76 lines
2.3 KiB
Python
76 lines
2.3 KiB
Python
# Copyright 2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
|
|
|
|
class Net(nn.Cell):
|
|
def __init__(self):
|
|
super(Net, self).__init__()
|
|
self.tanhshrink = nn.Tanhshrink()
|
|
|
|
def construct(self, x):
|
|
return self.tanhshrink(x)
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tanhshrink_normal():
|
|
"""
|
|
Feature: Tanhshrink
|
|
Description: Verify the result of Tanhshrink with normal input
|
|
Expectation: success
|
|
"""
|
|
net = Net()
|
|
a = Tensor(np.array([1, 2, 3, 2, 1]).astype(np.float16))
|
|
output = net(a)
|
|
expected_output = Tensor(np.array([0.2383, 1.036, 2.004, 1.036, 0.2383]).astype(np.float16))
|
|
assert np.array_equal(output, expected_output)
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tanhshrink_negative():
|
|
"""
|
|
Feature: Tanhshrink
|
|
Description: Verify the result of Tanhshrink with negative input
|
|
Expectation: success
|
|
"""
|
|
net = Net()
|
|
a = Tensor(np.array([-1, -2, -3, -2, -1]).astype(np.float16))
|
|
output = net(a)
|
|
expected_output = Tensor(np.array([-0.2383, -1.036, -2.004, -1.036, -0.2383]).astype(np.float16))
|
|
assert np.array_equal(output, expected_output)
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_tanhshrink_zeros():
|
|
"""
|
|
Feature: Tanhshrink
|
|
Description: Verify the result of Tanhshrink with zeros
|
|
Expectation: success
|
|
"""
|
|
net = Net()
|
|
a = Tensor(np.array([0, 0, 0, 0, 0]).astype(np.float16))
|
|
output = net(a)
|
|
expected_output = Tensor(np.array([0, 0, 0, 0, 0]).astype(np.float16))
|
|
assert np.array_equal(output, expected_output)
|