;
pudev->dev.remain_len = len;
pudev->dev.ctl_status = USB_CTRL_DATA_IN;
usbd_ep_tx (pudev, 0U, pbuf, (uint32_t)len);
return ret;
}
/*!
\brief receive data on the control channel
\param[in] pudev: pointer to usb device instance
\param[in] pbuf: pointer to buffer
\param[in] len: buffer length
\param[out] none
\retval usb device operation status
*/
usbd_status_enum usbd_ctlrx (usb_core_handle_struct *pudev, uint8_t *pbuf, uint16_t len)
{
pudev->dev.sum_len = len;
pudev->dev.remain_len = len;
pudev->dev.ctl_status = USB_CTRL_DATA_OUT;
usbd_ep_rx (pudev, 0U, pbuf, len);
return USBD_OK;
}
/*!
\brief transmit status on the control channel
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval usb device operation status
*/
usbd_status_enum usbd_ctlstatus_tx (usb_core_handle_struct *pudev)
{
pudev->dev.ctl_status = USB_CTRL_STATUS_IN;
usbd_ep_tx (pudev, 0U, NULL, 0U);
usb_ep0_startout(pudev);
return USBD_OK;
}
/*!
\brief receive status on the control channel
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval usb device operation status
*/
usbd_status_enum usbd_ctlstatus_rx (usb_core_handle_struct *pudev)
{
pudev->dev.ctl_status = USB_CTRL_STATUS_OUT;
usbd_ep_rx (pudev, 0U, NULL, 0U);
usb_ep0_startout(pudev);
return USBD_OK;
}
/*!
\brief set an endpoint to STALL status
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[out] none
\retval none
*/
void usbd_ep_stall (usb_core_handle_struct *pudev, uint8_t ep_addr)
{
uint8_t ep_num = ep_addr & 0x7FU;
__IO uint32_t devepctl = 0U;
if (ep_addr >> 7U) {
devepctl = USB_DIEPxCTL((uint16_t)ep_num);
/* set the endpoint disable bit */
if (devepctl & DEPCTL_EPEN) {
devepctl |= DEPCTL_EPD;
}
/* set the endpoint stall bit */
devepctl |= DEPCTL_STALL;
USB_DIEPxCTL((uint16_t)ep_num) = devepctl;
} else {
/* set the endpoint stall bit */
USB_DOEPxCTL((uint16_t)ep_num) |= DEPCTL_STALL;
}
}
/*!
\brief clear endpoint stalled status
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[out] none
\retval none
*/
void usbd_ep_clear_stall (usb_core_handle_struct *pudev, uint8_t ep_addr)
{
usb_ep_struct *ep;
uint8_t ep_num = ep_addr & 0x7FU;
__IO uint32_t devepctl = 0U;
if(ep_addr >> 7){
ep = &pudev->dev.in_ep[ep_num];
devepctl = USB_DIEPxCTL((uint16_t)ep_num);
/* clear the IN endpoint stall bits */
devepctl &= ~DEPCTL_STALL;
if ((USB_EPTYPE_INTR == ep->endp_type) || (USB_EPTYPE_BULK == ep->endp_type)) {
devepctl |= DEPCTL_SEVNFRM;
}
USB_DIEPxCTL((uint16_t)ep_num) = devepctl;
} else {
ep = &pudev->dev.out_ep[ep_num];
devepctl = USB_DOEPxCTL((uint16_t)ep_num);
/* clear the OUT endpoint stall bits */
devepctl &= ~DEPCTL_STALL;
if ((USB_EPTYPE_INTR == ep->endp_type) || (USB_EPTYPE_BULK == ep->endp_type)) {
devepctl |= DEPCTL_SEVNFRM;
}
USB_DOEPxCTL((uint16_t)ep_num) = devepctl;
}
}
/*!
\brief flushes the FIFOs
\param[in] pudev: pointer to usb device instance
\param[in] ep_addr: endpoint address
\param[out] none
\retval none
*/
void usbd_ep_fifo_flush (usb_core_handle_struct *pudev, uint8_t ep_addr)
{
if (ep_addr >> 7) {
usb_txfifo_flush(pudev, ep_addr & 0x7FU);
} else {
usb_rxfifo_flush(pudev);
}
}
/*!
\brief get the received data length
\param[in] pudev: pointer to usb device instance
\param[in] ep_num: endpoint identifier which is in (0..3)
\param[out] none
\retval received data length
*/
uint16_t usbd_rxcount_get (usb_core_handle_struct *pudev, uint8_t ep_num)
{
return (uint16_t)pudev->dev.out_ep[ep_num].xfer_count;
}

View File

@ -0,0 +1,648 @@
/*!
\file usbd_int.c
\brief USB device mode interrupt routines
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbd_int.h"
#include "usbd_std.h"
/* interrupt handlers */
static uint32_t usbd_intf_outep (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_inep (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_earlysuspend (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_suspend (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_resume (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_sof (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_rxfifo (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_reset (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_enumfinish (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_isoinincomplete (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_isooutincomplete (usb_core_handle_struct *pudev);
static uint32_t usbd_emptytxfifo_write (usb_core_handle_struct *pudev, uint8_t ep_num);
#ifdef VBUS_SENSING_ENABLED
static uint32_t usbd_intf_otg (usb_core_handle_struct *pudev);
static uint32_t usbd_intf_sessionrequest (usb_core_handle_struct *pudev);
#endif /* VBUS_SENSING_ENABLED */
static usb_speed_enum USB_SPEED[4] = {
[DSTAT_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ] = USB_SPEED_HIGH,
[DSTAT_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ] = USB_SPEED_FULL,
[DSTAT_ENUMSPD_FS_PHY_48MHZ] = USB_SPEED_FULL,
[DSTAT_ENUMSPD_LS_PHY_6MHZ] = USB_SPEED_LOW
};
static const uint8_t EP0_MAXLEN[4] = {
[DSTAT_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ] = EP0MPL_64,
[DSTAT_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ] = EP0MPL_64,
[DSTAT_ENUMSPD_FS_PHY_48MHZ] = EP0MPL_64,
[DSTAT_ENUMSPD_LS_PHY_6MHZ] = EP0MPL_8
};
/*!
\brief USB device-mode interrupts global service routine handler
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
uint32_t usbd_isr (usb_core_handle_struct *pudev)
{
uint32_t retval = 0U;
uint32_t int_status = 0U, gintf = USB_GINTF, ginten = USB_GINTEN;
/* ensure the core is in device mode */
if (DEVICE_MODE == USB_CURRENT_MODE_GET()) {
int_status = gintf & ginten;
/* there are no interrupts, avoid spurious interrupt */
if (!int_status) {
return 0U;
}
/* OUT endpoints interrupts */
if (int_status & GINTF_OEPIF) {
retval |= usbd_intf_outep(pudev);
}
/* IN endpoints interrupts */
if (int_status & GINTF_IEPIF) {
retval |= usbd_intf_inep(pudev);
}
/* mode mismatch interrupt */
if (int_status & GINTF_MFIF) {
/* clear interrupt */
USB_GINTF = GINTF_MFIF;
}
/* early suspend interrupt */
if (int_status & GINTF_ESP) {
retval |= usbd_intf_earlysuspend(pudev);
}
/* suspend interrupt */
if (int_status & GINTF_SP) {
retval |= usbd_intf_suspend(pudev);
}
/* wakeup interrupt */
if (int_status & GINTF_WKUPIF) {
retval |= usbd_intf_resume(pudev);
}
/* start of frame interrupt */
if (int_status & GINTF_SOF) {
retval |= usbd_intf_sof(pudev);
}
/* reveive fifo not empty interrupt */
if (int_status & GINTF_RXFNEIF) {
retval |= usbd_intf_rxfifo(pudev);
}
/* USB reset interrupt */
if (int_status & GINTF_RST) {
retval |= usbd_intf_reset(pudev);
}
/* enumeration has been finished interrupt */
if (int_status & GINTF_ENUMFIF) {
retval |= usbd_intf_enumfinish(pudev);
}
/* incomplete synchronization in transfer interrupt*/
if (int_status & GINTF_ISOINCIF) {
retval |= usbd_intf_isoinincomplete(pudev);
}
/* incomplete synchronization out transfer interrupt*/
if (int_status & GINTF_ISOONCIF) {
retval |= usbd_intf_isooutincomplete(pudev);
}
#ifdef VBUS_SENSING_ENABLED
/* session request interrupt */
if (int_status & GINTF_SESIF) {
retval |= usbd_intf_sessionrequest(pudev);
}
/* OTG mode interrupt */
if (int_status & GINTF_OTGIF) {
retval |= usbd_intf_otg(pudev);
}
#endif /* VBUS_SENSING_ENABLED */
}
return retval;
}
/*!
\brief indicates that an OUT endpoint has a pending interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_outep (usb_core_handle_struct *pudev)
{
uint8_t endp_num = 0U;
uint32_t endp_intr = 0U;
__IO uint32_t out_endp_intr = 0U;
/* read in the device interrupt bits */
USB_DAOEP_INTR_READ(endp_intr);
while (endp_intr) {
if (endp_intr & 0x1U) {
USB_DOEP_INTR_READ(out_endp_intr, (uint16_t)endp_num);
/* transfer complete interrupt */
if (out_endp_intr & DOEPINTF_TF) {
USB_DOEPxINTF((uint16_t)endp_num) = DOEPINTF_TF;
/* data receive is completed */
usbd_out_transaction(pudev, endp_num);
}
/* endpoint disable interrupt */
if (out_endp_intr & DOEPINTF_EPDIS) {
USB_DOEPxINTF((uint16_t)endp_num) = DOEPINTF_EPDIS;
}
/* setup phase finished interrupt (just for control endpoints) */
if (out_endp_intr & DOEPINTF_STPF) {
/* setup phase is completed */
usbd_setup_transaction(pudev);
USB_DOEPxINTF((uint16_t)endp_num) = DOEPINTF_STPF;
}
/* back to back setup packets received */
if (out_endp_intr & DOEPINTF_BTBSTP) {
USB_DOEPxINTF((uint16_t)endp_num) = DOEPINTF_BTBSTP;
}
}
endp_num ++;
endp_intr >>= 1;
}
return 1U;
}
/*!
\brief indicates that an IN endpoint has a pending interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_inep(usb_core_handle_struct *pudev)
{
uint8_t endp_num = 0U;
uint32_t endp_intr = 0U;
__IO uint32_t in_endp_intr = 0U;
/* get all in endpoints which have interrupts */
USB_DAIEP_INTR_READ(endp_intr);
while (endp_intr) {
if (endp_intr & 0x1U) {
USB_DIEP_INTR_READ(in_endp_intr, (uint16_t)endp_num);
if (in_endp_intr & DIEPINTF_TF) {
/* disable the fifo empty interrupt for the endpoint */
USB_DIEPFEINTEN &= ~(0x1U << endp_num);
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_TF;
/* data transmittion is completed */
usbd_in_transaction(pudev, endp_num);
}
if (in_endp_intr & DIEPINTF_CITO) {
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_CITO;
}
if (in_endp_intr & DIEPINTF_IEPNE) {
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_IEPNE;
}
if (in_endp_intr & DIEPINTF_EPDIS) {
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_EPDIS;
}
if (in_endp_intr & DIEPINTF_TXFE) {
usbd_emptytxfifo_write(pudev, endp_num);
USB_DIEPxINTF((uint16_t)endp_num) = DIEPINTF_TXFE;
}
}
endp_num ++;
endp_intr >>= 1;
}
return 1U;
}
/*!
\brief indicates that early SUSPEND state has been detected on the USB
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_earlysuspend (usb_core_handle_struct *pudev)
{
USB_GINTEN &= ~GINTEN_ESPIE;
USB_GINTF = GINTF_ESP;
return 1U;
}
/*!
\brief indicates that SUSPEND state has been detected on the USB
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_suspend(usb_core_handle_struct *pudev)
{
__IO uint8_t low_power = pudev->cfg.low_power;
__IO uint8_t suspend = (uint8_t)(USB_DSTAT & DSTAT_SPST);
__IO uint8_t is_configured = (pudev->dev.status == USB_STATUS_CONFIGURED)? 1U : 0U;
pudev->dev.prev_status = pudev->dev.status;
pudev->dev.status = USB_STATUS_SUSPENDED;
if (low_power && suspend && is_configured) {
/* switch-off the otg clocks */
USB_PWRCLKCTL |= PWRCLKCTL_SUCLK | PWRCLKCTL_SHCLK;
/* enter DEEP_SLEEP mode with LDO in low power mode */
pmu_to_deepsleepmode(PMU_LDO_LOWPOWER, WFI_CMD);
}
/* clear interrupt */
USB_GINTF = GINTF_SP;
return 1U;
}
/*!
\brief indicates that the USB controller has detected a resume or remote Wake-up sequence
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_resume (usb_core_handle_struct *pudev)
{
pudev->dev.status = pudev->dev.prev_status;
pudev->dev.status = USB_STATUS_CONFIGURED;
/* clear interrupt */
USB_GINTF = GINTF_WKUPIF;
return 1U;
}
/*!
\brief handle the SOF interrupts
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_sof(usb_core_handle_struct *pudev)
{
if (NULL != usbd_int_fops) {
usbd_int_fops->SOF(pudev);
}
USB_GINTF = GINTF_SOF;
return 1U;
}
/*!
\brief handle the Rx status queue level interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbd_intf_rxfifo (usb_core_handle_struct *pudev)
{
usb_ep_struct *ep;
uint8_t data_pid = 0U, endp_num = 0U;
uint32_t bcount = 0U, packet_num = 0U;
/* get the status from the top of the fifo (must be read to a variable) */
__IO uint32_t rx_status = USB_GRSTATP;
/* disable the rx fifo non-empty interrupt */
USB_GINTEN &= ~GINTEN_RXFNEIE;
endp_num = (uint8_t)(rx_status & GRSTATRP_EPNUM);
bcount = (rx_status & GRSTATRP_BCOUNT) >> 4U;
data_pid = (uint8_t)((rx_status & GRSTATRP_DPID) >> 15U);
/* ensure no-DMA mode can work */
packet_num = USB_DOEPxLEN((uint16_t)endp_num) & DEPLEN_PCNT;
if ((1U == endp_num) && (0U == packet_num)) {
uint32_t devepctl = USB_DOEPxCTL((uint16_t)endp_num);
devepctl |= DEPCTL_SNAK;
devepctl &= ~DEPCTL_EPEN;
devepctl &= ~DEPCTL_EPD;
USB_DOEPxCTL((uint16_t)endp_num) = devepctl;
}
ep = &pudev->dev.out_ep[endp_num];
switch ((rx_status & GRSTATRP_RPCKST) >> 17U) {
case RXSTAT_GOUT_NAK:
if(0U != bcount) {
return 0U;
}
break;
case RXSTAT_DATA_UPDT:
if (bcount > 0U) {
usb_fifo_read(ep->xfer_buff, (uint16_t)bcount);
ep->xfer_buff += bcount;
ep->xfer_count += bcount;
}
break;
case RXSTAT_XFER_COMP:
if (0U != bcount) {
return 0U;
}
break;
case RXSTAT_SETUP_COMP:
if(0U != bcount) {
return 0U;
}
break;
case RXSTAT_SETUP_UPDT:
*(uint32_t *)0x5000081CU |= 0x00020000U;
if ((0U == endp_num) && (8U == bcount) && (DPID_DATA0 == data_pid)) {
/* copy the setup packet received in fifo into the setup buffer in ram */
usb_fifo_read(pudev->dev.setup_packet, 8U);
ep->xfer_count += bcount;
}
break;
default:
break;
}
/* enable the Rx fifo non-empty interrupt */
USB_GINTEN |= GINTEN_RXFNEIE;
return 1U;
}
/*!
\brief handle USB reset interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_reset(usb_core_handle_struct *pudev)
{
uint8_t i = 0U;
usb_ep_struct *ep;
/* clear the remote wakeup signaling */
USB_DCTL &= ~DCTL_RWKUP;
/* flush the tx fifo */
usb_txfifo_flush(pudev, 0U);
for (i = 0U; i < pudev->cfg.dev_endp_num; i++) {
USB_DIEPxINTF((uint16_t)i) = 0xFFU;
USB_DOEPxINTF((uint16_t)i) = 0xFFU;
}
/* clear all pending device endpoint interrupts */
USB_DAEPINT = 0xFFFFFFFFU;
/* enable endpoint 0 interrupts */
USB_DAEPINTEN &= ~DAEPINTEN_OEPIE;
USB_DAEPINTEN &= ~DAEPINTEN_IEPIE;
USB_DAEPINTEN = (1U << 16) | 1U;
/* enable out endpoint interrupts */
USB_DOEPINTEN = DOEPINTEN_STPFEN | DOEPINTEN_TFEN | DOEPINTEN_EPDISEN;
/* enable in endpoint interrupts */
USB_DIEPINTEN = DIEPINTEN_TFEN | DIEPINTEN_CITOEN | DIEPINTEN_EPDISEN;
/* reset device address */
USB_DCFG &= ~DCFG_DAR;
USB_DCFG |= 0U << 4U;
/* configure endpoint 0 to receive setup packets */
usb_ep0_startout(pudev);
/* clear usb reset interrupt */
USB_GINTF = GINTF_RST;
/* open EP0 IN */
ep = &pudev->dev.in_ep[0];
USB_DIEPxCTL(0U) &= ~DEP0CTL_MPL;
USB_DIEPxCTL(0U) &= ~DEPCTL_EPTYPE;
USB_DIEPxCTL(0U) &= ~DIEPCTL_TXFNUM;
if (!(USB_DIEPxCTL(0U) & DEP0CTL_EPACT)) {
USB_DIEPxCTL(0U) |= USB_MAX_EP0_SIZE;
USB_DIEPxCTL(0U) |= (USB_EPTYPE_CTRL << 18U);
USB_DIEPxCTL(0U) |= DEP0CTL_EPACT;
}
ep->endp_mps = USB_MAX_EP0_SIZE;
ep->endp_type = USB_EPTYPE_CTRL;
/* open EP0 OUT */
ep = &pudev->dev.out_ep[0];
USB_DOEPxCTL(0U) &= ~DEP0CTL_MPL;
USB_DOEPxCTL(0U) &= ~DEPCTL_EPTYPE;
if (!(USB_DOEPxCTL(0U) & DEP0CTL_EPACT)) {
USB_DOEPxCTL(0U) |= USB_MAX_EP0_SIZE;
USB_DOEPxCTL(0U) |= (USB_EPTYPE_CTRL << 18U);
USB_DOEPxCTL(0U) |= DEP0CTL_EPACT;
}
ep->endp_mps = USB_MAX_EP0_SIZE;
ep->endp_type = USB_EPTYPE_CTRL;
pudev->dev.status = USB_STATUS_DEFAULT;
return 1U;
}
/*!
\brief handle enumeration finish interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_enumfinish(usb_core_handle_struct *pudev)
{
uint8_t enum_speed = (uint8_t)((USB_DSTAT & DSTAT_ES) >> 1U);
/* set the max packet size of devie in endpoint based on the enumeration speed */
USB_DIEPxCTL(0U) |= EP0_MAXLEN[enum_speed];
/* clear global IN NAK */
USB_DCTL &= ~DCTL_CGINAK;
USB_DCTL |= DCTL_CGINAK;
/* set USB turn-around time based on device speed and PHY interface */
if (USB_SPEED_HIGH == USB_SPEED[enum_speed]) {
pudev->cfg.core_speed = USB_CORE_SPEED_HIGH;
pudev->cfg.max_packet_size = USBHS_MAX_PACKET_SIZE;
USB_GUSBCS &= ~GUSBCS_UTT;
USB_GUSBCS |= 0x09U << 10;
} else {
pudev->cfg.core_speed = USB_CORE_SPEED_FULL;
pudev->cfg.max_packet_size = USBFS_MAX_PACKET_SIZE;
USB_GUSBCS &= ~GUSBCS_UTT;
USB_GUSBCS |= 0x05U << 10;
}
/* clear interrupt */
USB_GINTF = GINTF_ENUMFIF;
return 1U;
}
/*!
\brief handle the ISO IN incomplete interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_isoinincomplete(usb_core_handle_struct *pudev)
{
// USBD_DCD_INT_fops->IsoINIncomplete (pudev);
/* clear interrupt */
USB_GINTF = GINTF_ISOINCIF;
return 1U;
}
/*!
\brief handle the ISO OUT incomplete interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_isooutincomplete(usb_core_handle_struct *pudev)
{
// USBD_DCD_INT_fops->IsoOUTIncomplete (pudev);
/* clear interrupt */
USB_GINTF = GINTF_ISOONCIF;
return 1U;
}
/*!
\brief check FIFO for the next packet to be loaded
\param[in] pudev: pointer to usb device instance
\param[in] ep_id: endpoint identifier which is in (0..3)
\param[out] none
\retval status
*/
static uint32_t usbd_emptytxfifo_write(usb_core_handle_struct *pudev, uint8_t ep_num)
{
uint32_t len = 0U, word_len = 0U, fifo_empty_mask = 0U;
usb_ep_struct *ep;
ep = &pudev->dev.in_ep[ep_num];
len = ep->xfer_len - ep->xfer_count;
if (len > ep->endp_mps) {
len = ep->endp_mps;
}
word_len = (len + 3U) / 4U;
while (((USB_DIEPxTFSTAT((uint16_t)ep_num) & DIEPTFSTAT_IEPTFS) > word_len) &&
(ep->xfer_count < ep->xfer_len)) {
/* write the FIFO */
len = ep->xfer_len - ep->xfer_count;
if (len > ep->endp_mps) {
len = ep->endp_mps;
}
word_len = (len + 3U) / 4U;
usb_fifo_write (ep->xfer_buff, ep_num, (uint16_t)len);
ep->xfer_buff += len;
ep->xfer_count += len;
if(ep->xfer_len == ep->xfer_count) {
fifo_empty_mask = 0x1U << ep_num;
USB_DIEPFEINTEN &= ~fifo_empty_mask;
}
}
return 1U;
}
#ifdef VBUS_SENSING_ENABLED
/*!
\brief indicates that the USB_OTG controller has detected a connection
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_sessionrequest(usb_core_handle_struct *pudev)
{
pudev->dev.connection_status = 1U;
/* clear the interrupt bit */
USB_GINTF = GINTF_SESIF;
return 1;
}
/*!
\brief indicates that the USB_OTG controller has detected an OTG event
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval status
*/
static uint32_t usbd_intf_otg(usb_core_handle_struct *pudev)
{
if (USB_GOTGINTF & GOTGINTF_SESEND) {
pudev->dev.class_deinit(pudev, 0);
pudev->dev.connection_status = 0;
}
/* clear OTG interrupt */
USB_GOTGINTF |= GOTGINTF_SESEND;
return 1;
}
#endif /* VBUS_SENSING_ENABLED */

