zhouyaqiang b1a1e24e07 | ||
---|---|---|
.. | ||
scripts | ||
src | ||
README.md | ||
eval.py | ||
train.py |
README.md
ResNext50 Example
Description
This is an example of training ResNext50 with ImageNet dataset in Mindspore.
Requirements
- Install Mindspore.
- Downlaod the dataset ImageNet2012.
Structure
.
└─resnext50
├─README.md
├─scripts
├─run_standalone_train.sh # launch standalone training(1p)
├─run_distribute_train.sh # launch distributed training(8p)
└─run_eval.sh # launch evaluating
├─src
├─backbone
├─_init_.py # initalize
├─resnet.py # resnext50 backbone
├─utils
├─_init_.py # initalize
├─cunstom_op.py # network operation
├─logging.py # print log
├─optimizers_init_.py # get parameters
├─sampler.py # distributed sampler
├─var_init_.py # calculate gain value
├─_init_.py # initalize
├─config.py # parameter configuration
├─crossentropy.py # CrossEntropy loss function
├─dataset.py # data preprocessing
├─head.py # commom head
├─image_classification.py # get resnet
├─linear_warmup.py # linear warmup learning rate
├─warmup_cosine_annealing.py # learning rate each step
├─warmup_step_lr.py # warmup step learning rate
├─eval.py # eval net
└─train.py # train net
Parameter Configuration
Parameters for both training and evaluating can be set in config.py
"image_height": '224,224' # image size
"num_classes": 1000, # dataset class number
"per_batch_size": 128, # batch size of input tensor
"lr": 0.05, # base learning rate
"lr_scheduler": 'cosine_annealing', # learning rate mode
"lr_epochs": '30,60,90,120', # epoch of lr changing
"lr_gamma": 0.1, # decrease lr by a factor of exponential lr_scheduler
"eta_min": 0, # eta_min in cosine_annealing scheduler
"T_max": 150, # T-max in cosine_annealing scheduler
"max_epoch": 150, # max epoch num to train the model
"backbone": 'resnext50', # backbone metwork
"warmup_epochs" : 1, # warmup epoch
"weight_decay": 0.0001, # weight decay
"momentum": 0.9, # momentum
"is_dynamic_loss_scale": 0, # dynamic loss scale
"loss_scale": 1024, # loss scale
"label_smooth": 1, # label_smooth
"label_smooth_factor": 0.1, # label_smooth_factor
"ckpt_interval": 2000, # ckpt_interval
"ckpt_path": 'outputs/', # checkpoint save location
"is_save_on_master": 1,
"rank": 0, # local rank of distributed
"group_size": 1 # world size of distributed
Running the example
Train
Usage
# distribute training example(8p)
sh run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH DATA_PATH
# standalone training
sh run_standalone_train.sh DEVICE_ID DATA_PATH
Launch
# distributed training example(8p)
sh scripts/run_distribute_train.sh MINDSPORE_HCCL_CONFIG_PATH /ImageNet/train
# standalone training example
sh scripts/run_standalone_train.sh 0 /ImageNet_Original/train
Result
You can find checkpoint file together with result in log.
Evaluation
Usage
# Evaluation
sh run_eval.sh DEVICE_ID DATA_PATH PRETRAINED_CKPT_PATH
Launch
# Evaluation with checkpoint
sh scripts/run_eval.sh 0 /opt/npu/datasets/classification/val /resnext50_100.ckpt
checkpoint can be produced in training process.
Result
Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
acc=78,16%(TOP1)
acc=93.88%(TOP5)