mindspore/tests/st/ops/gpu/test_round_op.py

130 lines
3.7 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore
import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor, ops, jit
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.round = ops.Round()
def construct(self, x):
return self.round(x)
def generate_testcases(nptype):
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = np.array([0.9920, -0.4077, 0.9734, -1.0362, 1.5, -2.5, 4.5]).astype(nptype)
net = Net()
output = net(Tensor(x))
expect = np.round(x).astype(nptype)
np.testing.assert_almost_equal(output.asnumpy(), expect)
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x = np.array([0.9920, -0.4077, 0.9734, -1.0362, 1.5, -2.5, 4.5]).astype(nptype)
net = Net()
output = net(Tensor(x))
expect = np.round(x).astype(nptype)
np.testing.assert_almost_equal(output.asnumpy(), expect)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_round_float32():
generate_testcases(np.float32)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_round_float16():
generate_testcases(np.float16)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_round_functional():
"""
Feature: functional round.
Description: Test functional interface round.
Expectation: success.
"""
x = Tensor(np.array([1.1, 2.6, 4.5]), mindspore.float32)
output = ops.round(x)
assert np.all(output.asnumpy() == np.array([1, 3, 4]))
@jit
def round_fn_graph(x):
return x.round()
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tensor_round_graph():
"""
Feature: tensor round interface.
Description: Test tensor round interface in graph mode.
Expectation: success
"""
context.set_context(mode=context.GRAPH_MODE)
x = Tensor(np.array([1.1, 2.6, 4.5]), mindspore.float32)
output = round_fn_graph(x)
assert np.all(output.asnumpy() == np.array([1, 3, 4]))
def round_fn_pynative(x):
return x.round()
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_tensor_round_pynative():
"""
Feature: tensor round interface.
Description: Test tensor round interface in pynative mode.
Expectation: success
"""
context.set_context(mode=context.PYNATIVE_MODE)
x = Tensor(np.array([1.1, 2.6, 4.5]), mindspore.float32)
output = round_fn_pynative(x)
assert np.all(output.asnumpy() == np.array([1, 3, 4]))
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_round_vmap():
"""
Feature: vmap for ops Round.
Description: Test operation Round with vmap.
Expectation: success
"""
x = Tensor(np.array([[1.1, 2.2], [3.3, 4.4]]), mindspore.float32)
vmap_round = ops.vmap(round_fn_graph, 0, 1)
output = vmap_round(x)
assert np.all(output.asnumpy() == np.array([[1, 3], [2, 4]]))