View File

@ -0,0 +1,693 @@
/*!
\file usbd_std.c
\brief USB 2.0 standard handler driver
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbd_std.h"
#include "usb_core.h"
static usbd_status_enum usbd_standard_request (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static usbd_status_enum usbd_device_class_request (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static usbd_status_enum usbd_vendor_request (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setup_request_parse(usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getdescriptor (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setaddress (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setconfig (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getconfig (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getstatus (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setfeature (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_clrfeature (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_reserved (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setdescriptor (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_getinterface (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_setinterface (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static void usbd_synchframe (usb_core_handle_struct *pudev, usb_device_req_struct *req);
static uint8_t* usbd_device_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen);
static uint8_t* usbd_configuration_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen);
static uint8_t* usbd_string_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen);
static void (*StandardDeviceRequest[])(usb_core_handle_struct *pudev, usb_device_req_struct *req) =
{
usbd_getstatus,
usbd_clrfeature,
usbd_reserved,
usbd_setfeature,
usbd_reserved,
usbd_setaddress,
usbd_getdescriptor,
usbd_setdescriptor,
usbd_getconfig,
usbd_setconfig,
usbd_getinterface,
usbd_setinterface,
usbd_synchframe,
};
/* get standard descriptor handler */
static uint8_t* (*standard_descriptor_get[])(usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen) =
{
usbd_device_descriptor_get,
usbd_configuration_descriptor_get,
usbd_string_descriptor_get
};
/*!
\brief USB setup stage processing
\param[in] pudev: pointer to USB device instance
\param[out] none
\retval USB device operation status
*/
usbd_status_enum usbd_setup_transaction(usb_core_handle_struct *pudev)
{
usb_device_req_struct req;
usbd_setup_request_parse(pudev, &req);
switch (req.bmRequestType & USB_REQ_MASK) {
/* standard device request */
case USB_STANDARD_REQ:
usbd_standard_request(pudev, &req);
break;
/* device class request */
case USB_CLASS_REQ:
usbd_device_class_request(pudev, &req);
break;
/* vendor defined request */
case USB_VENDOR_REQ:
usbd_vendor_request(pudev, &req);
break;
default:
usbd_ep_stall(pudev, req.bmRequestType & 0x80U);
break;
}
return USBD_OK;
}
/*!
\brief data out stage processing
\param[in] pudev: pointer to USB device instance
\param[in] ep_id: endpoint identifier(0..7)
\param[out] none
\retval USB device operation status
*/
usbd_status_enum usbd_out_transaction (usb_core_handle_struct *pudev, uint8_t endp_num)
{
usb_ep_struct *ep;
if (0U == endp_num) {
ep = &pudev->dev.out_ep[0];
if (USB_CTRL_DATA_OUT == pudev->dev.ctl_status) {
if (pudev->dev.remain_len > ep->endp_mps) {
pudev->dev.remain_len -= ep->endp_mps;
usbd_ep_rx (pudev,
0U,
ep->xfer_buff,
(uint16_t)USB_MIN(pudev->dev.remain_len, ep->endp_mps));
} else {
if (USB_STATUS_CONFIGURED == pudev->dev.status) {
pudev->dev.class_data_handler(pudev, USB_RX, 0U);
}
usbd_ctlstatus_tx(pudev);
}
}
} else if (USB_STATUS_CONFIGURED == pudev->dev.status) {
pudev->dev.class_data_handler(pudev, USB_RX, endp_num);
} else {
/* no operation */
}
return USBD_OK;
}
/*!
\brief data in stage processing
\param[in] pudev: pointer to USB device instance
\param[in] ep_id: endpoint identifier(0..7)
\param[out] none
\retval USB device operation status
*/
usbd_status_enum usbd_in_transaction (usb_core_handle_struct *pudev, uint8_t endp_num)
{
usb_ep_struct *ep;
if (0U == endp_num) {
ep = &pudev->dev.in_ep[0];
if (USB_CTRL_DATA_IN == pudev->dev.ctl_status) {
if (pudev->dev.remain_len > ep->endp_mps) {
pudev->dev.remain_len -= ep->endp_mps;
usbd_ep_tx (pudev, 0U, ep->xfer_buff, pudev->dev.remain_len);
usbd_ep_rx (pudev, 0U, NULL, 0U);
} else {
/* last packet is MPS multiple, so send ZLP packet */
if ((pudev->dev.sum_len % ep->endp_mps == 0U) &&
(pudev->dev.sum_len >= ep->endp_mps) &&
(pudev->dev.sum_len < pudev->dev.ctl_len)) {
usbd_ep_tx (pudev, 0U, NULL, 0U);
pudev->dev.ctl_len = 0U;
usbd_ep_rx (pudev, 0U, NULL, 0U);
} else {
if (USB_STATUS_CONFIGURED == pudev->dev.status) {
pudev->dev.class_data_handler(pudev, USB_TX, 0U);
}
usbd_ctlstatus_rx(pudev);
}
}
}
} else if (USB_STATUS_CONFIGURED == pudev->dev.status) {
pudev->dev.class_data_handler(pudev, USB_TX, endp_num);
} else {
/* no operation */
}
return USBD_OK;
}
/*!
\brief handle USB standard device request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval USB device operation status
*/
static usbd_status_enum usbd_standard_request (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* call device request handle function */
(*StandardDeviceRequest[req->bRequest])(pudev, req);
return USBD_OK;
}
/*!
\brief handle USB device class request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device class request
\param[out] none
\retval USB device operation status
*/
static usbd_status_enum usbd_device_class_request (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
usbd_status_enum ret = USBD_OK;
switch (pudev->dev.status) {
case USB_STATUS_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
ret = (usbd_status_enum)(pudev->dev.class_req_handler(pudev, req));
if ((0U == req->wLength) && (USBD_OK == ret)) {
/* no data stage */
usbd_ctlstatus_tx(pudev);
}
} else {
usbd_enum_error(pudev, req);
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
return ret;
}
/*!
\brief handle USB vendor request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB vendor request
\param[out] none
\retval USB device operation status
*/
static usbd_status_enum usbd_vendor_request (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* added by user... */
return USBD_OK;
}
/*!
\brief no operation, just for reserved
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_reserved (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* no operation... */
}
/*!
\brief get the device descriptor
\brief[in] index: no use
\param[in] none
\param[out] pLen: data length pointer
\retval descriptor buffer pointer
*/
static uint8_t* usbd_device_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen)
{
*pLen = pudev->dev.dev_desc[0];
return pudev->dev.dev_desc;
}
/*!
\brief get the configuration descriptor
\brief[in] index: no use
\param[in] none
\param[out] pLen: data length pointer
\retval descriptor buffer pointer
*/
static uint8_t* usbd_configuration_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen)
{
*pLen = pudev->dev.config_desc[2];
return pudev->dev.config_desc;
}
/*!
\brief get string descriptor
\param[in] index: string descriptor index
\param[in] pLen: pointer to string length
\param[out] none
\retval none
*/
static uint8_t* usbd_string_descriptor_get (usb_core_handle_struct *pudev, uint8_t index, uint16_t *pLen)
{
uint8_t *desc = pudev->dev.strings[index];
*pLen = desc[0];
return desc;
}
/*!
\brief handle Get_Status request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getstatus (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
}
/*!
\brief handle USB Clear_Feature request
\param[in] pudev: pointer to USB device instance
\param[in] req: USB device request
\param[out] none
\retval none
*/
static void usbd_clrfeature (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t ep_addr = 0U;
switch (req->bmRequestType & USB_REQTYPE_MASK) {
case USB_REQTYPE_DEVICE:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
case USB_STATUS_CONFIGURED:
if (USB_FEATURE_REMOTE_WAKEUP == req->wValue) {
pudev->dev.remote_wakeup = 0U;
pudev->dev.class_req_handler(pudev, req);
usbd_ctlstatus_tx(pudev);
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
break;
case USB_REQTYPE_INTERFACE:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
usbd_enum_error(pudev, req);
break;
case USB_STATUS_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
/* no operation */
} else {
usbd_enum_error(pudev, req);
}
break;
default:
break;
}
break;
case USB_REQTYPE_ENDPOINT:
ep_addr = LOWBYTE(req->wIndex);
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_stall(pudev, ep_addr);
}
break;
case USB_STATUS_CONFIGURED:
if (USB_FEATURE_ENDP_HALT == req->wValue) {
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_clear_stall(pudev, ep_addr);
pudev->dev.class_req_handler(pudev, req);
}
}
usbd_ctlstatus_tx(pudev);
break;
default:
break;
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
/*!
\brief handle USB Set_Feature request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setfeature (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t ep_addr = 0U;
__IO uint32_t DctlrStatus;
switch (req->bmRequestType & USB_REQ_MASK) {
case USB_REQTYPE_DEVICE:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
case USB_STATUS_CONFIGURED:
if (USB_FEATURE_REMOTE_WAKEUP == req->wValue) {
pudev->dev.remote_wakeup = 1U;
pudev->dev.class_req_handler(pudev, req);
usbd_ctlstatus_tx(pudev);
} else if ((req->wValue == USB_FEATURE_TEST_MODE) &&
(0U == (req->wIndex & 0xFFU))) {
DctlrStatus = USB_DCTL;
usbd_ctlstatus_tx(pudev);
} else {
/* no operation */
}
break;
default:
break;
}
break;
case USB_REQTYPE_INTERFACE:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
usbd_enum_error(pudev, req);
break;
case USB_STATUS_CONFIGURED:
if (LOWBYTE(req->wIndex) <= USBD_ITF_MAX_NUM) {
/* no operation */
} else {
usbd_enum_error(pudev, req);
}
break;
default:
break;
}
break;
case USB_REQTYPE_ENDPOINT:
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_stall(pudev, ep_addr);
}
break;
case USB_STATUS_CONFIGURED:
if (USB_FEATURE_ENDP_HALT == req->wValue) {
if (IS_NOT_EP0(ep_addr)) {
usbd_ep_stall(pudev, ep_addr);
}
}
pudev->dev.class_req_handler(pudev, req);
usbd_ctlstatus_tx(pudev);
break;
default:
break;
}
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
/*!
\brief handle USB Set_Address request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setaddress (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t DevAddr;
if ((0U == req->wIndex) && (0U == req->wLength)) {
DevAddr = (uint8_t)(req->wValue) & 0x7FU;
if (USB_STATUS_CONFIGURED == pudev->dev.status) {
usbd_enum_error(pudev, req);
} else {
USB_SET_DEVADDR((uint32_t)DevAddr);
usbd_ctlstatus_tx(pudev);
if (0U != DevAddr) {
pudev->dev.status = USB_STATUS_ADDRESSED;
} else {
pudev->dev.status = USB_STATUS_DEFAULT;
}
}
} else {
usbd_enum_error(pudev, req);
}
}
/*!
\brief handle USB Get_Descriptor request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getdescriptor (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
if (USB_REQTYPE_DEVICE == (req->bmRequestType & USB_REQTYPE_MASK)) {
uint8_t desc_index = (uint8_t)(req->wValue >> 8U);
if (desc_index <= 0x03U) {
uint16_t len;
uint8_t *pbuf;
/* call corresponding descriptor get function */
pbuf = standard_descriptor_get[desc_index - 1U](pudev, (uint8_t)(req->wValue) & 0xFFU, &len);
if ((0U != len) && (0U != req->wLength)) {
len = USB_MIN(len, req->wLength);
if ((1U == desc_index) && (64U == req->wLength)) {
len = 8U;
}
usbd_ctltx(pudev, pbuf, len);
}
} else {
usbd_enum_error(pudev, req);
}
} else if (USB_REQTYPE_INTERFACE == (req->bmRequestType & USB_REQTYPE_MASK)) {
pudev->dev.class_req_handler(pudev, req);
} else {
/* no operation */
}
}
/*!
\brief handle USB Set_Descriptor request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setdescriptor (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* no handle... */
}
/*!
\brief handle USB Get_Configuration request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getconfig (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint32_t USBD_default_config = 0U;
if (1U != req->wLength) {
usbd_enum_error(pudev, req);
} else {
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
usbd_ctltx(pudev, (uint8_t *)&USBD_default_config, 1U);
break;
case USB_STATUS_CONFIGURED:
usbd_ctltx(pudev, &pudev->dev.config_num, 1U);
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
}
/*!
\brief handle USB Set_Configuration request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setconfig (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
static uint8_t cfgidx;
cfgidx = (uint8_t)(req->wValue);
if (cfgidx > USBD_CFG_MAX_NUM) {
usbd_enum_error(pudev, req);
} else {
switch (pudev->dev.status) {
case USB_STATUS_ADDRESSED:
if (cfgidx) {
pudev->dev.config_num = cfgidx;
pudev->dev.status = USB_STATUS_CONFIGURED;
pudev->dev.class_init(pudev, cfgidx);
}
usbd_ctlstatus_tx(pudev);
break;
case USB_STATUS_CONFIGURED:
if (0U == cfgidx) {
pudev->dev.status = USB_STATUS_ADDRESSED;
pudev->dev.config_num = cfgidx;
pudev->dev.class_deinit(pudev, cfgidx);
} else if (cfgidx != pudev->dev.config_num) {
/* clear old configuration */
pudev->dev.class_deinit(pudev, pudev->dev.config_num);
/* set new configuration */
pudev->dev.config_num = cfgidx;
pudev->dev.class_init(pudev, cfgidx);
} else {
/* no operation */
}
usbd_ctlstatus_tx(pudev);
break;
default:
usbd_enum_error(pudev, req);
break;
}
}
}
/*!
\brief handle USB Get_Interface request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_getinterface (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
pudev->dev.class_req_handler(pudev, req);
}
/*!
\brief handle USB Set_Interface request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setinterface (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
pudev->dev.class_req_handler(pudev, req);
}
/*!
\brief handle USB SynchFrame request
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_synchframe (usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
/* no handle... */
}
/*!
\brief decode setup data packet
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
static void usbd_setup_request_parse(usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
uint8_t *psetup = pudev->dev.setup_packet;
req->bmRequestType = *psetup;
req->bRequest = *(uint8_t *)(psetup + 1U);
req->wValue = SWAPBYTE (psetup + 2U);
req->wIndex = SWAPBYTE (psetup + 4U);
req->wLength = SWAPBYTE (psetup + 6U);
pudev->dev.ctl_len = req->wLength;
}
/*!
\brief handle USB low level error event
\param[in] pudev: pointer to USB device instance
\param[in] req: pointer to USB device request
\param[out] none
\retval none
*/
void usbd_enum_error(usb_core_handle_struct *pudev, usb_device_req_struct *req)
{
usbd_ep_stall(pudev, 0x80U);
usbd_ep_stall(pudev, 0x00U);
usb_ep0_startout(pudev);
}

