mindspore/model_zoo/research/audio/deepspeech2/train.py

106 lines
5.3 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""train_criteo."""
import os
import json
import argparse
from mindspore import context, Tensor, ParameterTuple
from mindspore.context import ParallelMode
from mindspore.communication.management import init, get_rank, get_group_size
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn.optim import Adam
from mindspore.nn import TrainOneStepCell
from mindspore.train import Model
from src.deepspeech2 import DeepSpeechModel, NetWithLossClass
from src.lr_generator import get_lr
from src.config import train_config
from src.dataset import create_dataset
parser = argparse.ArgumentParser(description='DeepSpeech2 training')
parser.add_argument('--pre_trained_model_path', type=str, default='', help='Pretrained checkpoint path')
parser.add_argument('--is_distributed', action="store_true", default=False, help='Distributed training')
parser.add_argument('--bidirectional', action="store_false", default=True, help='Use bidirectional RNN')
parser.add_argument('--device_target', type=str, default="GPU", choices=("GPU", "CPU"),
help='Device target, support GPU and CPU, Default: GPU')
args = parser.parse_args()
if __name__ == '__main__':
rank_id = 0
group_size = 1
config = train_config
data_sink = (args.device_target == "GPU")
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, save_graphs=False)
if args.device_target == "GPU":
context.set_context(enable_graph_kernel=True)
if args.is_distributed:
init('nccl')
rank_id = get_rank()
group_size = get_group_size()
context.reset_auto_parallel_context()
context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
gradients_mean=True)
with open(config.DataConfig.labels_path) as label_file:
labels = json.load(label_file)
ds_train = create_dataset(audio_conf=config.DataConfig.SpectConfig,
manifest_filepath=config.DataConfig.train_manifest,
labels=labels, normalize=True, train_mode=True,
batch_size=config.DataConfig.batch_size, rank=rank_id, group_size=group_size)
steps_size = ds_train.get_dataset_size()
lr = get_lr(lr_init=config.OptimConfig.learning_rate, total_epochs=config.TrainingConfig.epochs,
steps_per_epoch=steps_size)
lr = Tensor(lr)
deepspeech_net = DeepSpeechModel(batch_size=config.DataConfig.batch_size,
rnn_hidden_size=config.ModelConfig.hidden_size,
nb_layers=config.ModelConfig.hidden_layers,
labels=labels,
rnn_type=config.ModelConfig.rnn_type,
audio_conf=config.DataConfig.SpectConfig,
bidirectional=True,
device_target=args.device_target)
loss_net = NetWithLossClass(deepspeech_net)
weights = ParameterTuple(deepspeech_net.trainable_params())
optimizer = Adam(weights, learning_rate=config.OptimConfig.learning_rate, eps=config.OptimConfig.epsilon,
loss_scale=config.OptimConfig.loss_scale)
train_net = TrainOneStepCell(loss_net, optimizer)
train_net.set_train(True)
if args.pre_trained_model_path != '':
param_dict = load_checkpoint(args.pre_trained_model_path)
load_param_into_net(train_net, param_dict)
print('Successfully loading the pre-trained model')
model = Model(train_net)
callback_list = [TimeMonitor(steps_size), LossMonitor()]
if args.is_distributed:
config.CheckpointConfig.ckpt_file_name_prefix = config.CheckpointConfig.ckpt_file_name_prefix + str(get_rank())
config.CheckpointConfig.ckpt_path = os.path.join(config.CheckpointConfig.ckpt_path,
'ckpt_' + str(get_rank()) + '/')
config_ck = CheckpointConfig(save_checkpoint_steps=1,
keep_checkpoint_max=config.CheckpointConfig.keep_checkpoint_max)
ckpt_cb = ModelCheckpoint(prefix=config.CheckpointConfig.ckpt_file_name_prefix,
directory=config.CheckpointConfig.ckpt_path, config=config_ck)
callback_list.append(ckpt_cb)
model.train(config.TrainingConfig.epochs, ds_train, callbacks=callback_list, dataset_sink_mode=data_sink)