110 lines
3.7 KiB
Python
110 lines
3.7 KiB
Python
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
"""smoke tests for RowTensor operations"""
|
|
|
|
import pytest
|
|
import numpy as np
|
|
|
|
from mindspore import Tensor, nn, context
|
|
from mindspore.common.sparse_tensor import RowTensorInner
|
|
from mindspore.common import dtype as mstype
|
|
|
|
|
|
def compare_row(row1, row2):
|
|
assert isinstance(row1, RowTensorInner)
|
|
assert isinstance(row2, RowTensorInner)
|
|
assert (row1.indices.asnumpy() == row1.indices.asnumpy()).all()
|
|
assert (row2.values.asnumpy() == row2.values.asnumpy()).all()
|
|
assert row1.dense_shape == row2.dense_shape
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.platform_x86_cpu
|
|
@pytest.mark.env_onecard
|
|
def test_make_row():
|
|
"""
|
|
Feature: Test RowTensor Constructor in Graph and PyNative.
|
|
Description: Test RowTensorInner(indices, values, shape) and RowTensorInner(RowTensor)
|
|
Expectation: Success.
|
|
"""
|
|
indices = Tensor([0, 1], dtype=mstype.int32)
|
|
values = Tensor([[1, 2], [3, 4]], dtype=mstype.float32)
|
|
dense_shape = (3, 2)
|
|
|
|
def test_pynative():
|
|
return RowTensorInner(indices, values, dense_shape)
|
|
|
|
row1 = test_pynative()
|
|
compare_row(row1, row1)
|
|
row2 = RowTensorInner(row_tensor=row1)
|
|
compare_row(row1, row2)
|
|
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_arm_ascend_training
|
|
@pytest.mark.platform_x86_ascend_training
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_row_tensor_with_control_if():
|
|
"""
|
|
Feature: Test RowTensor in if.
|
|
Description: Test RowTensor computation in while loop.
|
|
Expectation: Success.
|
|
"""
|
|
class RowTensorValuesDouble(nn.Cell):
|
|
|
|
def construct(self, x):
|
|
indices = x.indices
|
|
values = x.values * 2
|
|
shape = x.dense_shape
|
|
return RowTensorInner(indices, values, shape)
|
|
|
|
class RowTensorValuesAdd2(nn.Cell):
|
|
|
|
def construct(self, x):
|
|
indices = x.indices
|
|
values = x.values + 2
|
|
shape = x.dense_shape
|
|
return RowTensorInner(indices, values, shape)
|
|
|
|
class RowTensorWithControlIf(nn.Cell):
|
|
def __init__(self, shape):
|
|
super(RowTensorWithControlIf, self).__init__()
|
|
self.op1 = RowTensorValuesDouble()
|
|
self.op2 = RowTensorValuesAdd2()
|
|
self.shape = shape
|
|
|
|
def construct(self, a, b, indices, values):
|
|
x = RowTensorInner(indices, values, self.shape)
|
|
if a > b:
|
|
x = self.op1(x)
|
|
else:
|
|
x = self.op2(x)
|
|
return x.indices, x.values, x.dense_shape
|
|
context.set_context(mode=context.PYNATIVE_MODE)
|
|
a = Tensor(0, mstype.int32)
|
|
b = Tensor(2, mstype.int32)
|
|
indices = Tensor([0, 1], dtype=mstype.int32)
|
|
values = Tensor([[1, 2], [3, 4]], dtype=mstype.float32)
|
|
shape = (3, 2)
|
|
net = RowTensorWithControlIf(shape)
|
|
out = net(a, b, indices, values)
|
|
assert np.allclose(out[0].asnumpy(), indices.asnumpy(), .0, .0)
|
|
assert np.allclose(out[1].asnumpy(), values.asnumpy() + 2, .0, .0)
|
|
assert out[2] == shape
|