View File

@ -0,0 +1,710 @@
/*!
\file usbh_core.c
\brief this file implements the functions for the core state machine process
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbh_hcs.h"
#include "usbh_core.h"
#include "usbh_int.h"
#include "stdio.h"
#include "usbh_std.h"
#include "usbh_ctrl.h"
#include "usb_core.h"
extern class_polling_fun_cb_struct class_polling_cb;
uint8_t usbh_sof (usb_core_handle_struct *pudev);
uint8_t usbh_connected (usb_core_handle_struct *pudev);
uint8_t usbh_disconnected (usb_core_handle_struct *pudev);
usbh_hcd_int_cb_struct usbh_hcd_int_cb =
{
usbh_sof,
usbh_connected,
usbh_disconnected,
};
usbh_hcd_int_cb_struct *usbh_hcd_int_fops = &usbh_hcd_int_cb;
extern usbh_state_handle_struct usbh_state_core;
static void host_idle_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_dev_attached_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_dev_detached_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_detect_dev_speed_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_enum_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_class_request_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_class_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_user_input_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_suspended_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void host_error_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static usbh_status_enum class_req_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
static usbh_status_enum class_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate);
/* the host state handle function array */
void (*host_state_handle[]) (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate) =
{
host_idle_handle,
host_dev_attached_handle,
host_dev_detached_handle,
host_detect_dev_speed_handle,
host_enum_handle,
host_class_request_handle,
host_class_handle,
host_user_input_handle,
host_suspended_handle,
host_error_handle,
};
/* the host state handle table */
state_table_struct host_handle_table[HOST_HANDLE_TABLE_SIZE] =
{
/* the current state the current event the next state the event function */
{HOST_IDLE, HOST_EVENT_ATTACHED, HOST_DEV_ATTACHED, only_state_move },
{HOST_DEV_ATTACHED, HOST_EVENT_ENUM, HOST_ENUMERATION, only_state_move },
{HOST_ENUMERATION, HOST_EVENT_USER_INPUT, HOST_USER_INPUT, only_state_move },
{HOST_USER_INPUT, HOST_EVENT_CLASS_REQ, HOST_CLASS_REQUEST, only_state_move },
{HOST_CLASS_REQUEST, HOST_EVENT_CLASS, HOST_CLASS, only_state_move },
{HOST_CLASS, HOST_EVENT_ERROR, HOST_ERROR, only_state_move },
{HOST_ERROR, HOST_EVENT_IDLE, HOST_IDLE, only_state_move },
{HOST_DEV_DETACHED, HOST_EVENT_IDLE, HOST_IDLE, only_state_move },
{HOST_CLASS_REQUEST, HOST_EVENT_ERROR, HOST_ERROR, only_state_move },
};
/*!
\brief the polling function of HOST state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
usbh_status_enum host_state_polling_fun (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
void *pustate)
{
usbh_state_handle_struct *p_state = (usbh_state_handle_struct *)pustate;
scd_begin(p_state, HOST_FSM_ID);
if (-1 == p_state->usbh_current_state_stack_top) {
uint8_t cur_state = p_state->usbh_current_state;
if ((0U == hcd_is_device_connected(pudev)) && (HOST_IDLE != cur_state)) {
if (HOST_DEV_DETACHED != cur_state) {
p_state->usbh_current_state = HOST_DEV_DETACHED;
cur_state = HOST_DEV_DETACHED;
}
}
host_state_handle[cur_state](pudev, puhost, p_state);
} else {
uint8_t stack0_state = p_state->stack[0].state;
if ((0U == hcd_is_device_connected(pudev)) && (HOST_IDLE != stack0_state)) {
if (HOST_DEV_DETACHED != stack0_state) {
p_state->stack[0].state = HOST_DEV_DETACHED;
stack0_state = HOST_DEV_DETACHED;
p_state->usbh_current_state = HOST_DEV_DETACHED;
}
}
host_state_handle[stack0_state](pudev, puhost, p_state);
}
return USBH_OK;
}
/*!
\brief the handle function of HOST_IDLE state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_idle_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
if (hcd_is_device_connected(pudev)) {
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_ATTACHED, pustate->usbh_current_state);
if ((void *)0 != pudev->mdelay) {
pudev->mdelay(100U);
}
}
}
/*!
\brief the handle function of HOST_DEV_ATTACHED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_dev_attached_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usr_cb->device_connected();
puhost->control.hc_out_num = usbh_channel_alloc(pudev, 0x00U);
puhost->control.hc_in_num = usbh_channel_alloc(pudev, 0x80U);
/* reset usb device */
if (0U == usb_port_reset(pudev)) {
puhost->usr_cb->device_reset();
/* wait for USB USBH_ISR_PrtEnDisableChange()
* host is now ready to start the enumeration
*/
puhost->device.speed = (uint8_t)USB_CURRENT_SPEED_GET();
puhost->usr_cb->device_speed_detected(puhost->device.speed);
/* open IN control pipes */
usbh_channel_open (pudev,
puhost->control.hc_in_num,
puhost->device.address,
puhost->device.speed,
USB_EPTYPE_CTRL,
(uint16_t)puhost->control.ep0_size);
/* open OUT control pipes */
usbh_channel_open (pudev,
puhost->control.hc_out_num,
puhost->device.address,
puhost->device.speed,
USB_EPTYPE_CTRL,
(uint16_t)puhost->control.ep0_size);
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_ENUM, pustate->usbh_current_state);
}
}
/*!
\brief the handle function of HOST_ENUMERATION state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_enum_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
if (USBH_OK == enum_state_polling_fun(pudev, puhost, pustate)) {
puhost->usr_cb->enumeration_finish();
scd_event_handle(pudev,
puhost,
pustate,
HOST_EVENT_USER_INPUT,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of HOST_USER_INPUT state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_user_input_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
if (USBH_USER_RESP_OK == puhost->usr_cb->user_input()) {
if (USBH_OK == (puhost->class_init(pudev, puhost))) {
scd_event_handle(pudev,
puhost,
pustate,
HOST_EVENT_CLASS_REQ,
pustate->usbh_current_state);
}
}
}
/*!
\brief the handle function of HOST_CLASS_REQUEST state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_class_request_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
if (USBH_OK == class_req_state_polling_fun(pudev, puhost, pustate)) {
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_CLASS, pustate->usbh_current_state);
}
}
/*!
\brief the handle function of HOST_CLASS state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_class_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
class_state_polling_fun(pudev, puhost, pustate);
}
/*!
\brief the handle function of HOST_SUSPENDED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_suspended_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
/* no operation */
}
/*!
\brief the handle function of HOST_ERROR state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_error_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
/* re-initilaize host for new enumeration */
usbh_deinit (pudev, puhost,&usbh_state_core);
puhost->usr_cb->deinit();
puhost->class_deinit(pudev, &puhost->device);
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_IDLE, pustate->usbh_current_state);
}
/*!
\brief the handle function of HOST_DEV_DETACHED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_dev_detached_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
/* manage user disconnect operations*/
puhost->usr_cb->device_disconnected();
/* re-initilaize host for new enumeration */
usbh_deinit(pudev, puhost,&usbh_state_core);
puhost->usr_cb->deinit();
puhost->class_deinit(pudev, &puhost->device);
usbh_allchannel_dealloc(pudev);
scd_event_handle(pudev, puhost, pustate, HOST_EVENT_IDLE, pustate->usbh_current_state);
}
/*!
\brief the handle function of HOST_DETECT_DEV_SPEED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void host_detect_dev_speed_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
/* no operation */
}
/*!
\brief usb connect callback function from the interrupt.
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
uint8_t usbh_connected (usb_core_handle_struct *pudev)
{
pudev->host.connect_status = 1U;
return 0U;
}
/*!
\brief usb disconnect callback function from the interrupt.
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
uint8_t usbh_disconnected (usb_core_handle_struct *pudev)
{
pudev->host.connect_status = 0U;
return 0U;
}
/*!
\brief usb sof callback function from the interrupt.
\param[in] pudev: pointer to usb device
\param[out] none
\retval operation status
*/
uint8_t usbh_sof (usb_core_handle_struct *pudev)
{
/* this callback could be used to implement a scheduler process */
return 0U;
}
/*!
\brief initialize the host portion of the driver.
\param[in] pudev: pointer to usb device
\param[in] core_id: usb otg core identifier(high-speed or full-speed)
\param[out] none
\retval operation status
*/
uint32_t hcd_init(usb_core_handle_struct *pudev, usb_core_id_enum core_id)
{
pudev->host.connect_status = 0U;
pudev->host.host_channel[0].endp_mps = 8U;
usb_core_select(pudev, core_id);
#ifndef DUAL_ROLE_MODE_ENABLED
USB_GLOBAL_INT_DISABLE();
usb_core_init(pudev);
/* force host mode*/
usb_mode_set(pudev, HOST_MODE);
usb_hostcore_init(pudev);
USB_GLOBAL_INT_ENABLE();
#endif
return 0U;
}
/*!
\brief check if the device is connected.
\param[in] pudev: pointer to usb device
\param[out] none
\retval device connection status. 1 -> connected and 0 -> disconnected
*/
uint32_t hcd_is_device_connected(usb_core_handle_struct *pudev)
{
return (uint32_t)(pudev->host.connect_status);
}
/*!
\brief this function returns the last URBstate
\param[in] pudev: pointer to usb device
\param[in] channel_num: host channel number which is in (0..7)
\param[out] none
\retval urb_state_enum
*/
urb_state_enum hcd_urb_state_get (usb_core_handle_struct *pudev, uint8_t channel_num)
{
return pudev->host.host_channel[channel_num].urb_state;
}
/*!
\brief this function returns the last URBstate
\param[in] pudev: pointer to usb device
\param[in] channel_num: host channel number which is in (0..7)
\param[out] none
\retval No. of data bytes transferred
*/
uint32_t hcd_xfer_count_get (usb_core_handle_struct *pudev, uint8_t channel_num)
{
return pudev->host.host_channel[channel_num].xfer_count;
}
/*!
\brief de-initialize host
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[out] none
\retval host status
*/
usbh_status_enum usbh_deinit(usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct* pustate)
{
/* software init */
puhost->control.ep0_size = USB_MAX_EP0_SIZE;
puhost->device.address = USBH_DEVICE_ADDRESS_DEFAULT;
puhost->device.speed = HPRT_PRTSPD_FULL_SPEED;
usbh_channel_free(pudev, puhost->control.hc_in_num);
usbh_channel_free(pudev, puhost->control.hc_out_num);
scd_init(pustate);
scd_table_regist(pustate, host_handle_table, HOST_FSM_ID, HOST_HANDLE_TABLE_SIZE);
scd_table_regist(pustate, enum_handle_table, ENUM_FSM_ID, ENUM_HANDLE_TABLE_SIZE);
scd_table_regist(pustate, ctrl_handle_table, CTRL_FSM_ID, CTRL_HANDLE_TABLE_SIZE);
scd_begin(pustate,HOST_FSM_ID);
scd_state_move(pustate, HOST_IDLE);
return USBH_OK;
}
/*!
\brief state core driver init
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
void scd_init(usbh_state_handle_struct* pustate)
{
/* init the state core */
pustate->usbh_current_state = 0U;
pustate->usbh_current_state_table = NULL;
pustate->usbh_current_state_table_size = 0U;
pustate->usbh_current_state_stack_top = -1;
pustate->stack->state = 0U;
pustate->stack->table_size = 0U;
pustate->stack->table = NULL;
pustate->usbh_regist_state_table_num = 0U;
pustate->usbh_regist_state_table->table = NULL;
pustate->usbh_regist_state_table->table_size = 0U;
pustate->usbh_regist_state_table->id = 0U;
/* init the control and the enumeration polling handle flag */
ctrl_polling_handle_flag = 0U;
enum_polling_handle_flag = 0U;
}
/*!
\brief state core driver table regist
\param[in] pustate: pointer to usb state driver
\param[in] pstate_table: pointer to the table to regist
\param[in] table_id: the id of the table to regist
\param[in] current_table_size: the size of the current table to regist
\param[out] none
\retval none
*/
void scd_table_regist (usbh_state_handle_struct* pustate,
state_table_struct* pstate_table,
uint8_t table_id,
uint8_t current_table_size)
{
usbh_state_regist_table_struct *cur_state_reg_table;
cur_state_reg_table = &pustate->usbh_regist_state_table[pustate->usbh_regist_state_table_num];
cur_state_reg_table->id = table_id;
cur_state_reg_table->table = pstate_table;
cur_state_reg_table->table_size = current_table_size;
pustate->usbh_regist_state_table_num++;
}
/*!
\brief state core driver begin
\param[in] pustate: pointer to usb state driver
\param[in] table_id: the id of the table to begin
\param[out] none
\retval none
*/
void scd_begin(usbh_state_handle_struct* pustate, uint8_t table_id)
{
uint8_t i = 0U, table_num = pustate->usbh_regist_state_table_num;
usbh_state_regist_table_struct *cur_state_reg_table;
for (i = 0U; i < table_num; i++) {
cur_state_reg_table = &pustate->usbh_regist_state_table[i];
if (table_id == cur_state_reg_table->id) {
pustate->usbh_current_state_table = cur_state_reg_table->table;
pustate->usbh_current_state_table_size = cur_state_reg_table->table_size;
break;
}
}
}
/*!
\brief state core driver move state
\param[in] pustate: pointer to usb state driver
\param[in] state: the state to move
\param[out] none
\retval none
*/
void scd_state_move(usbh_state_handle_struct* pustate, uint8_t state)
{
pustate->usbh_current_state = state;
}
/*!
\brief state core driver event handle
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[in] event: the current event
\param[in] state: the current state
\param[out] none
\retval host status
*/
usbh_status_enum scd_event_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct* pustate,
uint8_t event,
uint8_t state)
{
uint8_t i = 0U;
ACT_FUN event_act_fun = NULL;
state_table_struct *backup_state_t = pustate->usbh_current_state_table;
state_table_struct *executive_state_table = pustate->usbh_current_state_table;
/* look up the table to find the action function */
for (i = 0U; i < pustate->usbh_current_state_table_size; i++) {
if (state == executive_state_table->cur_state) {
if (event == executive_state_table->cur_event) {
state = executive_state_table->next_state;
event_act_fun = executive_state_table->event_action_fun;
break;
} else {
executive_state_table++;
}
} else {
executive_state_table++;
}
}
pustate->usbh_current_state_table = backup_state_t;
/* if the action function is not NULL, execute the action function */
if (event_act_fun) {
if (event_act_fun == &only_state_move) {
pustate->usbh_current_state = state;
} else {
return event_act_fun(pudev, puhost, pustate);
}
}
return USBH_BUSY;
}
/*!
\brief state core driver table push
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
void scd_table_push(usbh_state_handle_struct* pustate)
{
usbh_state_stack_struct *top_state_element;
if (pustate->usbh_current_state_stack_top < MAX_USBH_STATE_STACK_DEEP) {
pustate->usbh_current_state_stack_top++;
top_state_element = &pustate->stack[pustate->usbh_current_state_stack_top];
/* put the current state table into the state stack */
top_state_element->state = pustate->usbh_current_state;
top_state_element->table = pustate->usbh_current_state_table;
top_state_element->table_size = pustate->usbh_current_state_table_size;
}
}
/*!
\brief state core driver table pop
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
void scd_table_pop (usbh_state_handle_struct* pustate)
{
usbh_state_stack_struct *top_state_element;
top_state_element = &pustate->stack[pustate->usbh_current_state_stack_top];
if (pustate->usbh_current_state_stack_top > -1) {
/* get the current state table from the state stack */
pustate->usbh_current_state = top_state_element->state;
pustate->usbh_current_state_table = top_state_element->table;
pustate->usbh_current_state_table_size = top_state_element->table_size;
pustate->usbh_current_state_stack_top--;
}
}
/*!
\brief the polling function of class req state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval host status
*/
static usbh_status_enum class_req_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate)
{
return class_polling_cb.class_req_polling(pudev, puhost, pustate);
}
/*!
\brief the polling function of class state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval host status
*/
static usbh_status_enum class_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate)
{
return class_polling_cb.class_polling(pudev, puhost, pustate);
}
/*!
\brief the function is only used to state move
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
usbh_status_enum only_state_move (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate)
{
return USBH_OK;
}
/*!
\brief the function to the up state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
usbh_status_enum goto_up_state_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate)
{
scd_table_pop((usbh_state_handle_struct *)pustate);
return USBH_OK;
}

