78 lines
2.6 KiB
Python
78 lines
2.6 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""test eval"""
|
|
import numpy as np
|
|
|
|
import mindspore as ms
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
from mindspore.common.api import _executor
|
|
from ..ut_filter import non_graph_engine
|
|
|
|
|
|
class Net(nn.Cell):
|
|
"""Net definition"""
|
|
|
|
def __init__(self,
|
|
cin,
|
|
cout,
|
|
kernel_size,
|
|
stride=1,
|
|
pad_mode='pad',
|
|
padding=0,
|
|
dilation=1,
|
|
group=1,
|
|
has_bias=False,
|
|
weight_init='normal',
|
|
bias_init='zeros'):
|
|
super(Net, self).__init__()
|
|
Tensor(np.ones([6, 3, 3, 3]).astype(np.float32) * 0.01)
|
|
self.conv = nn.Conv2d(cin,
|
|
cout,
|
|
kernel_size,
|
|
stride,
|
|
pad_mode,
|
|
padding,
|
|
dilation,
|
|
group,
|
|
has_bias,
|
|
weight_init,
|
|
bias_init)
|
|
|
|
def construct(self, input_x):
|
|
return self.conv(input_x)
|
|
|
|
|
|
@non_graph_engine
|
|
def test_compile_train_eval():
|
|
"""test_compile_train_eval"""
|
|
net = Net(3, 1, (3, 3), bias_init='zeros')
|
|
train_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
|
|
context.set_context(mode=context.GRAPH_MODE)
|
|
|
|
ms_executor = _executor
|
|
|
|
ms_executor.init_dataset("train", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), 'dataset')
|
|
|
|
ms_executor.compile(net, train_input_data, phase='train')
|
|
ms_executor(net, train_input_data, phase='train')
|
|
|
|
ms_executor.init_dataset("eval", 1, 1, [ms.float32], [[1, 3, 32, 32]], (), phase='eval_dataset')
|
|
|
|
valid_input_data = Tensor(np.ones([1, 3, 32, 32]).astype(np.float32) * 0.01)
|
|
ms_executor.compile(net, valid_input_data, phase='eval')
|
|
ms_executor(net, valid_input_data, phase='eval')
|