100 lines
2.9 KiB
Python
100 lines
2.9 KiB
Python
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
from mindspore.common.api import jit
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.common.parameter import Parameter
|
|
from mindspore.common.tensor import Tensor
|
|
from mindspore.nn import Cell
|
|
from mindspore.ops.operations import Tile
|
|
|
|
|
|
class TileNet(Cell):
|
|
def __init__(self, numpy_input):
|
|
super(TileNet, self).__init__()
|
|
self.Tile = Tile()
|
|
|
|
self.input_parameter = Parameter(initializer(Tensor(numpy_input), numpy_input.shape), name='x')
|
|
|
|
@jit
|
|
def construct(self, mul):
|
|
return self.Tile(self.input_parameter, mul)
|
|
|
|
|
|
def ms_tile(nptype):
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
input_0 = np.arange(2).reshape((2, 1, 1)).astype(nptype)
|
|
mul_0 = (8, 1, 1)
|
|
input_1 = np.arange(32).reshape((2, 4, 4)).astype(nptype)
|
|
mul_1 = (2, 2, 2)
|
|
input_2 = np.arange(1).reshape((1, 1, 1)).astype(nptype)
|
|
mul_2 = (1, 1, 1)
|
|
|
|
tile_net = TileNet(input_0)
|
|
np_expected = np.tile(input_0, mul_0)
|
|
ms_output = tile_net(mul_0).asnumpy()
|
|
np.testing.assert_array_equal(ms_output, np_expected)
|
|
|
|
tile_net = TileNet(input_1)
|
|
np_expected = np.tile(input_1, mul_1)
|
|
ms_output = tile_net(mul_1).asnumpy()
|
|
np.testing.assert_array_equal(ms_output, np_expected)
|
|
|
|
tile_net = TileNet(input_2)
|
|
np_expected = np.tile(input_2, mul_2)
|
|
ms_output = tile_net(mul_2).asnumpy()
|
|
np.testing.assert_array_equal(ms_output, np_expected)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tile_float16():
|
|
ms_tile(np.float16)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tile_float32():
|
|
ms_tile(np.float32)
|
|
|
|
@pytest.mark.level0
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tile_float64():
|
|
ms_tile(np.float64)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tile_int16():
|
|
ms_tile(np.int16)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tile_int32():
|
|
ms_tile(np.int32)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tile_int64():
|
|
ms_tile(np.int64)
|