mindspore/tests/ut/python/dataset/test_config.py

295 lines
12 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing configuration manager
"""
import filecmp
import glob
import numpy as np
import os
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_basic():
ds.config.load('../data/dataset/declient.cfg')
# assert ds.config.get_rows_per_buffer() == 32
assert ds.config.get_num_parallel_workers() == 4
# assert ds.config.get_worker_connector_size() == 16
assert ds.config.get_prefetch_size() == 16
assert ds.config.get_seed() == 5489
# ds.config.set_rows_per_buffer(1)
ds.config.set_num_parallel_workers(2)
# ds.config.set_worker_connector_size(3)
ds.config.set_prefetch_size(4)
ds.config.set_seed(5)
# assert ds.config.get_rows_per_buffer() == 1
assert ds.config.get_num_parallel_workers() == 2
# assert ds.config.get_worker_connector_size() == 3
assert ds.config.get_prefetch_size() == 4
assert ds.config.get_seed() == 5
def test_get_seed():
"""
This gets the seed value without explicitly setting a default, expect int.
"""
assert isinstance(ds.config.get_seed(), int)
def test_pipeline():
"""
Test that our configuration pipeline works when we set parameters at different locations in dataset code
"""
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds.config.set_num_parallel_workers(2)
data1 = data1.map(input_columns=["image"], operations=[vision.Decode(True)])
ds.serialize(data1, "testpipeline.json")
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
ds.config.set_num_parallel_workers(4)
data2 = data2.map(input_columns=["image"], operations=[vision.Decode(True)])
ds.serialize(data2, "testpipeline2.json")
# check that the generated output is different
assert (filecmp.cmp('testpipeline.json', 'testpipeline2.json'))
# this test passes currently because our num_parallel_workers don't get updated.
# remove generated jason files
file_list = glob.glob('*.json')
for f in file_list:
try:
os.remove(f)
except IOError:
logger.info("Error while deleting: {}".format(f))
def test_deterministic_run_fail():
"""
Test RandomCrop with seed, expected to fail
"""
logger.info("test_deterministic_run_fail")
# when we set the seed all operations within our dataset should be deterministic
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# Assuming we get the same seed on calling constructor, if this op is re-used then result won't be
# the same in between the two datasets. For example, RandomCrop constructor takes seed (0)
# outputs a deterministic series of numbers, e,g "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random
random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200])
decode_op = vision.Decode()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
# If seed is set up on constructor
data2 = data2.map(input_columns=["image"], operations=random_crop_op)
try:
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
np.testing.assert_equal(item1["image"], item2["image"])
except BaseException as e:
# two datasets split the number out of the sequence a
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Array" in str(e)
def test_deterministic_run_pass():
"""
Test deterministic run with with setting the seed
"""
logger.info("test_deterministic_run_pass")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# We get the seed when constructor is called
random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200])
decode_op = vision.Decode()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
# Since seed is set up on constructor, so the two ops output deterministic sequence.
# Assume the generated random sequence "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random
random_crop_op2 = vision.RandomCrop([512, 512], [200, 200, 200, 200])
data2 = data2.map(input_columns=["image"], operations=random_crop_op2)
try:
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
np.testing.assert_equal(item1["image"], item2["image"])
except BaseException as e:
# two datasets both use numbers from the generated sequence "a"
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Array" in str(e)
def test_seed_undeterministic():
"""
Test seed with num parallel workers in c, this test is expected to fail some of the time
"""
logger.info("test_seed_undeterministic")
ds.config.set_seed(0)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# seed will be read in during constructor call
random_crop_op = vision.RandomCrop([512, 512], [200, 200, 200, 200])
decode_op = vision.Decode()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
# If seed is set up on constructor, so the two ops output deterministic sequence
random_crop_op2 = vision.RandomCrop([512, 512], [200, 200, 200, 200])
data2 = data2.map(input_columns=["image"], operations=random_crop_op2)
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
np.testing.assert_equal(item1["image"], item2["image"])
def test_deterministic_run_distribution():
"""
Test deterministic run with with setting the seed being used in a distribution
"""
logger.info("test_deterministic_run_distribution")
# when we set the seed all operations within our dataset should be deterministic
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
random_crop_op = vision.RandomHorizontalFlip(0.1)
decode_op = vision.Decode()
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_crop_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=decode_op)
# If seed is set up on constructor, so the two ops output deterministic sequence
random_crop_op2 = vision.RandomHorizontalFlip(0.1)
data2 = data2.map(input_columns=["image"], operations=random_crop_op2)
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
np.testing.assert_equal(item1["image"], item2["image"])
def test_deterministic_python_seed():
"""
Test deterministic execution with seed in python
"""
logger.info("deterministic_random_crop_op_python_2")
ds.config.set_seed(0)
ds.config.set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
py_vision.ToTensor(),
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform())
data1_output = []
# config.set_seed() calls random.seed()
for data_one in data1.create_dict_iterator():
data1_output.append(data_one["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform())
# config.set_seed() calls random.seed(), resets seed for next dataset iterator
ds.config.set_seed(0)
data2_output = []
for data_two in data2.create_dict_iterator():
data2_output.append(data_two["image"])
np.testing.assert_equal(data1_output, data2_output)
def test_deterministic_python_seed_multi_thread():
"""
Test deterministic execution with seed in python, this fails with multi-thread pyfunc run
"""
logger.info("deterministic_random_crop_op_python_2")
ds.config.set_seed(0)
# when we set the seed all operations within our dataset should be deterministic
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
py_vision.Decode(),
py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
py_vision.ToTensor(),
]
transform = py_vision.ComposeOp(transforms)
data1 = data1.map(input_columns=["image"], operations=transform(), python_multiprocessing=True)
data1_output = []
# config.set_seed() calls random.seed()
for data_one in data1.create_dict_iterator():
data1_output.append(data_one["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
# If seed is set up on constructor
data2 = data2.map(input_columns=["image"], operations=transform(), python_multiprocessing=True)
# config.set_seed() calls random.seed()
ds.config.set_seed(0)
data2_output = []
for data_two in data2.create_dict_iterator():
data2_output.append(data_two["image"])
try:
np.testing.assert_equal(data1_output, data2_output)
except BaseException as e:
# expect output to not match during multi-threaded excution
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Array" in str(e)
if __name__ == '__main__':
test_basic()
test_pipeline()
test_deterministic_run_pass()
test_deterministic_run_distribution()
test_deterministic_run_fail()
test_deterministic_python_seed()
test_seed_undeterministic()
test_get_seed()