View File

@ -0,0 +1,612 @@
/*!
\file usbh_ctrl.c
\brief this file implements the functions for the control transmit process
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbh_core.h"
#include "usbh_std.h"
#include "usbh_ctrl.h"
uint8_t ctrl_polling_handle_flag = 0U;
uint8_t ctrl_setup_wait_flag = 0U;
uint8_t ctrl_data_wait_flag = 0U;
uint8_t ctrl_status_wait_flag = 0U;
static uint16_t timeout = 0U;
static void ctrl_idle_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_setup_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_data_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_status_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_error_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_stalled_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void ctrl_complete_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
/* the ctrl state handle function array */
void (*ctrl_state_handle[]) (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate) =
{
ctrl_idle_handle,
ctrl_setup_handle,
ctrl_data_handle,
ctrl_status_handle,
ctrl_error_handle,
ctrl_stalled_handle,
ctrl_complete_handle,
};
/* the ctrl state handle table */
state_table_struct ctrl_handle_table[CTRL_HANDLE_TABLE_SIZE] =
{
/* the current state the current event the next state the event function */
{CTRL_IDLE, CTRL_EVENT_SETUP, CTRL_SETUP, only_state_move },
{CTRL_SETUP, CTRL_EVENT_DATA, CTRL_DATA, only_state_move },
{CTRL_SETUP, CTRL_EVENT_STATUS, CTRL_STATUS, only_state_move },
{CTRL_SETUP, CTRL_EVENT_ERROR, CTRL_ERROR, only_state_move },
{CTRL_DATA, CTRL_EVENT_STATUS, CTRL_STATUS, only_state_move },
{CTRL_DATA, CTRL_EVENT_ERROR, CTRL_ERROR, only_state_move },
{CTRL_DATA, CTRL_EVENT_STALLED, CTRL_STALLED, only_state_move },
{CTRL_STATUS, CTRL_EVENT_COMPLETE, CTRL_COMPLETE, only_state_move },
{CTRL_STATUS, CTRL_EVENT_ERROR, CTRL_ERROR, only_state_move },
{CTRL_STATUS, CTRL_EVENT_STALLED, CTRL_STALLED, only_state_move },
{CTRL_ERROR, GO_TO_UP_STATE_EVENT, UP_STATE, goto_up_state_fun },
{CTRL_STALLED, GO_TO_UP_STATE_EVENT, UP_STATE, goto_up_state_fun },
{CTRL_COMPLETE, GO_TO_UP_STATE_EVENT, UP_STATE, goto_up_state_fun },
};
/*!
\brief the polling function of CTRL state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
usbh_status_enum ctrl_state_polling_fun (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
void *pustate)
{
usbh_status_enum exe_state = USBH_BUSY;
usbh_state_handle_struct *p_state;
p_state = (usbh_state_handle_struct *)pustate;
/* if first enter this function, begin the ctrl state */
if (0U == ctrl_polling_handle_flag) {
ctrl_polling_handle_flag = 1U;
scd_table_push(p_state);
scd_state_move(p_state, CTRL_IDLE);
}
/* base on the current state to handle the ctrl state */
scd_begin(p_state, CTRL_FSM_ID);
ctrl_state_handle[p_state->usbh_current_state](pudev, puhost, p_state);
/* determine the control transfer whether to complete */
switch (puhost->usbh_backup_state.ctrl_backup_state) {
case CTRL_COMPLETE:
ctrl_polling_handle_flag = 0U;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_IDLE;
exe_state = USBH_OK;
break;
case CTRL_STALLED:
ctrl_polling_handle_flag = 0U;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_IDLE;
exe_state = USBH_NOT_SUPPORTED;
break;
case CTRL_ERROR:
ctrl_polling_handle_flag = 0U;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_IDLE;
exe_state = USBH_FAIL;
break;
default:
exe_state = USBH_BUSY;
break;
}
return exe_state;
}
/*!
\brief the handle function of CTRL_IDLE state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_idle_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.ctrl_backup_state = CTRL_IDLE;
scd_event_handle(pudev, puhost, pustate, CTRL_EVENT_SETUP, pustate->usbh_current_state);
}
/*!
\brief the handle function of CTRL_SETUP state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_setup_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
urb_state_enum urb_status = URB_IDLE;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_SETUP;
if (0U == ctrl_setup_wait_flag) {
ctrl_setup_wait_flag = 1U;
/* send a setup packet */
usbh_ctltx_setup (pudev,
puhost->control.setup.data,
puhost->control.hc_out_num);
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_out_num);
/* case setup packet sent successfully */
if (URB_DONE == urb_status) {
/* check if there is a data stage */
if (0U != puhost->control.setup.b.wLength) {
ctrl_setup_wait_flag = 0U;
timeout = DATA_STAGE_TIMEOUT;
scd_event_handle(pudev, puhost, pustate, CTRL_EVENT_DATA, pustate->usbh_current_state);
/* no data stage */
} else {
timeout = NODATA_STAGE_TIMEOUT;
ctrl_setup_wait_flag = 0U;
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STATUS,
pustate->usbh_current_state);
}
/* set the delay timer to enable timeout for data stage completion */
puhost->control.timer = (uint16_t)USB_CURRENT_FRAME_GET();
} else if (URB_ERROR == urb_status) {
ctrl_setup_wait_flag = 0U;
scd_event_handle(pudev, puhost, pustate, CTRL_EVENT_ERROR, pustate->usbh_current_state);
} else {
/* no operation */
}
}
}
/*!
\brief the handle function of CTRL_DATA state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_data_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
uint8_t direction;
urb_state_enum urb_status = URB_IDLE;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_DATA;
direction = (puhost->control.setup.b.bmRequestType & USB_DIR_MASK);
if (USB_DIR_IN == direction) {
if (0U == ctrl_data_wait_flag) {
ctrl_data_wait_flag = 1U;
/* issue an IN token */
usbh_xfer(pudev,
puhost->control.buff,
puhost->control.hc_in_num,
puhost->control.length);
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_in_num);
/* check is data packet transfered successfully */
switch (urb_status) {
case URB_DONE:
ctrl_data_wait_flag = 0U;
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STATUS,
pustate->usbh_current_state);
break;
case URB_STALL:
ctrl_data_wait_flag = 0U;
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STALLED,
pustate->usbh_current_state);
break;
case URB_ERROR:
ctrl_data_wait_flag = 0U;
/* device error */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
break;
default:
if (((uint16_t)USB_CURRENT_FRAME_GET() - puhost->control.timer) > timeout) {
ctrl_data_wait_flag = 0U;
/* timeout for IN transfer */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
}
break;
}
}
} else {
if (0U == ctrl_data_wait_flag) {
ctrl_data_wait_flag = 1U;
/* start DATA out transfer (only one DATA packet)*/
pudev->host.host_channel[puhost->control.hc_out_num].data_tg_out = 1U;
usbh_xfer(pudev,
puhost->control.buff,
puhost->control.hc_out_num,
puhost->control.length);
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_out_num);
switch (urb_status) {
case URB_DONE:
ctrl_data_wait_flag = 0U;
/* if the setup pkt is sent successful, then change the state */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STATUS,
pustate->usbh_current_state);
break;
case URB_STALL:
ctrl_data_wait_flag = 0U;
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STALLED,
pustate->usbh_current_state);
break;
case URB_NOTREADY:
/* nack received from device */
ctrl_data_wait_flag = 0U;
break;
case URB_ERROR:
ctrl_data_wait_flag = 0U;
/* device error */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
break;
default:
break;
}
}
}
}
/*!
\brief the handle function of CTRL_STATUS state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_status_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
uint8_t direction;
urb_state_enum urb_status = URB_IDLE;
puhost->usbh_backup_state.ctrl_backup_state = CTRL_STATUS;
/* get the transfer direction in the data state, but the transfer direction in the status state is opposite */
direction = (puhost->control.setup.b.bmRequestType & USB_DIR_MASK);
if (USB_DIR_OUT == direction) {
/* handle status in */
if (0U == ctrl_status_wait_flag) {
ctrl_status_wait_flag = 1U;
usbh_xfer (pudev, 0U, puhost->control.hc_in_num, 0U);
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_in_num);
switch (urb_status) {
case URB_DONE:
ctrl_status_wait_flag = 0U;
/* handle URB_DONE status */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_COMPLETE,
pustate->usbh_current_state);
break;
case URB_ERROR:
ctrl_status_wait_flag = 0U;
/* handle URB_STALL status*/
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
break;
case URB_STALL:
ctrl_status_wait_flag = 0U;
/* handle URB_STALL status */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_STALLED,
pustate->usbh_current_state);
break;
default:
if (((uint16_t)USB_CURRENT_FRAME_GET() - puhost->control.timer) > timeout) {
ctrl_status_wait_flag = 0U;
/* handle timeout */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
}
break;
}
}
} else {
/* handle status out */
if (0U == ctrl_status_wait_flag) {
ctrl_status_wait_flag = 1U;
pudev->host.host_channel[puhost->control.hc_out_num].data_tg_out ^= 1U;
usbh_xfer (pudev, 0U, puhost->control.hc_out_num, 0U);
} else {
urb_status = hcd_urb_state_get(pudev, puhost->control.hc_out_num);
switch (urb_status) {
case URB_DONE:
ctrl_status_wait_flag = 0U;
/* handle URB_DONE status */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_COMPLETE,
pustate->usbh_current_state);
break;
case URB_NOTREADY:
/* handle URB_NOTREADY status */
ctrl_status_wait_flag = 0U;
break;
case URB_ERROR:
ctrl_status_wait_flag = 0U;
/* handle URB_ERROR status */
scd_event_handle(pudev,
puhost,
pustate,
CTRL_EVENT_ERROR,
pustate->usbh_current_state);
break;
default:
break;
}
}
}
}
/*!
\brief the handle function of CTRL_ERROR state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_error_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.ctrl_backup_state = CTRL_ERROR;
if (++puhost->control.error_count <= USBH_MAX_ERROR_COUNT) {
/* do the transmission again, starting from SETUP Packet */
scd_event_handle(pudev, puhost, pustate, CTRL_EVENT_SETUP, pustate->usbh_current_state);
} else {
scd_event_handle(pudev, puhost, pustate, GO_TO_UP_STATE_EVENT, pustate->usbh_current_state);
}
}
/*!
\brief the handle function of CTRL_STALLED state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_stalled_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.ctrl_backup_state = CTRL_STALLED;
scd_event_handle(pudev, puhost, pustate, GO_TO_UP_STATE_EVENT, pustate->usbh_current_state);
}
/*!
\brief the handle function of CTRL_COMPLETE state
\param[in] pudev: pointer to usb device
\param[in] puhost: pointer to usb host
\param[in] pustate: pointer to usb state driver
\param[out] none
\retval none
*/
static void ctrl_complete_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.ctrl_backup_state = CTRL_COMPLETE;
scd_event_handle(pudev, puhost, pustate, GO_TO_UP_STATE_EVENT, pustate->usbh_current_state);
}
/*!
\brief send datas from the host channel
\param[in] pudev: pointer to usb device
\param[in] buf: data buffer address to send datas
\param[in] hc_num: the number of the host channel
\param[in] len: length of the send data
\param[out] none
\retval host operation status
*/
usbh_status_enum usbh_xfer (usb_core_handle_struct *pudev,
uint8_t *buf,
uint8_t hc_num,
uint16_t len)
{
usb_hostchannel_struct *puhc = &pudev->host.host_channel[hc_num];
puhc->xfer_buff = buf;
puhc->xfer_len = len;
switch (puhc->endp_type) {
case USB_EPTYPE_CTRL:
if (0U == puhc->endp_in) {
if (0U == len) {
/* for status out stage, length = 0, status out pid = 1 */
puhc->data_tg_out = 1U;
}
/* set the data toggle bit as per the flag */
if (0U == puhc->data_tg_out) {
/* put the pid 0 */
puhc->DPID = HC_PID_DATA0;
} else {
/* put the pid 1 */
puhc->DPID = HC_PID_DATA1;
}
} else {
puhc->DPID = HC_PID_DATA1;
}
break;
case USB_EPTYPE_ISOC:
puhc->DPID = HC_PID_DATA0;
break;
case USB_EPTYPE_BULK:
if (0U == puhc->endp_in) {
/* set the data toggle bit as per the flag */
if (0U == puhc->data_tg_out) {
/* put the pid 0 */
puhc->DPID = HC_PID_DATA0;
} else {
/* put the pid 1 */
puhc->DPID = HC_PID_DATA1;
}
} else {
if (0U == puhc->data_tg_in) {
puhc->DPID = HC_PID_DATA0;
} else {
puhc->DPID = HC_PID_DATA1;
}
}
break;
case USB_EPTYPE_INTR:
if (0U == puhc->endp_in) {
if (0U == puhc->data_tg_out) {
puhc->DPID = HC_PID_DATA0;
} else {
puhc->DPID = HC_PID_DATA1;
}
/* toggle data pid */
puhc->data_tg_out ^= 1U;
} else {
if (0U == puhc->data_tg_in) {
puhc->DPID = HC_PID_DATA0;
} else {
puhc->DPID = HC_PID_DATA1;
}
/* toggle data pid */
puhc->data_tg_in ^= 1U;
}
break;
default:
break;
}
hcd_submit_request (pudev, hc_num);
return USBH_OK;
}
/*!
\brief send the setup packet to the device
\param[in] pudev: pointer to usb device
\param[in] buf: buffer pointer from which the data will be send to device
\param[in] hc_num: host channel number
\param[out] none
\retval host operation status
*/
usbh_status_enum usbh_ctltx_setup (usb_core_handle_struct *pudev, uint8_t *buf, uint8_t hc_num)
{
usb_hostchannel_struct *puhc = &pudev->host.host_channel[hc_num];
puhc->DPID = HC_PID_SETUP;
puhc->xfer_buff = buf;
puhc->xfer_len = USBH_SETUP_PACKET_SIZE;
return (usbh_status_enum)hcd_submit_request (pudev, hc_num);
}
/*!
\brief this function prepare a hc and start a transfer
\param[in] pudev: pointer to usb device
\param[in] channel_num: host channel number which is in (0..7)
\param[out] none
\retval host operation status
*/
uint32_t hcd_submit_request (usb_core_handle_struct *pudev, uint8_t channel_num)
{
usb_hostchannel_struct *puhc = &pudev->host.host_channel[channel_num];
puhc->urb_state = URB_IDLE;
puhc->xfer_count = 0U;
return (uint32_t)usb_hostchannel_startxfer(pudev, channel_num);
}

