102 lines
3.0 KiB
Python
102 lines
3.0 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing the rescale op in DE
|
|
"""
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms.vision.c_transforms as vision
|
|
from mindspore import log as logger
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def rescale_np(image):
|
|
"""
|
|
Apply the rescale
|
|
"""
|
|
image = image / 255.0
|
|
image = image - 1.0
|
|
return image
|
|
|
|
|
|
def get_rescaled(image_id):
|
|
"""
|
|
Reads the image using DE ops and then rescales using Numpy
|
|
"""
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = vision.Decode()
|
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
|
num_iter = 0
|
|
for item in data1.create_dict_iterator():
|
|
image = item["image"]
|
|
if num_iter == image_id:
|
|
return rescale_np(image)
|
|
num_iter += 1
|
|
|
|
return None
|
|
|
|
|
|
def visualize(image_de_rescaled, image_np_rescaled, mse):
|
|
"""
|
|
visualizes the image using DE op and Numpy op
|
|
"""
|
|
plt.subplot(131)
|
|
plt.imshow(image_de_rescaled)
|
|
plt.title("DE rescale image")
|
|
|
|
plt.subplot(132)
|
|
plt.imshow(image_np_rescaled)
|
|
plt.title("Numpy rescaled image")
|
|
|
|
plt.subplot(133)
|
|
plt.imshow(image_de_rescaled - image_np_rescaled)
|
|
plt.title("Difference image, mse : {}".format(mse))
|
|
plt.show()
|
|
|
|
|
|
def test_rescale_op():
|
|
"""
|
|
Test rescale
|
|
"""
|
|
logger.info("Test rescale")
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
|
|
# define map operations
|
|
decode_op = vision.Decode()
|
|
rescale_op = vision.Rescale(1.0 / 255.0, -1.0)
|
|
|
|
# apply map operations on images
|
|
data1 = data1.map(input_columns=["image"], operations=decode_op)
|
|
data1 = data1.map(input_columns=["image"], operations=rescale_op)
|
|
|
|
num_iter = 0
|
|
for item in data1.create_dict_iterator():
|
|
image_de_rescaled = item["image"]
|
|
image_np_rescaled = get_rescaled(num_iter)
|
|
diff = image_de_rescaled - image_np_rescaled
|
|
mse = np.sum(np.power(diff, 2))
|
|
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
|
|
# Uncomment below line if you want to visualize images
|
|
# visualize(image_de_rescaled, image_np_rescaled, mse)
|
|
num_iter += 1
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_rescale_op()
|