110 lines
3.2 KiB
Python
110 lines
3.2 KiB
Python
# Copyright 2019-2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.ops import operations as P
|
|
|
|
|
|
class Slice(nn.Cell):
|
|
def __init__(self):
|
|
super(Slice, self).__init__()
|
|
self.slice = P.Slice()
|
|
|
|
def construct(self, x):
|
|
return self.slice(x, (0, 1, 0), (2, 1, 3))
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_slice():
|
|
x = Tensor(
|
|
np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32))
|
|
expect = [[[2., -2., 2.]],
|
|
[[4., -4., 4.]]]
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
slice_op = Slice()
|
|
output = slice_op(x)
|
|
assert (output.asnumpy() == expect).all()
|
|
|
|
|
|
class SliceNet(nn.Cell):
|
|
def __init__(self):
|
|
super(SliceNet, self).__init__()
|
|
self.slice = P.Slice()
|
|
|
|
def construct(self, x):
|
|
return self.slice(x, (0, 11, 0, 0), (32, 7, 224, 224))
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_slice_4d():
|
|
x_np = np.random.randn(32, 24, 224, 224).astype(np.float32)
|
|
output_np = x_np[:, 11:18, :, :]
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
x_ms = Tensor(x_np)
|
|
net = SliceNet()
|
|
output_ms = net(x_ms)
|
|
|
|
assert (output_ms.asnumpy() == output_np).all()
|
|
|
|
|
|
class Slice5DNet(nn.Cell):
|
|
def __init__(self):
|
|
super(Slice5DNet, self).__init__()
|
|
self.slice = P.Slice()
|
|
|
|
def construct(self, x):
|
|
return self.slice(x, (0, 11, 1, 2, 3), (32, 7, 14, 10, 221))
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_slice_5d():
|
|
x_np = np.random.randn(32, 32, 24, 224, 224).astype(np.float32)
|
|
output_np = x_np[:, 11:18, 1:15, 2:12, 3:224]
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
x_ms = Tensor(x_np)
|
|
net = Slice5DNet()
|
|
output_ms = net(x_ms)
|
|
|
|
assert (output_ms.asnumpy() == output_np).all()
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_slice_float64():
|
|
x = Tensor(
|
|
np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float64))
|
|
expect = np.array([[[2., -2., 2.]],
|
|
[[4., -4., 4.]]]).astype(np.float64)
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
slice_op = Slice()
|
|
output = slice_op(x)
|
|
assert (output.asnumpy() == expect).all()
|