View File

@ -0,0 +1,158 @@
/*!
\file usbh_hcs.c
\brief this file implements functions for opening and closing host channels
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbh_hcs.h"
static uint16_t usbh_freechannel_get (usb_core_handle_struct *pudev);
/*!
\brief open a channel
\param[in] pudev: pointer to usb device
\param[in] channel_num: host channel number which is in (0..7)
\param[in] dev_addr: USB device address allocated to attached device
\param[in] dev_speed: USB device speed (Full speed/Low speed)
\param[in] ep_type: endpoint type (bulk/int/ctl)
\param[in] ep_mps: max packet size
\param[out] none
\retval operation status
*/
uint8_t usbh_channel_open (usb_core_handle_struct *pudev,
uint8_t channel_num,
uint8_t dev_addr,
uint8_t dev_speed,
uint8_t ep_type,
uint16_t ep_mps)
{
usb_hostchannel_struct *puhc = &pudev->host.host_channel[channel_num];
uint16_t channel_info = puhc->info;
puhc->endp_id = (uint8_t)channel_info & 0x7FU;
puhc->endp_in = (uint8_t)(channel_info & 0x80U) >> 7;
puhc->endp_type = ep_type;
puhc->endp_mps = ep_mps;
puhc->dev_addr = dev_addr;
puhc->dev_speed = dev_speed;
puhc->data_tg_in = 0U;
puhc->data_tg_out = 0U;
usb_hostchannel_init(pudev, channel_num);
return (uint8_t)HC_OK;
}
/*!
\brief modify a channel
\param[in] pudev: pointer to usb device
\param[in] channel_num: host channel number which is in (0..7)
\param[in] dev_addr: USB Device address allocated to attached device
\param[in] dev_speed: USB device speed (Full speed/Low speed)
\param[in] ep_type: endpoint type (bulk/int/ctl)
\param[in] ep_mps: max packet size
\param[out] none
\retval operation status
*/
uint8_t usbh_channel_modify (usb_core_handle_struct *pudev,
uint8_t channel_num,
uint8_t dev_addr,
uint8_t dev_speed,
uint8_t ep_type,
uint16_t ep_mps)
{
usb_hostchannel_struct *puhc = &pudev->host.host_channel[channel_num];
if (0U != dev_addr) {
puhc->dev_addr = dev_addr;
}
if ((puhc->endp_mps != ep_mps) && (0U != ep_mps)) {
puhc->endp_mps = ep_mps;
}
if ((puhc->dev_speed != dev_speed) && (0U != dev_speed)) {
puhc->dev_speed = dev_speed;
}
usb_hostchannel_init(pudev, channel_num);
return (uint8_t)HC_OK;
}
/*!
\brief allocate a new channel for the pipe
\param[in] pudev: pointer to usb device
\param[in] ep_addr: endpoint for which the channel to be allocated
\param[out] none
\retval host channel number
*/
uint8_t usbh_channel_alloc (usb_core_handle_struct *pudev, uint8_t ep_addr)
{
uint16_t hc_num = usbh_freechannel_get(pudev);
if ((uint16_t)HC_ERROR != hc_num) {
pudev->host.host_channel[hc_num].info = HC_USED | ep_addr;
}
return (uint8_t)hc_num;
}
/*!
\brief free the usb host channel
\param[in] pudev: pointer to usb device
\param[in] index: channel number to be freed which is in (0..7)
\param[out] none
\retval host operation status
*/
uint8_t usbh_channel_free (usb_core_handle_struct *pudev, uint8_t index)
{
if (index < HC_MAX) {
pudev->host.host_channel[index].info &= HC_USED_MASK;
}
return USBH_OK;
}
/*!
\brief free all usb host channel
\param[in] pudev: pointer to usb device
\param[out] none
\retval host operation status
*/
uint8_t usbh_allchannel_dealloc (usb_core_handle_struct *pudev)
{
uint8_t index;
for (index = 2U; index < HC_MAX; index ++) {
pudev->host.host_channel[index].info = 0U;
}
return USBH_OK;
}
/*!
\brief get a free channel number for allocation to a device endpoint
\param[in] pudev: pointer to usb device
\param[out] none
\retval free channel number
*/
static uint16_t usbh_freechannel_get (usb_core_handle_struct *pudev)
{
uint8_t index = 0U;
for (index = 0U; index < HC_MAX; index++) {
if (0U == (pudev->host.host_channel[index].info & HC_USED)) {
return (uint16_t)index;
}
}
return HC_ERROR;
}

