77 lines
2.7 KiB
Python
77 lines
2.7 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
from mindspore import Tensor
|
|
from mindspore.nn import Dense
|
|
from mindspore.nn import TrainOneStepCell, WithLossCell
|
|
from mindspore.nn.optim import FTRL
|
|
from mindspore.ops import operations as P
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
class NetFtrl(nn.Cell):
|
|
def __init__(self):
|
|
super(NetFtrl, self).__init__()
|
|
self.batch_size = 1
|
|
self.reshape = P.Reshape()
|
|
weight = Tensor(np.ones([10, 16]).astype(np.float32) * 0.01)
|
|
self.fc1 = Dense(16, 10, weight_init=weight)
|
|
|
|
def construct(self, input_x):
|
|
output = self.reshape(input_x, (self.batch_size, -1))
|
|
output = self.fc1(output)
|
|
return output
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_ftrl():
|
|
epoch = 3
|
|
net = NetFtrl()
|
|
optimizer = FTRL(filter(lambda x: x.requires_grad,
|
|
net.get_parameters()), learning_rate=0.01)
|
|
criterion = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
|
|
net_with_criterion = WithLossCell(net, criterion)
|
|
train_network = TrainOneStepCell(
|
|
net_with_criterion, optimizer)
|
|
train_network.set_train()
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
losses1 = []
|
|
for _ in range(epoch):
|
|
data = Tensor(np.arange(0, 16).reshape(
|
|
1, 1, 4, 4).astype(np.float32) * 0.01)
|
|
label = Tensor(np.array([0]).astype(np.int32))
|
|
loss = train_network(data, label)
|
|
losses1.append(loss.asnumpy())
|
|
assert losses1[0] > losses1[1]
|
|
assert losses1[1] > losses1[2]
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
|
|
losses2 = []
|
|
for _ in range(epoch):
|
|
data = Tensor(np.arange(0, 16).reshape(
|
|
1, 1, 4, 4).astype(np.float32) * 0.01)
|
|
label = Tensor(np.array([0]).astype(np.int32))
|
|
loss = train_network(data, label)
|
|
losses2.append(loss.asnumpy())
|