mindspore/tests/st/ops/gpu/test_tanhshrink.py

76 lines
2.3 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.tanhshrink = nn.Tanhshrink()
def construct(self, x):
return self.tanhshrink(x)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tanhshrink_normal():
"""
Feature: Tanhshrink
Description: Verify the result of Tanhshrink with normal input
Expectation: success
"""
net = Net()
a = Tensor(np.array([1, 2, 3, 2, 1]).astype(np.float16))
output = net(a)
expected_output = Tensor(np.array([0.2383, 1.036, 2.004, 1.036, 0.2383]).astype(np.float16))
assert np.array_equal(output, expected_output)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tanhshrink_negative():
"""
Feature: Tanhshrink
Description: Verify the result of Tanhshrink with negative input
Expectation: success
"""
net = Net()
a = Tensor(np.array([-1, -2, -3, -2, -1]).astype(np.float16))
output = net(a)
expected_output = Tensor(np.array([-0.2383, -1.036, -2.004, -1.036, -0.2383]).astype(np.float16))
assert np.array_equal(output, expected_output)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tanhshrink_zeros():
"""
Feature: Tanhshrink
Description: Verify the result of Tanhshrink with zeros
Expectation: success
"""
net = Net()
a = Tensor(np.array([0, 0, 0, 0, 0]).astype(np.float16))
output = net(a)
expected_output = Tensor(np.array([0, 0, 0, 0, 0]).astype(np.float16))
assert np.array_equal(output, expected_output)