View File

@ -0,0 +1,576 @@
/*!
\file usbh_int.c
\brief USB host mode interrupt handler file
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usb_core.h"
#include "usb_defines.h"
#include "usbh_int.h"
static uint32_t usbh_intf_sof (usb_core_handle_struct *pudev);
static uint32_t usbh_intf_port (usb_core_handle_struct *pudev);
static uint32_t usbh_intf_hc (usb_core_handle_struct *pudev);
static uint32_t usbh_intf_hc_in (usb_core_handle_struct *pudev, uint8_t channel_num);
static uint32_t usbh_intf_hc_out (usb_core_handle_struct *pudev, uint8_t channel_num);
static uint32_t usbh_intf_rxfifo_noempty (usb_core_handle_struct *pudev);
static uint32_t usbh_intf_nptxfifo_empty (usb_core_handle_struct *pudev);
static uint32_t usbh_intf_ptxfifo_empty (usb_core_handle_struct *pudev);
static uint32_t usbh_intf_disconnect (usb_core_handle_struct *pudev);
static uint32_t usbh_intf_iso_incomplete_xfer (usb_core_handle_struct *pudev);
/*!
\brief handle global host interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
uint32_t usbh_isr (usb_core_handle_struct *pudev)
{
uint32_t retval = 0U;
uint32_t int_flag = 0U;
/* check if host mode */
if (USB_CURRENT_MODE_GET() == HOST_MODE) {
USB_CORE_INTR_READ(int_flag);
if (!int_flag) {
return 0U;
}
/* start of frame interrupt handle */
if (int_flag & GINTF_SOF) {
retval |= usbh_intf_sof (pudev);
}
/* Rx FIFO non-empty interrupt handle */
if (int_flag & GINTF_RXFNEIF) {
retval |= usbh_intf_rxfifo_noempty (pudev);
}
/* Non-Periodic Tx FIFO empty interrupt hanlde */
if (int_flag & GINTF_NPTXFEIF) {
retval |= usbh_intf_nptxfifo_empty (pudev);
}
/* periodic Tx FIFO empty interrupt handle */
if (int_flag & GINTF_PTXFEIF) {
retval |= usbh_intf_ptxfifo_empty (pudev);
}
/* host channels interrupt handle */
if (int_flag & GINTF_HCIF) {
retval |= usbh_intf_hc (pudev);
}
/* host port interrupt handle */
if (int_flag & GINTF_HPIF) {
retval |= usbh_intf_port (pudev);
}
/* disconnect interrupt handle */
if (int_flag & GINTF_DISCIF) {
retval |= usbh_intf_disconnect (pudev);
}
/* isochronous IN transfer not complete interrupt handle */
if (int_flag & GINTF_ISOONCIF) {
retval |= usbh_intf_iso_incomplete_xfer (pudev);
}
}
return retval;
}
/*!
\brief handle the start-of-frame interrupt in host mode
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_sof (usb_core_handle_struct *pudev)
{
usbh_hcd_int_fops->sof(pudev);
/* clear interrupt */
USB_GINTF = GINTF_SOF;
return 1U;
}
/*!
\brief handle all host channels interrupt in host mode
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_hc (usb_core_handle_struct *pudev)
{
uint8_t i = 0U;
uint32_t retval = 0U;
for (i = 0U; i < pudev->cfg.host_channel_num; i++) {
if ((USB_HACHINT & HACHINT_HACHINT) & ((uint32_t)1U << i)) {
if ((USB_HCHxCTL((uint16_t)i) & HCHCTL_EPDIR) >> 15U) {
retval |= usbh_intf_hc_in (pudev, i);
} else {
retval |= usbh_intf_hc_out (pudev, i);
}
}
}
return retval;
}
/*!
\brief handle the disconnect interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_disconnect (usb_core_handle_struct *pudev)
{
usbh_hcd_int_fops->device_disconnected(pudev);
/* clear interrupt */
USB_GINTF = GINTF_DISCIF;
return 1U;
}
/*!
\brief handle the non-periodic tx fifo empty interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_nptxfifo_empty (usb_core_handle_struct *pudev)
{
uint8_t channel_num = 0U;
uint32_t dword_len = 0U, len = 0U;
usb_hostchannel_struct *puhc;
channel_num = (uint8_t)((USB_HNPTFQSTAT & HNPTFQSTAT_CNUM) >> 27U);
puhc = &pudev->host.host_channel[channel_num];
dword_len = (puhc->xfer_len + 3U) / 4U;
while (((USB_HNPTFQSTAT & HNPTFQSTAT_NPTXFS) > dword_len) && (0U != puhc->xfer_len)) {
len = (USB_HNPTFQSTAT & HNPTFQSTAT_NPTXFS) * 4U;
if (len > puhc->xfer_len) {
/* last packet */
len = (uint16_t)puhc->xfer_len;
USB_GINTEN &= ~GINTF_NPTXFEIF;
}
dword_len = (puhc->xfer_len + 3U) / 4U;
usb_fifo_write (puhc->xfer_buff, channel_num, (uint16_t)len);
puhc->xfer_buff += len;
puhc->xfer_len -= len;
puhc->xfer_count += len;
}
return 1U;
}
/*!
\brief handle the periodic tx fifo empty interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_ptxfifo_empty (usb_core_handle_struct *pudev)
{
uint8_t channel_num = 0U;
uint32_t dword_len = 0U, len = 0U;
usb_hostchannel_struct *puhc;
channel_num = (uint8_t)((USB_HPTFQSTAT & HPTFQSTAT_CNUM) >> 27U);
puhc = &pudev->host.host_channel[channel_num];
dword_len = (puhc->xfer_len + 3U) / 4U;
while (((USB_HPTFQSTAT & HPTFQSTAT_PTXFS) > dword_len) && (0U != puhc->xfer_len)) {
len = (USB_HPTFQSTAT & HPTFQSTAT_PTXFS) * 4U;
if (len > puhc->xfer_len) {
len = puhc->xfer_len;
/* last packet */
USB_GINTEN &= ~GINTF_PTXFEIF;
}
dword_len = (puhc->xfer_len + 3U) / 4U;
usb_fifo_write (puhc->xfer_buff, channel_num, (uint16_t)len);
puhc->xfer_buff += len;
puhc->xfer_len -= len;
puhc->xfer_count += len;
}
return 1U;
}
/*!
\brief handle the host port interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_port (usb_core_handle_struct *pudev)
{
uint8_t port_speed = 0U;
uint8_t port_reset = 0U;
uint32_t retval = 0U;
__IO uint32_t hostportdup = USB_HPCS;
/* clear the interrupt bits in gintsts */
hostportdup &= ~HPCS_PE;
hostportdup &= ~HPCS_PCD;
hostportdup &= ~HPCS_PEDC;
/* port connect detected */
if (USB_HPCS & HPCS_PCD) {
hostportdup |= HPCS_PCD;
usbh_hcd_int_fops->device_connected(pudev);
retval |= 1U;
}
/* port enable changed */
if (USB_HPCS & HPCS_PEDC) {
hostportdup |= HPCS_PEDC;
if (USB_HPCS & HPCS_PE) {
port_speed = (uint8_t)((USB_HPCS & HPCS_PS) >> 17U);
if (HPRT_PRTSPD_LOW_SPEED == port_speed) {
USB_HFT = 6000U;
if (HCTLR_6_MHZ != (USB_HCTL & HCTL_CLKSEL)) {
if (USB_CORE_EMBEDDED_PHY == pudev->cfg.phy_interface) {
USB_FSLSCLOCK_INIT(HCTLR_6_MHZ);
}
port_reset = 1U;
}
} else if(HPRT_PRTSPD_FULL_SPEED == port_speed) {
USB_HFT = 48000U;
if (HCTLR_48_MHZ != (USB_HCTL & HCTL_CLKSEL)) {
if (USB_CORE_EMBEDDED_PHY == pudev->cfg.phy_interface) {
USB_FSLSCLOCK_INIT(HCTLR_48_MHZ);
}
port_reset = 1U;
}
} else {
/* for high speed device and others */
port_reset = 1U;
}
}
}
if (port_reset) {
usb_port_reset(pudev);
}
/* clear port interrupts */
USB_HPCS = hostportdup;
return retval;
}
/*!
\brief handle the OUT channel interrupt
\param[in] pudev: pointer to usb device instance
\param[in] channel_num: host channel number which is in (0..7)
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_hc_out (usb_core_handle_struct *pudev, uint8_t channel_num)
{
uint32_t channel_intr = USB_HCHxINTF((uint16_t)channel_num);
usb_hostchannel_struct *puhc = &pudev->host.host_channel[channel_num];
channel_intr &= USB_HCHxINTEN((uint16_t)channel_num);
if (channel_intr & HCHINTF_ACK) {
if (URB_PING == puhc->urb_state) {
puhc->err_count = 0U;
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_TF;
puhc->status = HC_XF;
}
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_ACK;
} else if (channel_intr & HCHINTF_REQOVR) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_REQOVR;
} else if (channel_intr & HCHINTF_TF) {
puhc->err_count = 0U;
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_TF;
puhc->status = HC_XF;
} else if (channel_intr & HCHINTF_STALL) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_STALL;
usb_hostchannel_halt(pudev, channel_num);
puhc->status = HC_STALL;
} else if (channel_intr & HCHINTF_NAK) {
puhc->err_count = 0U;
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_NAK;
puhc->status = HC_NAK;
} else if (channel_intr & HCHINTF_USBER) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
puhc->err_count ++;
puhc->status = HC_TRACERR;
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_USBER;
} else if (channel_intr & HCHINTF_NYET) {
puhc->err_count = 0U;
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
puhc->status = HC_NYET;
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_NYET;
} else if (channel_intr & HCHINTF_DTER) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
puhc->status= HC_DTGERR;
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_DTER;
} else if (channel_intr & HCHINTF_CH) {
USB_HCHxINTEN((uint16_t)channel_num) &= ~HCHINTEN_CHIE;
switch (puhc->status) {
case HC_XF:
puhc->urb_state = URB_DONE;
if (USB_EPTYPE_BULK == ((USB_HCHxCTL((uint16_t)channel_num) & HCHCTL_EPTYPE) >> 18)) {
puhc->data_tg_out ^= 1U;
}
break;
case HC_NAK:
puhc->urb_state = URB_NOTREADY;
break;
case HC_NYET:
break;
case HC_STALL:
puhc->urb_state = URB_STALL;
break;
case HC_TRACERR:
if (3U == puhc->err_count) {
puhc->urb_state = URB_ERROR;
puhc->err_count = 0U;
}
break;
default:
break;
}
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_CH;
} else {
/* no operation */
}
return 1U;
}
/*!
\brief handle the IN channel interrupt
\param[in] pudev: pointer to usb device instance
\param[in] channel_num: host channel number which is in (0..7)
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_hc_in (usb_core_handle_struct *pudev, uint8_t channel_num)
{
uint8_t endp_type = 0U;
usb_hostchannel_struct *puhc = &pudev->host.host_channel[channel_num];
uint32_t channle_intf = USB_HCHxINTF((uint16_t)channel_num);
__IO uint32_t channel_ctrl = USB_HCHxCTL((uint16_t)channel_num);
channle_intf &= USB_HCHxINTEN((uint16_t)channel_num);
endp_type = (uint8_t)((channel_ctrl & HCHCTL_EPTYPE) >> 18U);
if (channle_intf & HCHINTF_ACK) {
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_ACK;
} else if (channle_intf & HCHINTF_STALL) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
puhc->status = HC_STALL;
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_NAK;
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_STALL;
/* NOTE: When there is a 'stall', reset also nak,
else, the pudev->host.status = HC_STALL
will be overwritten by 'nak' in code below */
channle_intf &= ~HCHINTF_NAK;
usb_hostchannel_halt(pudev, channel_num);
} else if (channle_intf & HCHINTF_DTER) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_NAK;
puhc->status = HC_DTGERR;
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_DTER;
} else {
/* no operation */
}
if (channle_intf & HCHINTF_REQOVR) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_REQOVR;
} else if (channle_intf & HCHINTF_TF) {
puhc->status = HC_XF;
puhc->err_count = 0U;
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_TF;
if ((USB_EPTYPE_CTRL == endp_type) || (USB_EPTYPE_BULK == endp_type)) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_NAK;
puhc->data_tg_in ^= 1U;
} else if (USB_EPTYPE_INTR == endp_type) {
channel_ctrl |= HCHCTL_ODDFRM;
USB_HCHxCTL((uint16_t)channel_num) = channel_ctrl;
puhc->urb_state = URB_DONE;
} else {
/* no operation */
}
} else if (channle_intf & HCHINTF_CH) {
USB_HCHxINTEN((uint16_t)channel_num) &= ~HCHINTEN_CHIE;
switch (puhc->status) {
case HC_XF:
puhc->urb_state = URB_DONE;
break;
case HC_TRACERR:
case HC_DTGERR:
puhc->err_count = 0U;
puhc->urb_state = URB_ERROR;
break;
case HC_STALL:
puhc->urb_state = URB_STALL;
break;
default:
if (USB_EPTYPE_INTR == endp_type) {
puhc->data_tg_in ^= 1U;
}
break;
}
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_CH;
} else if (channle_intf & HCHINTF_USBER) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
(puhc->err_count)++;
puhc->status = HC_TRACERR;
usb_hostchannel_halt(pudev, channel_num);
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_USBER;
} else if (channle_intf & HCHINTF_NAK) {
if (USB_EPTYPE_INTR == endp_type) {
USB_HCHxINTEN((uint16_t)channel_num) |= HCHINTEN_CHIE;
usb_hostchannel_halt(pudev, channel_num);
} else if ((USB_EPTYPE_CTRL == endp_type) || (USB_EPTYPE_BULK == endp_type)) {
/* re-activate the channel */
channel_ctrl |= HCHCTL_CEN;
channel_ctrl &= ~HCHCTL_CDIS;
USB_HCHxCTL((uint16_t)channel_num) = channel_ctrl;
} else {
/* no operation */
}
puhc->status = HC_NAK;
USB_HCHxINTF((uint16_t)channel_num) = HCHINTF_NAK;
} else {
/* no operation */
}
return 1U;
}
/*!
\brief handle the rx fifo non-empty interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_rxfifo_noempty (usb_core_handle_struct *pudev)
{
uint32_t count = 0U;
__IO uint8_t channel_num = 0U;
__IO uint32_t rx_status = 0U;
uint32_t usbh_ch_ctl_reg = 0U;
usb_hostchannel_struct *puhc;
/* disable the Rx status queue level interrupt */
USB_GINTEN &= ~GINTF_RXFNEIF;
rx_status = USB_GRSTATP;
channel_num = (uint8_t)(rx_status & GRSTATRP_CNUM);
puhc = &pudev->host.host_channel[channel_num];
switch ((rx_status & GRSTATRP_RPCKST) >> 17) {
case GRSTATR_RPCKST_IN:
count = (rx_status & GRSTATRP_BCOUNT) >> 4;
/* read the data into the host buffer. */
if ((count > 0U) && (puhc->xfer_buff != (void *)0)) {
usb_fifo_read(puhc->xfer_buff, (uint16_t)count);
/* manage multiple Xfer */
puhc->xfer_buff += count;
puhc->xfer_count += count;
if (USB_HCHxLEN((uint16_t)channel_num) & HCHLEN_PCNT) {
/* re-activate the channel when more packets are expected */
usbh_ch_ctl_reg = USB_HCHxCTL((uint16_t)channel_num);
usbh_ch_ctl_reg |= HCHCTL_CEN;
usbh_ch_ctl_reg &= ~HCHCTL_CDIS;
USB_HCHxCTL((uint16_t)channel_num) = usbh_ch_ctl_reg;
}
}
break;
case GRSTATR_RPCKST_IN_XFER_COMP:
case GRSTATR_RPCKST_DATA_TOGGLE_ERR:
case GRSTATR_RPCKST_CH_HALTED:
default:
break;
}
/* enable the Rx status queue level interrupt */
USB_GINTEN |= GINTF_RXFNEIF;
return 1U;
}
/*!
\brief handle the incomplete periodic transfer interrupt
\param[in] pudev: pointer to usb device instance
\param[out] none
\retval operation status
*/
static uint32_t usbh_intf_iso_incomplete_xfer (usb_core_handle_struct *pudev)
{
__IO uint32_t gint_flag = 0U;
gint_flag = USB_HCHxCTL(0U);
USB_HCHxCTL(0U) = 0U;
gint_flag = 0U;
/* clear interrupt */
gint_flag |= GINTF_ISOONCIF;
USB_GINTF = gint_flag;
return 1U;
}

