mindspore/tests/ut/python/dataset/test_datasets_manifestop.py

124 lines
4.2 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as data_trans
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
DATA_FILE = "../data/dataset/testManifestData/test.manifest"
def test_manifest_dataset_train():
data = ds.ManifestDataset(DATA_FILE, decode=True)
count = 0
cat_count = 0
dog_count = 0
for item in data.create_dict_iterator():
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
if item["label"].size == 1 and item["label"] == 0:
cat_count = cat_count + 1
elif item["label"].size == 1 and item["label"] == 1:
dog_count = dog_count + 1
assert (cat_count == 2)
assert (dog_count == 1)
assert (count == 4)
def test_manifest_dataset_eval():
data = ds.ManifestDataset(DATA_FILE, "eval", decode=True)
count = 0
for item in data.create_dict_iterator():
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
if item["label"] != 0 and item["label"] != 1:
assert (0)
assert (count == 2)
def test_manifest_dataset_class_index():
class_indexing = {"dog": 11}
data = ds.ManifestDataset(DATA_FILE, decode=True, class_indexing=class_indexing)
out_class_indexing = data.get_class_indexing()
assert (out_class_indexing == {"dog": 11})
count = 0
for item in data.create_dict_iterator():
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
if item["label"] != 11:
assert (0)
assert (count == 1)
def test_manifest_dataset_get_class_index():
data = ds.ManifestDataset(DATA_FILE, decode=True)
class_indexing = data.get_class_indexing()
assert (class_indexing == {'cat': 0, 'dog': 1, 'flower': 2})
data = data.shuffle(4)
class_indexing = data.get_class_indexing()
assert (class_indexing == {'cat': 0, 'dog': 1, 'flower': 2})
count = 0
for item in data.create_dict_iterator():
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
assert (count == 4)
def test_manifest_dataset_multi_label():
data = ds.ManifestDataset(DATA_FILE, decode=True, shuffle=False)
count = 0
expect_label = [1, 0, 0, [0, 2]]
for item in data.create_dict_iterator():
assert (item["label"].tolist() == expect_label[count])
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
assert (count == 4)
def multi_label_hot(x):
result = np.zeros(x.size // x.ndim, dtype=int)
if x.ndim > 1:
for i in range(x.ndim):
result = np.add(result, x[i])
else:
result = np.add(result, x)
return result
def test_manifest_dataset_multi_label_onehot():
data = ds.ManifestDataset(DATA_FILE, decode=True, shuffle=False)
expect_label = [[[0, 1, 0], [1, 0, 0]], [[1, 0, 0], [1, 0, 1]]]
one_hot_encode = data_trans.OneHot(3)
data = data.map(input_columns=["label"], operations=one_hot_encode)
data = data.map(input_columns=["label"], operations=multi_label_hot)
data = data.batch(2)
count = 0
for item in data.create_dict_iterator():
assert (item["label"].tolist() == expect_label[count])
logger.info("item[image] is {}".format(item["image"]))
count = count + 1
if __name__ == '__main__':
test_manifest_dataset_train()
test_manifest_dataset_eval()
test_manifest_dataset_class_index()
test_manifest_dataset_get_class_index()
test_manifest_dataset_multi_label()
test_manifest_dataset_multi_label_onehot()