127 lines
4.0 KiB
Python
127 lines
4.0 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing profiling support in DE
|
|
"""
|
|
import os
|
|
import numpy as np
|
|
import mindspore.dataset as ds
|
|
|
|
FILES = ["../data/dataset/testTFTestAllTypes/test.data"]
|
|
DATASET_ROOT = "../data/dataset/testTFTestAllTypes/"
|
|
SCHEMA_FILE = "../data/dataset/testTFTestAllTypes/datasetSchema.json"
|
|
|
|
PIPELINE_FILE_SIZE = "./pipeline_profiling_1.json"
|
|
PIPELINE_FILE_THR = "./pipeline_profiling_Connector_Throughput_Sampling_1.json"
|
|
DATASET_ITERATOR_FILE = "./dataset_iterator_profiling_1.txt"
|
|
|
|
|
|
def test_profiling_simple_pipeline():
|
|
"""
|
|
Generator -> Shuffle -> Batch
|
|
"""
|
|
os.environ['PROFILING_MODE'] = 'true'
|
|
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
|
os.environ['DEVICE_ID'] = '1'
|
|
|
|
source = [(np.array([x]),) for x in range(1024)]
|
|
data1 = ds.GeneratorDataset(source, ["data"])
|
|
data1 = data1.shuffle(64)
|
|
data1 = data1.batch(32)
|
|
|
|
for _ in data1:
|
|
pass
|
|
|
|
assert os.path.exists(PIPELINE_FILE_SIZE) is True
|
|
os.remove(PIPELINE_FILE_SIZE)
|
|
assert os.path.exists(PIPELINE_FILE_THR) is True
|
|
os.remove(PIPELINE_FILE_THR)
|
|
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
|
os.remove(DATASET_ITERATOR_FILE)
|
|
del os.environ['PROFILING_MODE']
|
|
del os.environ['MINDDATA_PROFILING_DIR']
|
|
|
|
|
|
def test_profiling_complex_pipeline():
|
|
"""
|
|
Generator -> Map ->
|
|
-> Zip -> Batch
|
|
TFReader -> Shuffle ->
|
|
"""
|
|
os.environ['PROFILING_MODE'] = 'true'
|
|
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
|
os.environ['DEVICE_ID'] = '1'
|
|
|
|
source = [(np.array([x]),) for x in range(1024)]
|
|
data1 = ds.GeneratorDataset(source, ["gen"])
|
|
data1 = data1.map(operations=[(lambda x: x + 1)], input_columns=["gen"])
|
|
|
|
pattern = DATASET_ROOT + "/test.data"
|
|
data2 = ds.TFRecordDataset(pattern, SCHEMA_FILE, shuffle=ds.Shuffle.FILES)
|
|
data2 = data2.shuffle(4)
|
|
|
|
data3 = ds.zip((data1, data2))
|
|
|
|
for _ in data3:
|
|
pass
|
|
|
|
assert os.path.exists(PIPELINE_FILE_SIZE) is True
|
|
os.remove(PIPELINE_FILE_SIZE)
|
|
assert os.path.exists(PIPELINE_FILE_THR) is True
|
|
os.remove(PIPELINE_FILE_THR)
|
|
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
|
os.remove(DATASET_ITERATOR_FILE)
|
|
del os.environ['PROFILING_MODE']
|
|
del os.environ['MINDDATA_PROFILING_DIR']
|
|
|
|
|
|
def test_profiling_sampling_iterval():
|
|
"""
|
|
Test non-default monitor sampling interval
|
|
"""
|
|
os.environ['PROFILING_MODE'] = 'true'
|
|
os.environ['MINDDATA_PROFILING_DIR'] = '.'
|
|
os.environ['DEVICE_ID'] = '1'
|
|
interval_origin = ds.config.get_monitor_sampling_interval()
|
|
|
|
ds.config.set_monitor_sampling_interval(30)
|
|
interval = ds.config.get_monitor_sampling_interval()
|
|
assert interval == 30
|
|
|
|
source = [(np.array([x]),) for x in range(1024)]
|
|
data1 = ds.GeneratorDataset(source, ["data"])
|
|
data1 = data1.shuffle(64)
|
|
data1 = data1.batch(32)
|
|
|
|
for _ in data1:
|
|
pass
|
|
|
|
assert os.path.exists(PIPELINE_FILE_SIZE) is True
|
|
os.remove(PIPELINE_FILE_SIZE)
|
|
assert os.path.exists(PIPELINE_FILE_THR) is True
|
|
os.remove(PIPELINE_FILE_THR)
|
|
assert os.path.exists(DATASET_ITERATOR_FILE) is True
|
|
os.remove(DATASET_ITERATOR_FILE)
|
|
|
|
ds.config.set_monitor_sampling_interval(interval_origin)
|
|
del os.environ['PROFILING_MODE']
|
|
del os.environ['MINDDATA_PROFILING_DIR']
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_profiling_simple_pipeline()
|
|
test_profiling_complex_pipeline()
|
|
test_profiling_sampling_iterval()
|