mindspore/tests/st/ops/gpu/test_sign_op.py

68 lines
2.0 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, ops
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.sign = ops.Sign()
def construct(self, x):
return self.sign(x)
def generate_testcases(nptype):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = np.array([2.0, 0.0, -1.0]).astype(nptype)
net = Net()
output = net(Tensor(x))
expect = np.array([1.0, 0.0, -1.0]).astype(nptype)
np.testing.assert_almost_equal(output.asnumpy(), expect)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x = np.array([2.0, 0.0, -1.0]).astype(nptype)
net = Net()
output = net(Tensor(x))
expect = np.array([1.0, 0.0, -1.0]).astype(nptype)
np.testing.assert_almost_equal(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sign_int32():
generate_testcases(np.int32)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sign_float32():
generate_testcases(np.float32)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_sign_float16():
generate_testcases(np.float16)