mindspore/tests/st/profiler/test_ascend_profiler.py

120 lines
3.9 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Test ascend profiling."""
import glob
import tempfile
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor
from mindspore.ops import operations as P
import mindspore.dataset as ds
from mindspore import Profiler
from mindspore import Model
from tests.security_utils import security_off_wrap
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.add = P.Add()
def construct(self, x_, y_):
return self.add(x_, y_)
x = np.random.randn(1, 3, 3, 4).astype(np.float32)
y = np.random.randn(1, 3, 3, 4).astype(np.float32)
class NetWork(nn.Cell):
def __init__(self):
super(NetWork, self).__init__()
self.unique = P.Unique()
self.shape = P.TensorShape()
self.reshape = P.Reshape()
self.add = P.Add()
def construct(self, a, b):
val = self.add(a, b)
size = self.shape(val)
res = self.reshape(val, size)
return res
def dataset_generator():
for i in range(1, 10):
yield (np.ones((32, 2 * i), dtype=np.float32), np.ones((32, 2 * i), dtype=np.float32))
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@security_off_wrap
def test_ascend_profiling():
"""Test ascend profiling"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
with tempfile.TemporaryDirectory() as tmpdir:
profiler = Profiler(output_path=tmpdir)
add = Net()
add(Tensor(x), Tensor(y))
profiler.analyse()
assert len(glob.glob(f"{tmpdir}/profiler*/*PROF*/device_*/data/Framework*")) == 4
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@security_off_wrap
def test_ascend_pynative_profiling():
"""
Feature: Test the ascend pynative model profiling
Description: Generate the Net op timeline
Expectation: Timeline generated successfully
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend")
with tempfile.TemporaryDirectory() as tmpdir:
profiler = Profiler(output_path=tmpdir)
add = Net()
add(Tensor(x), Tensor(y))
profiler.analyse()
assert len(glob.glob(f"{tmpdir}/profiler*/output_timeline_data_*.txt")) == 1
@pytest.mark.level0
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@security_off_wrap
def test_shape():
"""
Feature: Test the ascend dynamic shape model profiling
Description: Generate the Net dynamic shape data.
Expectation: Dynamic shape data generated successfully
"""
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
with tempfile.TemporaryDirectory() as tmpdir:
network = NetWork()
profiler = Profiler(output_path=tmpdir)
dataset = ds.GeneratorDataset(dataset_generator, ["data1", "data2"])
dataset.set_dynamic_columns(columns={"data1": [32, None], "data2": [32, None]})
model = Model(network)
model.train(1, dataset, dataset_sink_mode=True)
profiler.analyse()
assert len(glob.glob(f"{tmpdir}/profiler*/dynamic_shape_*.json")) == 1