172 lines
7.7 KiB
Python
172 lines
7.7 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import copy
|
|
import mindspore.dataset.text as text
|
|
import mindspore.dataset as ds
|
|
from mindspore.dataset.text import SentencePieceModel, to_str, SPieceTokenizerOutType
|
|
|
|
VOCAB_FILE = "../data/dataset/test_sentencepiece/botchan.txt"
|
|
DATA_FILE = "../data/dataset/testTokenizerData/sentencepiece_tokenizer.txt"
|
|
|
|
|
|
def test_from_vocab_to_str_UNIGRAM():
|
|
vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
|
|
tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
dataset = dataset.map(operations=tokenizer)
|
|
expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
|
|
for i in dataset.create_dict_iterator(num_epochs=1):
|
|
ret = to_str(i["text"])
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
|
|
def test_from_vocab_to_str_BPE():
|
|
vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.BPE, {})
|
|
tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
dataset = dataset.map(operations=tokenizer)
|
|
expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'c', 'ope', '.']
|
|
for i in dataset.create_dict_iterator(num_epochs=1):
|
|
ret = to_str(i["text"])
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
|
|
def test_from_vocab_to_str_CHAR():
|
|
vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.CHAR, {})
|
|
tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
dataset = dataset.map(operations=tokenizer)
|
|
expect = ['▁', 'I', '▁', 's', 'a', 'w', '▁', 'a', '▁', 'g', 'i', 'r', 'l', '▁', 'w', 'i', 't', 'h',\
|
|
'▁', 'a', '▁', 't', 'e', 'l', 'e', 's', 'c', 'o', 'p', 'e', '.']
|
|
for i in dataset.create_dict_iterator(num_epochs=1):
|
|
ret = to_str(i["text"])
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
|
|
def test_from_vocab_to_str_WORD():
|
|
vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.WORD, {})
|
|
tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
dataset = dataset.map(operations=tokenizer)
|
|
expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁telescope.']
|
|
for i in dataset.create_dict_iterator(num_epochs=1):
|
|
ret = to_str(i["text"])
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
|
|
def test_from_vocab_to_int():
|
|
vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
|
|
tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.INT)
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
dataset = dataset.map(operations=tokenizer)
|
|
expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
|
|
for i in dataset.create_dict_iterator(num_epochs=1):
|
|
ret = i["text"]
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
|
|
def test_from_file_to_str():
|
|
vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
|
|
text.SentencePieceVocab.save_model(vocab, "./", "m.model")
|
|
tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.STRING)
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
dataset = dataset.map(operations=tokenizer)
|
|
expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
|
|
for i in dataset.create_dict_iterator(num_epochs=1):
|
|
ret = to_str(i["text"])
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
|
|
def test_from_file_to_int():
|
|
vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
|
|
text.SentencePieceVocab.save_model(vocab, "./", "m.model")
|
|
tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.INT)
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
dataset = dataset.map(operations=tokenizer)
|
|
expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
|
|
for i in dataset.create_dict_iterator(num_epochs=1):
|
|
ret = i["text"]
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
|
|
def test_build_from_dataset():
|
|
data = ds.TextFileDataset(VOCAB_FILE, shuffle=False)
|
|
vocab = text.SentencePieceVocab.from_dataset(data, [""], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
|
|
tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
dataset = dataset.map(operations=tokenizer)
|
|
expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
|
|
for i in dataset.create_dict_iterator(num_epochs=1):
|
|
ret = to_str(i["text"])
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
|
|
def apply_func(dataset):
|
|
input_columns = ['text']
|
|
output_columns = ['text2']
|
|
dataset = dataset.rename(input_columns, output_columns)
|
|
return dataset
|
|
|
|
|
|
def zip_test(dataset):
|
|
dataset_1 = copy.deepcopy(dataset)
|
|
dataset_2 = copy.deepcopy(dataset)
|
|
dataset_1 = dataset_1.apply(apply_func)
|
|
dataset_zip = ds.zip((dataset_1, dataset_2))
|
|
expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
|
|
for i in dataset_zip.create_dict_iterator(num_epochs=1):
|
|
ret = to_str(i["text"])
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
|
|
def concat_test(dataset):
|
|
dataset_1 = copy.deepcopy(dataset)
|
|
dataset = dataset.concat(dataset_1)
|
|
expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
|
|
for i in dataset.create_dict_iterator(num_epochs=1):
|
|
ret = to_str(i["text"])
|
|
for key, value in enumerate(ret):
|
|
assert value == expect[key]
|
|
|
|
def test_with_zip_concat():
|
|
data = ds.TextFileDataset(VOCAB_FILE, shuffle=False)
|
|
vocab = text.SentencePieceVocab.from_dataset(data, [""], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
|
|
tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
|
|
dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
dataset = dataset.map(operations=tokenizer, num_parallel_workers=2)
|
|
zip_test(dataset)
|
|
concat_test(dataset)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_from_vocab_to_str_UNIGRAM()
|
|
test_from_vocab_to_str_BPE()
|
|
test_from_vocab_to_str_CHAR()
|
|
test_from_vocab_to_str_WORD()
|
|
test_from_vocab_to_int()
|
|
test_from_file_to_str()
|
|
test_from_file_to_int()
|
|
test_build_from_dataset()
|
|
test_with_zip_concat()
|