View File

@ -0,0 +1,807 @@
/*!
\file usbh_std.c
\brief USB 2.0 standard function definition
*/
/*
Copyright (C) 2017 GigaDevice
2017-02-10, V1.0.0, firmware for GD32F30x
*/
#include "usbh_core.h"
#include "usbh_usr.h"
#include "usbh_std.h"
#include "usbh_ctrl.h"
uint8_t local_buffer[64];
uint8_t usbh_cfg_desc[512];
uint8_t enum_polling_handle_flag = 0U;
static void enum_idle_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void enum_get_full_dev_desc_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void enum_set_addr_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void enum_get_cfg_desc_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void enum_get_full_cfg_desc_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void enum_get_mfc_string_desc_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void enum_get_product_string_desc_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void enum_get_serialnum_string_desc_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void enum_set_configuration_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
static void enum_dev_configured_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate);
/* the enumeration state handle function array */
void (*enum_state_handle[]) (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate) =
{
enum_idle_handle,
enum_set_addr_handle,
enum_get_full_dev_desc_handle,
enum_get_cfg_desc_handle,
enum_get_full_cfg_desc_handle,
enum_get_mfc_string_desc_handle,
enum_get_product_string_desc_handle,
enum_get_serialnum_string_desc_handle,
enum_set_configuration_handle,
enum_dev_configured_handle,
};
/* the enumeration state handle table */
state_table_struct enum_handle_table[ENUM_HANDLE_TABLE_SIZE] =
{
/* the current state the current event the next state the event function */
{ENUM_IDLE, ENUM_EVENT_SET_ADDR, ENUM_SET_ADDR, only_state_move },
{ENUM_SET_ADDR, ENUN_EVENT_GET_FULL_DEV_DESC, ENUM_GET_FULL_DEV_DESC, only_state_move },
{ENUM_GET_FULL_DEV_DESC, ENUN_EVENT_GET_CFG_DESC, ENUM_GET_CFG_DESC, only_state_move },
{ENUM_GET_CFG_DESC, ENUN_EVENT_GET_FULL_CFG_DESC, ENUM_GET_FULL_CFG_DESC, only_state_move },
{ENUM_GET_FULL_CFG_DESC, ENUN_EVENT_GET_MFC_STRING_DESC, ENUM_GET_MFC_STRING_DESC, only_state_move },
{ENUM_GET_MFC_STRING_DESC, ENUN_EVENT_GET_PRODUCT_STRING_DESC, ENUM_GET_PRODUCT_STRING_DESC, only_state_move },
{ENUM_GET_PRODUCT_STRING_DESC, ENUN_EVENT_GET_SERIALNUM_STRING_DESC, ENUM_GET_SERIALNUM_STRING_DESC, only_state_move },
{ENUM_GET_SERIALNUM_STRING_DESC, ENUN_EVENT_SET_CONFIGURATION, ENUM_SET_CONFIGURATION, only_state_move },
{ENUM_SET_CONFIGURATION, ENUN_EVENT_DEV_CONFIGURED, ENUM_DEV_CONFIGURED, only_state_move },
{ENUM_DEV_CONFIGURED, GO_TO_UP_STATE_EVENT, UP_STATE, goto_up_state_fun },
};
/*!
\brief the polling function of enumeration state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval usb host status
*/
usbh_status_enum enum_state_polling_fun (usb_core_handle_struct *pudev, usbh_host_struct *puhost, void *pustate)
{
usbh_status_enum exe_state = USBH_BUSY;
usbh_state_handle_struct *p_state;
p_state = (usbh_state_handle_struct *)pustate;
if (0U == enum_polling_handle_flag) {
enum_polling_handle_flag = 1U;
scd_table_push(p_state);
scd_state_move(p_state, ENUM_IDLE);
}
/* start the enumeration state handle */
scd_begin(p_state,ENUM_FSM_ID);
if (0 == p_state->usbh_current_state_stack_top) {
enum_state_handle[p_state->usbh_current_state](pudev, puhost, p_state);
} else {
enum_state_handle[p_state->stack[1].state](pudev, puhost, p_state);
}
/* determine the enumeration whether to complete */
if (ENUM_DEV_CONFIGURED == puhost->usbh_backup_state.enum_backup_state) {
puhost->usbh_backup_state.enum_backup_state = ENUM_IDLE;
enum_polling_handle_flag = 0U;
exe_state = USBH_OK;
}
return exe_state;
}
/*!
\brief the handle function of ENUM_IDLE state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_idle_handle (usb_core_handle_struct *pudev, usbh_host_struct *puhost, usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.enum_backup_state = ENUM_IDLE;
if (CTRL_IDLE == puhost->usbh_backup_state.ctrl_backup_state) {
usbh_enum_desc_get(pudev,
puhost,
pudev->host.rx_buffer,
USB_REQTYPE_DEVICE | USB_STANDARD_REQ,
USB_DEVDESC,
8U);
if ((void *)0 != pudev->mdelay) {
pudev->mdelay(100U);
}
}
if (USBH_OK == ctrl_state_polling_fun(pudev, puhost, pustate)) {
usbh_device_desc_parse(&puhost->device.dev_desc, pudev->host.rx_buffer, 8U);
puhost->control.ep0_size = puhost->device.dev_desc.bMaxPacketSize0;
/* issue reset */
usb_port_reset(pudev);
/* modify control channels configuration for maxpacket size */
usbh_channel_modify (pudev,
puhost->control.hc_out_num,
0U,
0U,
0U,
(uint16_t)puhost->control.ep0_size);
usbh_channel_modify (pudev,
puhost->control.hc_in_num,
0U,
0U,
0U,
(uint16_t)puhost->control.ep0_size);
scd_event_handle(pudev,
puhost,
pustate,
ENUM_EVENT_SET_ADDR,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of ENUM_GET_FULL_DEV_DESC state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_get_full_dev_desc_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.enum_backup_state = ENUM_GET_FULL_DEV_DESC;
if (CTRL_IDLE == puhost->usbh_backup_state.ctrl_backup_state) {
usbh_enum_desc_get(pudev,
puhost,
pudev->host.rx_buffer,
USB_REQTYPE_DEVICE | USB_STANDARD_REQ,
USB_DEVDESC,
USB_DEVDESC_SIZE);
}
if(USBH_OK == ctrl_state_polling_fun(pudev, puhost, pustate)){
usbh_device_desc_parse(&puhost->device.dev_desc, pudev->host.rx_buffer, USB_DEVDESC_SIZE);
puhost->usr_cb->device_desc_available(&puhost->device.dev_desc);
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_GET_CFG_DESC,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of ENUM_SET_ADDR state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_set_addr_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.enum_backup_state = ENUM_SET_ADDR;
if (CTRL_IDLE == puhost->usbh_backup_state.ctrl_backup_state) {
usbh_enum_addr_set(pudev, puhost,USBH_DEVICE_ADDRESS);
if ((void *)0 != pudev->mdelay) {
pudev->mdelay(100U);
}
}
if (USBH_OK == ctrl_state_polling_fun(pudev, puhost, pustate)) {
if ((void *)0 != pudev->mdelay) {
pudev->mdelay(2U);
}
puhost->device.address = USBH_DEVICE_ADDRESS;
/* user callback for device address assigned */
puhost->usr_cb->device_address_set();
/* modify control channels to update device address */
usbh_channel_modify (pudev,
puhost->control.hc_in_num,
puhost->device.address,
0U,
0U,
0U);
usbh_channel_modify (pudev,
puhost->control.hc_out_num,
puhost->device.address,
0U,
0U,
0U);
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_GET_FULL_DEV_DESC,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of ENUM_GET_CFG_DESC state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_get_cfg_desc_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
uint16_t index = 0U;
puhost->usbh_backup_state.enum_backup_state = ENUM_GET_CFG_DESC;
if (CTRL_IDLE == puhost->usbh_backup_state.ctrl_backup_state) {
usbh_enum_desc_get(pudev,
puhost,
pudev->host.rx_buffer,
USB_REQTYPE_DEVICE | USB_STANDARD_REQ,
USB_CFGDESC,
USB_CFGDESC_SIZE);
}
if (USBH_OK == ctrl_state_polling_fun(pudev, puhost, pustate)) {
/* save configuration descriptor for class parsing usage */
for (; index < USB_CFGDESC_SIZE; index ++) {
usbh_cfg_desc[index] = pudev->host.rx_buffer[index];
}
/* commands successfully sent and response received */
usbh_cfg_desc_parse (&puhost->device.cfg_desc,
puhost->device.itf_desc,
puhost->device.ep_desc,
pudev->host.rx_buffer,
USB_CFGDESC_SIZE);
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_GET_FULL_CFG_DESC,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of ENUM_GET_FULL_CFG_DESC state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_get_full_cfg_desc_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
uint16_t index = 0U;
puhost->usbh_backup_state.enum_backup_state = ENUM_GET_FULL_CFG_DESC;
if (CTRL_IDLE == puhost->usbh_backup_state.ctrl_backup_state) {
usbh_enum_desc_get (pudev, puhost, pudev->host.rx_buffer,
USB_REQTYPE_DEVICE | USB_STANDARD_REQ,
USB_CFGDESC, puhost->device.cfg_desc.wTotalLength);
}
if (USBH_OK == ctrl_state_polling_fun(pudev, puhost, pustate)) {
/* save configuration descriptor for class parsing usage */
for (; index < puhost->device.cfg_desc.wTotalLength; index ++) {
usbh_cfg_desc[index] = pudev->host.rx_buffer[index];
}
/* commands successfully sent and response received */
usbh_cfg_desc_parse (&puhost->device.cfg_desc,
puhost->device.itf_desc,
puhost->device.ep_desc,
pudev->host.rx_buffer,
puhost->device.cfg_desc.wTotalLength);
/* User callback for configuration descriptors available */
puhost->usr_cb->configuration_desc_available(&puhost->device.cfg_desc,
puhost->device.itf_desc,
puhost->device.ep_desc[0]);
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_GET_MFC_STRING_DESC,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of ENUM_GET_MFC_STRING_DESC state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_get_mfc_string_desc_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.enum_backup_state = ENUM_GET_MFC_STRING_DESC;
if (0U != puhost->device.dev_desc.iManufacturer) {
if(CTRL_IDLE == puhost->usbh_backup_state.ctrl_backup_state) {
usbh_enum_desc_get(pudev,
puhost,
pudev->host.rx_buffer,
USB_REQTYPE_DEVICE | USB_STANDARD_REQ,
USB_STRDESC | puhost->device.dev_desc.iManufacturer,
0xffU);
}
if (USBH_OK == ctrl_state_polling_fun(pudev, puhost, pustate)) {
usbh_string_desc_parse(pudev->host.rx_buffer, local_buffer, 0xffU);
puhost->usr_cb->manufacturer_string(local_buffer);
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_GET_PRODUCT_STRING_DESC,
pustate->usbh_current_state);
}
} else {
puhost->usr_cb->manufacturer_string("N/A");
scd_state_move((usbh_state_handle_struct *)pustate, ENUM_GET_PRODUCT_STRING_DESC);
}
}
/*!
\brief the handle function of ENUM_GET_PRODUCT_STRING_DESC state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_get_product_string_desc_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.enum_backup_state = ENUM_GET_PRODUCT_STRING_DESC;
if (0U != puhost->device.dev_desc.iProduct) {
if (CTRL_IDLE == puhost->usbh_backup_state.ctrl_backup_state) {
usbh_enum_desc_get(pudev,
puhost,
pudev->host.rx_buffer,
USB_REQTYPE_DEVICE | USB_STANDARD_REQ,
USB_STRDESC | puhost->device.dev_desc.iProduct,
0xffU);
}
if (USBH_OK == ctrl_state_polling_fun(pudev, puhost, pustate)) {
usbh_string_desc_parse(pudev->host.rx_buffer, local_buffer, 0xffU);
/* user callback for product string */
puhost->usr_cb->product_string(local_buffer);
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_GET_SERIALNUM_STRING_DESC,
pustate->usbh_current_state);
}
} else {
puhost->usr_cb->product_string("N/A");
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_GET_SERIALNUM_STRING_DESC,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of ENUM_GET_SERIALNUM_STRING_DESC state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_get_serialnum_string_desc_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.enum_backup_state = ENUM_GET_SERIALNUM_STRING_DESC;
if (0U != puhost->device.dev_desc.iSerialNumber) {
if (CTRL_IDLE == puhost->usbh_backup_state.ctrl_backup_state) {
usbh_enum_desc_get(pudev,
puhost,
pudev->host.rx_buffer,
USB_REQTYPE_DEVICE | USB_STANDARD_REQ,
USB_STRDESC | puhost->device.dev_desc.iSerialNumber,
0xffU);
}
if (USBH_OK == ctrl_state_polling_fun(pudev, puhost, pustate)){
usbh_string_desc_parse(pudev->host.rx_buffer, local_buffer, 0xffU);
/* user callback for product string */
puhost->usr_cb->serial_num_string(local_buffer);
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_SET_CONFIGURATION,
pustate->usbh_current_state);
}
} else {
puhost->usr_cb->serial_num_string("N/A");
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_SET_CONFIGURATION,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of ENUM_SET_CONFIGURATION state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_set_configuration_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.enum_backup_state = ENUM_SET_CONFIGURATION;
if (CTRL_IDLE == puhost->usbh_backup_state.ctrl_backup_state ) {
usbh_enum_cfg_set(pudev, puhost, (uint16_t)puhost->device.cfg_desc.bConfigurationValue);
}
if (USBH_OK == ctrl_state_polling_fun(pudev, puhost, pustate)) {
scd_event_handle(pudev,
puhost,
pustate,
ENUN_EVENT_DEV_CONFIGURED,
pustate->usbh_current_state);
}
}
/*!
\brief the handle function of ENUM_DEV_CONFIGURED state
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] pustate: pointer to USB state driver
\param[out] none
\retval none
*/
static void enum_dev_configured_handle (usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
usbh_state_handle_struct *pustate)
{
puhost->usbh_backup_state.enum_backup_state = ENUM_DEV_CONFIGURED;
scd_event_handle(pudev, puhost, pustate, GO_TO_UP_STATE_EVENT, pustate->usbh_current_state);
}
/*!
\brief get descriptor in usb host enumeration stage
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] buf: buffer to store the descriptor
\param[in] ReqType: descriptor type
\param[in] ValueIdx: wValue for the GetDescriptr request
\param[in] Len: length of the descriptor
\param[out] none
\retval none
*/
void usbh_enum_desc_get(usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
uint8_t *buf,
uint8_t req_type,
uint16_t value_idx,
uint16_t len)
{
usb_setup_union *pSetup = &(puhost->control.setup);
pSetup->b.bmRequestType = USB_DIR_IN | req_type;
pSetup->b.bRequest = USBREQ_GET_DESCRIPTOR;
pSetup->b.wValue = value_idx;
if (USB_STRDESC == (value_idx & 0xff00U)){
pSetup->b.wIndex = 0x0409U;
} else {
pSetup->b.wIndex = 0U;
}
pSetup->b.wLength = len;
puhost->control.buff = buf;
puhost->control.length = len;
}
/*!
\brief set address in usb host enumeration stage
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] device_address: the device address
\param[out] none
\retval none
*/
void usbh_enum_addr_set(usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
uint8_t device_address)
{
usb_setup_union *p_setup = &(puhost->control.setup);
p_setup->b.bmRequestType = USB_DIR_OUT | USB_REQTYPE_DEVICE | USB_STANDARD_REQ;
p_setup->b.bRequest = USBREQ_SET_ADDRESS;
p_setup->b.wValue = (uint16_t)device_address;
p_setup->b.wIndex = 0U;
p_setup->b.wLength = 0U;
puhost->control.buff = 0U;
puhost->control.length = 0U;
}
/*!
\brief set configuration in usb host enumeration stage
\param[in] pudev: pointer to USB device
\param[in] puhost: pointer to USB host
\param[in] cfg_idx: the index of the configuration
\param[out] none
\retval none
*/
void usbh_enum_cfg_set(usb_core_handle_struct *pudev,
usbh_host_struct *puhost,
uint16_t cfg_idx)
{
usb_setup_union *p_setup = &(puhost->control.setup);
p_setup->b.bmRequestType = USB_DIR_OUT | USB_REQTYPE_DEVICE | USB_STANDARD_REQ;
p_setup->b.bRequest = USBREQ_SET_CONFIGURATION;
p_setup->b.wValue = cfg_idx;
p_setup->b.wIndex = 0U;
p_setup->b.wLength = 0U;
puhost->control.buff = 0;
puhost->control.length = 0U;
}
/*!
\brief parse the device descriptor
\param[in] dev_desc: device_descriptor destinaton address
\param[in] buf: buffer where the source descriptor is available
\param[in] len: length of the descriptor
\param[out] none
\retval none
*/
void usbh_device_desc_parse (usb_descriptor_device_struct *dev_desc, uint8_t *buf, uint16_t len)
{
dev_desc->Header.bLength = *(uint8_t *)(buf + 0);
dev_desc->Header.bDescriptorType = *(uint8_t *)(buf + 1);
dev_desc->bcdUSB = SWAPBYTE(buf + 2);
dev_desc->bDeviceClass = *(uint8_t *)(buf + 4);
dev_desc->bDeviceSubClass = *(uint8_t *)(buf + 5);
dev_desc->bDeviceProtocol = *(uint8_t *)(buf + 6);
dev_desc->bMaxPacketSize0 = *(uint8_t *)(buf + 7);
if (len > 8U){
/* for 1st time after device connection, host may issue only 8 bytes for device descriptor length */
dev_desc->idVendor = SWAPBYTE(buf + 8);
dev_desc->idProduct = SWAPBYTE(buf + 10);
dev_desc->bcdDevice = SWAPBYTE(buf + 12);
dev_desc->iManufacturer = *(uint8_t *)(buf + 14);
dev_desc->iProduct = *(uint8_t *)(buf + 15);
dev_desc->iSerialNumber = *(uint8_t *)(buf + 16);
dev_desc->bNumberConfigurations = *(uint8_t *)(buf + 17);
}
}
/*!
\brief parse the configuration descriptor
\param[in] cfg_desc: configuration descriptor address
\param[in] itf_desc: interface descriptor address
\param[in] ep_desc: endpoint descriptor address
\param[in] buf: buffer where the source descriptor is available
\param[in] len: length of the descriptor
\param[out] none
\retval none
*/
void usbh_cfg_desc_parse (usb_descriptor_configuration_struct *cfg_desc,
usb_descriptor_interface_struct *itf_desc,
usb_descriptor_endpoint_struct ep_desc[][USBH_MAX_EP_NUM],
uint8_t *buf,
uint16_t len)
{
usb_descriptor_interface_struct *pitf = NULL;
usb_descriptor_interface_struct temp_pitf;
usb_descriptor_endpoint_struct *pep = NULL;
usb_descriptor_header_struct *pdesc = (usb_descriptor_header_struct *)buf;
uint8_t itf_ix = 0U;
uint8_t ep_ix = 0U;
uint16_t ptr = 0U;
static uint8_t prev_itf = 0U;
static uint16_t prev_ep_size = 0U;
/* parse configuration descriptor */
cfg_desc->Header.bLength = *(uint8_t *)(buf + 0);
cfg_desc->Header.bDescriptorType = *(uint8_t *)(buf + 1);
cfg_desc->wTotalLength = SWAPBYTE(buf + 2);
cfg_desc->bNumInterfaces = *(uint8_t *)(buf + 4);
cfg_desc->bConfigurationValue = *(uint8_t *)(buf + 5);
cfg_desc->iConfiguration = *(uint8_t *)(buf + 6);
cfg_desc->bmAttributes = *(uint8_t *)(buf + 7);
cfg_desc->bMaxPower = *(uint8_t *)(buf + 8);
if (len > USB_CFGDESC_SIZE) {
ptr = USB_CFG_DESC_LEN;
if (cfg_desc->bNumInterfaces <= USBH_MAX_INTERFACES_NUM) {
pitf = (usb_descriptor_interface_struct *)0;
for (; ptr < cfg_desc->wTotalLength; ) {
pdesc = usbh_next_desc_get((uint8_t *)pdesc, &ptr);
if (USB_DESCTYPE_INTERFACE == pdesc->bDescriptorType) {
itf_ix = *((uint8_t *)pdesc + 2U);
pitf = &itf_desc[itf_ix];
if (*((uint8_t *)pdesc + 3U) < 3U) {
usbh_interface_desc_parse (&temp_pitf, (uint8_t *)pdesc);
/* parse endpoint descriptors relative to the current interface */
if (temp_pitf.bNumEndpoints <= USBH_MAX_EP_NUM) {
for (ep_ix = 0U; ep_ix < temp_pitf.bNumEndpoints;) {
pdesc = usbh_next_desc_get((void* )pdesc, &ptr);
if (USB_DESCTYPE_ENDPOINT == pdesc->bDescriptorType) {
pep = &ep_desc[itf_ix][ep_ix];
if (prev_itf != itf_ix) {
prev_itf = itf_ix;
usbh_interface_desc_parse (pitf, (uint8_t *)&temp_pitf);
} else {
if (prev_ep_size > SWAPBYTE((uint8_t *)pdesc + 4)) {
break;
} else {
usbh_interface_desc_parse (pitf, (uint8_t *)&temp_pitf);
}
}
usbh_endpoint_desc_parse (pep, (uint8_t *)pdesc);
prev_ep_size = SWAPBYTE((uint8_t *)pdesc + 4);
ep_ix++;
}
}
}
}
}
}
}
prev_ep_size = 0U;
prev_itf = 0U;
}
}
/*!
\brief parse the interface descriptor
\param[in] itf_desc: interface descriptor destination
\param[in] buf: buffer where the descriptor data is available
\param[out] none
\retval none
*/
void usbh_interface_desc_parse (usb_descriptor_interface_struct *itf_desc, uint8_t *buf)
{
itf_desc->Header.bLength = *(uint8_t *)(buf + 0);
itf_desc->Header.bDescriptorType = *(uint8_t *)(buf + 1);
itf_desc->bInterfaceNumber = *(uint8_t *)(buf + 2);
itf_desc->bAlternateSetting = *(uint8_t *)(buf + 3);
itf_desc->bNumEndpoints = *(uint8_t *)(buf + 4);
itf_desc->bInterfaceClass = *(uint8_t *)(buf + 5);
itf_desc->bInterfaceSubClass = *(uint8_t *)(buf + 6);
itf_desc->bInterfaceProtocol = *(uint8_t *)(buf + 7);
itf_desc->iInterface = *(uint8_t *)(buf + 8);
}
/*!
\brief parse the endpoint descriptor
\param[in] ep_desc: endpoint descriptor destination address
\param[in] buf: buffer where the parsed descriptor stored
\param[out] none
\retval none
*/
void usbh_endpoint_desc_parse (usb_descriptor_endpoint_struct *ep_desc, uint8_t *buf)
{
ep_desc->Header.bLength = *(uint8_t *)(buf + 0);
ep_desc->Header.bDescriptorType = *(uint8_t *)(buf + 1);
ep_desc->bEndpointAddress = *(uint8_t *)(buf + 2);
ep_desc->bmAttributes = *(uint8_t *)(buf + 3);
ep_desc->wMaxPacketSize = SWAPBYTE(buf + 4);
ep_desc->bInterval = *(uint8_t *)(buf + 6);
}
/*!
\brief parse the string descriptor
\param[in] psrc: source pointer containing the descriptor data
\param[in] pdest: destination address pointer
\param[in] len: length of the descriptor
\param[out] none
\retval none
*/
void usbh_string_desc_parse (uint8_t* psrc, uint8_t* pdest, uint16_t len)
{
uint16_t strlength;
uint16_t idx;
/* the unicode string descriptor is not null-terminated. the string length is
computed by substracting two from the value of the first byte of the descriptor.
*/
/* check which is lower size, the size of string or the length of bytes read from the device */
if (USB_DESCTYPE_STRING == psrc[1]){
/* make sure the descriptor is string type */
/* psrc[0] contains size of descriptor, subtract 2 to get the length of string */
strlength = ((((uint16_t)psrc[0] - 2U) <= len) ? ((uint16_t)psrc[0] - 2U) : len);
psrc += 2; /* adjust the offset ignoring the string len and descriptor type */
for (idx = 0U; idx < strlength; idx += 2U) {
/* copy only the string and ignore the unicode id, hence add the src */
*pdest = psrc[idx];
pdest++;
}
*pdest = 0U; /* mark end of string */
}
}
/*!
\brief get the next descriptor header
\param[in] pbuf: pointer to buffer where the cfg descriptor is available
\param[in] ptr: data popinter inside the configuration descriptor
\param[out] none
\retval next descriptor header
*/
usb_descriptor_header_struct *usbh_next_desc_get (uint8_t *pbuf, uint16_t *ptr)
{
uint8_t len = ((usb_descriptor_header_struct *)pbuf)->bLength;
usb_descriptor_header_struct *pnext;
*ptr += len;
pnext = (usb_descriptor_header_struct *)((uint8_t *)pbuf + len);
return(pnext);
}

