mindspore/tests/st/ops/gpu/test_softmax2d.py

44 lines
1.4 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.softmax2d = nn.Softmax2d()
def construct(self, x):
return self.softmax2d(x)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_softmax2d_normal():
"""
Feature: Softmax2d
Description: Verify the result of Softmax2d
Expectation: success
"""
net = Net()
a = Tensor(np.array([[[[0.1, 0.2]], [[0.3, 0.4]], [[0.6, 0.5]]]]).astype(np.float32))
output = net(a)
expected_output = np.array([[[[0.258, 0.28]], [[0.316, 0.342]], [[0.426, 0.378]]]]).astype(np.float32)
assert np.allclose(output.asnumpy(), expected_output, 1e-3, 1e-3)