mindspore/tests/ut/python/dataset/test_onehot_op.py

104 lines
3.2 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing the OneHot Op
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.c_transforms as data_trans
import mindspore.dataset.vision.c_transforms as c_vision
from mindspore import log as logger
from util import dataset_equal_with_function
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def one_hot(index, depth):
"""
Apply the one_hot
"""
arr = np.zeros([1, depth], dtype=np.int32)
arr[0, index] = 1
return arr
def test_one_hot():
"""
Test OneHot Tensor Operator
"""
logger.info("test_one_hot")
depth = 10
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
one_hot_op = data_trans.OneHot(num_classes=depth)
data1 = data1.map(input_columns=["label"], operations=one_hot_op, column_order=["label"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["label"], shuffle=False)
assert dataset_equal_with_function(data1, data2, 0, one_hot, depth)
def test_one_hot_post_aug():
"""
Test One Hot Encoding after Multiple Data Augmentation Operators
"""
logger.info("test_one_hot_post_aug")
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
# Define data augmentation parameters
rescale = 1.0 / 255.0
shift = 0.0
resize_height, resize_width = 224, 224
# Define map operations
decode_op = c_vision.Decode()
rescale_op = c_vision.Rescale(rescale, shift)
resize_op = c_vision.Resize((resize_height, resize_width))
# Apply map operations on images
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=rescale_op)
data1 = data1.map(input_columns=["image"], operations=resize_op)
# Apply one-hot encoding on labels
depth = 4
one_hot_encode = data_trans.OneHot(depth)
data1 = data1.map(input_columns=["label"], operations=one_hot_encode)
# Apply datasets ops
buffer_size = 100
seed = 10
batch_size = 2
ds.config.set_seed(seed)
data1 = data1.shuffle(buffer_size=buffer_size)
data1 = data1.batch(batch_size, drop_remainder=True)
num_iter = 0
for item in data1.create_dict_iterator(num_epochs=1):
logger.info("image is: {}".format(item["image"]))
logger.info("label is: {}".format(item["label"]))
num_iter += 1
assert num_iter == 1
if __name__ == "__main__":
test_one_hot()
test_one_hot_post_aug()