156 lines
5.1 KiB
Python
156 lines
5.1 KiB
Python
import os
|
|
import numpy as np
|
|
|
|
import mindspore.nn as nn
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.vision.c_transforms as CV
|
|
import mindspore.dataset.transforms.c_transforms as CT
|
|
from mindspore.dataset.vision import Inter
|
|
from mindspore import context
|
|
from mindspore.common import dtype as mstype
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.common.initializer import TruncatedNormal
|
|
from mindspore.common.parameter import ParameterTuple
|
|
from mindspore.ops import operations as P
|
|
from mindspore.ops import composite as C
|
|
from mindspore.train.serialization import export
|
|
|
|
|
|
def weight_variable():
|
|
return TruncatedNormal(0.02)
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0):
|
|
weight = weight_variable()
|
|
return nn.Conv2d(in_channels, out_channels,
|
|
kernel_size=kernel_size, stride=stride, padding=padding,
|
|
weight_init=weight, has_bias=False, pad_mode="valid")
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels):
|
|
weight = weight_variable()
|
|
bias = weight_variable()
|
|
return nn.Dense(input_channels, out_channels, weight, bias)
|
|
|
|
|
|
def create_dataset():
|
|
# define dataset
|
|
mnist_ds = ds.MnistDataset("../data/dataset/testMnistData")
|
|
|
|
resize_height, resize_width = 32, 32
|
|
rescale = 1.0 / 255.0
|
|
shift = 0.0
|
|
rescale_nml = 1 / 0.3081
|
|
shift_nml = -1 * 0.1307 / 0.3081
|
|
|
|
# define map operations
|
|
resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR)
|
|
rescale_nml_op = CV.Rescale(rescale_nml, shift_nml)
|
|
rescale_op = CV.Rescale(rescale, shift)
|
|
hwc2chw_op = CV.HWC2CHW()
|
|
type_cast_op = CT.TypeCast(mstype.int32)
|
|
|
|
# apply map operations on images
|
|
mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label")
|
|
mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image")
|
|
mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image")
|
|
mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image")
|
|
mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image")
|
|
|
|
# apply DatasetOps
|
|
mnist_ds = mnist_ds.batch(batch_size=32, drop_remainder=True)
|
|
|
|
return mnist_ds
|
|
|
|
class LeNet5(nn.Cell):
|
|
def __init__(self):
|
|
super(LeNet5, self).__init__()
|
|
self.batch_size = 32
|
|
self.conv1 = conv(1, 6, 5)
|
|
self.conv2 = conv(6, 16, 5)
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120)
|
|
self.fc2 = fc_with_initialize(120, 84)
|
|
self.fc3 = fc_with_initialize(84, 10)
|
|
self.relu = nn.ReLU()
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.reshape = P.Reshape()
|
|
|
|
def construct(self, x):
|
|
x = self.conv1(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.conv2(x)
|
|
x = self.relu(x)
|
|
x = self.max_pool2d(x)
|
|
x = self.reshape(x, (self.batch_size, -1))
|
|
x = self.fc1(x)
|
|
x = self.relu(x)
|
|
x = self.fc2(x)
|
|
x = self.relu(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|
|
|
|
class WithLossCell(nn.Cell):
|
|
def __init__(self, network):
|
|
super(WithLossCell, self).__init__(auto_prefix=False)
|
|
self.loss = nn.SoftmaxCrossEntropyWithLogits()
|
|
self.network = network
|
|
|
|
def construct(self, x, label):
|
|
predict = self.network(x)
|
|
return self.loss(predict, label)
|
|
|
|
|
|
class TrainOneStepCell(nn.Cell):
|
|
def __init__(self, network):
|
|
super(TrainOneStepCell, self).__init__(auto_prefix=False)
|
|
self.network = network
|
|
self.network.set_train()
|
|
self.weights = ParameterTuple(network.trainable_params())
|
|
self.optimizer = nn.Momentum(self.weights, 0.1, 0.9)
|
|
self.hyper_map = C.HyperMap()
|
|
self.grad = C.GradOperation(get_by_list=True)
|
|
|
|
def construct(self, x, label):
|
|
weights = self.weights
|
|
grads = self.grad(self.network, weights)(x, label)
|
|
return self.optimizer(grads)
|
|
|
|
|
|
def test_export_lenet_grad_mindir():
|
|
"""
|
|
Feature: Export LeNet to MindIR
|
|
Description: Test export API to save network into MindIR
|
|
Expectation: save successfully
|
|
"""
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
network = LeNet5()
|
|
network.set_train()
|
|
predict = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01)
|
|
label = Tensor(np.zeros([32, 10]).astype(np.float32))
|
|
net = TrainOneStepCell(WithLossCell(network))
|
|
file_name = "lenet_grad"
|
|
export(net, predict, label, file_name=file_name, file_format='MINDIR')
|
|
verify_name = file_name + ".mindir"
|
|
assert os.path.exists(verify_name)
|
|
os.remove(verify_name)
|
|
|
|
|
|
def test_export_lenet_with_dataset():
|
|
"""
|
|
Feature: Export LeNet with data preprocess to MindIR
|
|
Description: Test export API to save network and dataset into MindIR
|
|
Expectation: save successfully
|
|
"""
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
|
|
network = LeNet5()
|
|
network.set_train()
|
|
dataset = create_dataset()
|
|
file_name = "lenet_preprocess"
|
|
|
|
export(network, dataset, file_name=file_name, file_format='MINDIR')
|
|
verify_name = file_name + ".mindir"
|
|
assert os.path.exists(verify_name)
|
|
os.remove(verify_name)
|