View File

@ -0,0 +1,36 @@
import rtconfig
from building import *
# get current directory
cwd = GetCurrentDir()
# The set of source files associated with this SConscript file.
src = Glob('GD32F30x_standard_peripheral/Source/*.c')
src += [cwd + '/CMSIS/GD/GD32F30x/Source/system_gd32f30x.c']
#add for startup script
if rtconfig.CROSS_TOOL == 'gcc':
print('=================================================')
print('Not support gcc yet !')
print('=================================================')
exit(0)
elif rtconfig.CROSS_TOOL == 'keil':
src += [cwd + '/CMSIS/GD/GD32F30x/Source/ARM/startup_gd32f30x_hd.s']
elif rtconfig.CROSS_TOOL == 'iar':
src += [cwd + '/CMSIS/GD/GD32F30x/Source/IAR/startup_gd32f30x_hd.s']
path = [
cwd + '/CMSIS/GD/GD32F30x/Include',
cwd + '/CMSIS',
cwd + '/GD32F30x_standard_peripheral/Include',]
if GetDepend(['RT_USING_BSP_USB']):
path += [cwd + '/GD32F30x_usb_driver/Include']
src += [cwd + '/GD32F30x_usb_driver/Source']
CPPDEFINES = ['USE_STDPERIPH_DRIVER', 'GD32F30X_HD']
group = DefineGroup('GD32_Lib', src, depend = [''], CPPPATH = path, CPPDEFINES = CPPDEFINES)
Return('group')

View File

@ -0,0 +1,93 @@
# GD32303E-EVAL #
## 1. 简介
[GD32303E-EVAL](http://gd32mcu.21ic.com/site)是兆易科技提供的开发板,使用 GD32F303ZET6 作为主控制器。提供包括扩展引脚在内的及 SWD, Reset, Boot, User button key, LED, CAN, I2C, I2S, USART, RTC, LCD, SPI, ADC, DAC, EXMC, CTC, SDIO,USBD, GD-Link 等外设资源。
板载主要资源如下:
| 硬件 | 描述 |
| -- | -- |
|CPU| Cortex-M4|
|主频| 120MHz |
|SRAM| 64KB |
|Flash| 512KB |
## 2. 编译说明
GD32303E-EVAL板级包支持MDK5和IAR。
| IDE/编译器 | 已测试版本 |
| ---------- | ---------------------------- |
| MDK5 | MDK5.25 |
| IAR | IAR8.20 |
## 3. 烧写及执行
供电方式:开发板使用 Mini USB 接口或者 DC-005 连接器提供 5V 电源。
下载程序:下载程序到开发板需要一套 JLink 或者使用 GD-Link 工具。
串口连接可使用USB转串口线连接开发板串口0的PA9和PA10引脚。
解决IDE "Missing Device(s)"问题"
* MDK5: 安装GigaDevice.GD32F30x_AddOn.1.0.1.exe在 Folder Selection 中的 Destination Folder 那一栏选择 Keil uVision5 软件的安装目录,如 C:\Keil_v5然后在 Option for Target 的 Device 选择对应的器件,同时在 Option forTarget 的 C/C++中添加路径 C:\Keil_v5\ARM\Pack\ARM\CMSIS\4.2.0\CMSIS\Include。
* IAR安装 IAR_GD32F30x_ADDON.1.0.0.exe
### 3.1 配置和仿真
工程已经默认使能了RT-Thread UART驱动、GPIO驱动、SPI驱动、I2C驱动。若想进一步配置工程请
使用ENV工具。
### 3.2 运行结果
打开MDK或者IAR工程进入仿真后全速运行将会在终端设备putty上看到RT-Thread的启动logo信息
```
\ | /
- RT - Thread Operating System
/ | \ 3.0.3 build Apr 26 2018
2006 - 2018 Copyright by rt-thread team
msh />
```
## 4. 驱动支持情况及计划
| 驱动 | 支持情况 | 备注 |
| ------ | ---- | :------: |
| UART | 支持 | UART0/1/2/3/4 |
| GPIO | 支持 | |
| SPI | 支持 | SPI0/1/2 |
| I2C | 支持 | I2C0/1|
### 4.1 IO在板级支持包中的映射情况
| IO号 | 板级包中的定义 |
| -- | -- |
| PA9 | USART0 TX |
| PA10 | USART0 RX |
| PA2 | USART1 TX |
| PA3 | USART1 RX |
| PA5| SPI0 SCK |
| PA6 | SPI0 MISO |
| PA6 | SPI0 MOSI |
| PB13| SPI1 SCK |
| PB14 | SPI1 MISO |
| PB15 | SPI1 MOSI |
| PB6| I2C0 SCL |
| PB7 | I2C0 SDA |
| PB10| I2C1 SCL |
| PB11 | I2C1 SDA |
## 5. 联系人信息
维护人:
- [misonyo](https://github.com/misonyo)
## 6. 参考
* [GD32303E-EVAL](http://gd32mcu.21ic.com/site)

View File

@ -0,0 +1,14 @@
# for module compiling
import os
Import('RTT_ROOT')
cwd = str(Dir('#'))
objs = []
list = os.listdir(cwd)
for d in list:
path = os.path.join(cwd, d)
if os.path.isfile(os.path.join(path, 'SConscript')):
objs = objs + SConscript(os.path.join(d, 'SConscript'))
Return('objs')

View File

@ -0,0 +1,39 @@
import os
import sys
import rtconfig
if os.getenv('RTT_ROOT'):
RTT_ROOT = os.getenv('RTT_ROOT')
else:
RTT_ROOT = os.path.normpath(os.getcwd() + '/../..')
sys.path = sys.path + [os.path.join(RTT_ROOT, 'tools')]
try:
from building import *
except:
print('Cannot found RT-Thread root directory, please check RTT_ROOT')
print(RTT_ROOT)
exit(-1)
TARGET = 'rtthread-gd32f30x.' + rtconfig.TARGET_EXT
env = Environment(tools = ['mingw'],
AS = rtconfig.AS, ASFLAGS = rtconfig.AFLAGS,
CC = rtconfig.CC, CCFLAGS = rtconfig.CFLAGS,
AR = rtconfig.AR, ARFLAGS = '-rc',
LINK = rtconfig.LINK, LINKFLAGS = rtconfig.LFLAGS)
env.PrependENVPath('PATH', rtconfig.EXEC_PATH)
if rtconfig.PLATFORM == 'iar':
env.Replace(CCCOM = ['$CC $CCFLAGS $CPPFLAGS $_CPPDEFFLAGS $_CPPINCFLAGS -o $TARGET $SOURCES'])
env.Replace(ARFLAGS = [''])
env.Replace(LINKCOM = ['$LINK $SOURCES $LINKFLAGS -o $TARGET --map project.map'])
Export('RTT_ROOT')
Export('rtconfig')
# prepare building environment
objs = PrepareBuilding(env, RTT_ROOT, has_libcpu=False)
# make a building
DoBuilding(TARGET, objs)

View File

@ -0,0 +1,11 @@
Import('RTT_ROOT')
Import('rtconfig')
from building import *
cwd = os.path.join(str(Dir('#')), 'applications')
src = Glob('*.c')
CPPPATH = [cwd, str(Dir('#'))]
group = DefineGroup('Applications', src, depend = [''], CPPPATH = CPPPATH)
Return('group')

View File

@ -0,0 +1,27 @@
/*
* File : main.c
* This file is part of RT-Thread RTOS
* COPYRIGHT (C) 2009, RT-Thread Development Team
*
* The license and distribution terms for this file may be
* found in the file LICENSE in this distribution or at
* http://www.rt-thread.org/license/LICENSE
*
* Change Logs:
* Date Author Notes
* 2015-07-29 Arda.Fu first implementation
*/
#include <rtthread.h>
#include <board.h>
int main(void)
{
/* user app entry */
return 0;
}

View File

@ -0,0 +1,33 @@
Import('RTT_ROOT')
Import('rtconfig')
from building import *
cwd = os.path.join(str(Dir('#')), 'drivers')
# add the general drivers.
src = Split("""
board.c
drv_usart.c
""")
CPPPATH = [cwd]
# add spi drivers.
if GetDepend('RT_USING_SPI'):
src += ['drv_spi.c']
# add i2c drivers.
if GetDepend('RT_USING_I2C'):
src += ['drv_i2c.c']
# add pin drivers.
if GetDepend('RT_USING_PIN'):
src += ['drv_gpio.c']
# add spi flash drivers.
if GetDepend('RT_USING_SFUD'):
src += ['drv_spi_flash.c']
group = DefineGroup('Drivers', src, depend = [''], CPPPATH = CPPPATH)
Return('group')

Some files were not shown because too many files have changed in this diff Show More