mindspore/tests/ut/python/dataset/test_pad.py

126 lines
4.2 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing Pad op in DE
"""
import matplotlib.pyplot as plt
import numpy as np
from util import diff_mse
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_pad_op():
"""
Test Pad op
"""
logger.info("test_random_color_jitter_op")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
pad_op = c_vision.Pad((100, 100, 100, 100))
ctrans = [decode_op,
pad_op,
]
data1 = data1.map(input_columns=["image"], operations=ctrans)
# Second dataset
transforms = [
py_vision.Decode(),
py_vision.Pad(100),
py_vision.ToTensor(),
]
transform = py_vision.ComposeOp(transforms)
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform())
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
c_image = item1["image"]
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
logger.info("shape of c_image: {}".format(c_image.shape))
logger.info("shape of py_image: {}".format(py_image.shape))
logger.info("dtype of c_image: {}".format(c_image.dtype))
logger.info("dtype of py_image: {}".format(py_image.dtype))
mse = diff_mse(c_image, py_image)
logger.info("mse is {}".format(mse))
assert mse < 0.01
def test_pad_grayscale():
"""
Tests that the pad works for grayscale images
"""
def channel_swap(image):
"""
Py func hack for our pytransforms to work with c transforms
"""
return (image.transpose(1, 2, 0) * 255).astype(np.uint8)
transforms = [
py_vision.Decode(),
py_vision.Grayscale(1),
py_vision.ToTensor(),
(lambda image: channel_swap(image))
]
transform = py_vision.ComposeOp(transforms)
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data1 = data1.map(input_columns=["image"], operations=transform())
# if input is grayscale, the output dimensions should be single channel
pad_gray = c_vision.Pad(100, fill_value=(20, 20, 20))
data1 = data1.map(input_columns=["image"], operations=pad_gray)
dataset_shape_1 = []
for item1 in data1.create_dict_iterator():
c_image = item1["image"]
dataset_shape_1.append(c_image.shape)
# Dataset for comparison
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
# we use the same padding logic
ctrans = [decode_op, pad_gray]
dataset_shape_2 = []
data2 = data2.map(input_columns=["image"], operations=ctrans)
for item2 in data2.create_dict_iterator():
c_image = item2["image"]
dataset_shape_2.append(c_image.shape)
for shape1, shape2 in zip(dataset_shape_1, dataset_shape_2):
# validate that the first two dimensions are the same
# we have a little inconsistency here because the third dimension is 1 after py_vision.Grayscale
assert (shape1[0:1] == shape2[0:1])
if __name__ == "__main__":
test_pad_op()
test_pad_grayscale()