mindspore/tests/ut/python/metrics/test_cosine_similarity.py

96 lines
3.0 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""test cosine_similarity"""
import pytest
import numpy as np
from sklearn.metrics import pairwise
from mindspore.nn.metrics import CosineSimilarity
def test_cosine_similarity():
"""test_cosine_similarity"""
test_data = np.array([[5, 8, 3, 2], [5, 8, 3, 2], [4, 2, 3, 4]])
metric = CosineSimilarity()
metric.clear()
metric.update(test_data)
square_matrix = metric.eval()
assert np.allclose(square_matrix, np.array([[0, 1, 0.78229315], [1, 0, 0.78229315], [0.78229315, 0.78229315, 0]]))
def test_cosine_similarity_compare():
"""test_cosine_similarity_compare"""
test_data = np.array([[5, 8, 3, 2], [5, 8, 3, 2], [4, 2, 3, 4]])
metric = CosineSimilarity(similarity='cosine', reduction='none', zero_diagonal=False)
metric.clear()
metric.update(test_data)
ms_square_matrix = metric.eval()
def sklearn_cosine_similarity(test_data, similarity, reduction):
"""sklearn_cosine_similarity"""
metric_func = {'cosine': pairwise.cosine_similarity,
'dot': pairwise.linear_kernel}[similarity]
square_matrix = metric_func(test_data, test_data)
if reduction == 'mean':
return square_matrix.mean(axis=-1)
if reduction == 'sum':
return square_matrix.sum(axis=-1)
return square_matrix
sk_square_matrix = sklearn_cosine_similarity(test_data, similarity='cosine', reduction='none')
assert np.allclose(sk_square_matrix, ms_square_matrix)
def test_cosine_similarity_init1():
"""test_cosine_similarity_init1"""
with pytest.raises(ValueError):
CosineSimilarity(similarity="4")
def test_cosine_similarity_init2():
"""test_cosine_similarity_init2"""
with pytest.raises(TypeError):
CosineSimilarity(similarity=4)
def test_cosine_similarity_init3():
"""test_cosine_similarity_init3"""
with pytest.raises(TypeError):
CosineSimilarity(reduction=2)
def test_cosine_similarity_init4():
"""test_cosine_similarity_init4"""
with pytest.raises(ValueError):
CosineSimilarity(reduction="1")
def test_cosine_similarity_init5():
"""test_cosine_similarity_init5"""
with pytest.raises(TypeError):
CosineSimilarity(zero_diagonal=3)
def test_cosine_similarity_runtime():
"""test_cosine_similarity_runtime"""
metric = CosineSimilarity()
metric.clear()
with pytest.raises(RuntimeError):
metric.eval()