197 lines
5.7 KiB
Python
197 lines
5.7 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.context as context
|
|
import mindspore.nn as nn
|
|
import mindspore.ops.operations.array_ops as P
|
|
from mindspore import Tensor
|
|
from mindspore.common.api import jit
|
|
from mindspore.common.initializer import initializer
|
|
from mindspore.common.parameter import Parameter
|
|
|
|
class DepthToSpaceNet(nn.Cell):
|
|
def __init__(self, nptype, block_size=2, input_shape=(1, 12, 1, 1)):
|
|
super(DepthToSpaceNet, self).__init__()
|
|
self.DepthToSpace = P.DepthToSpace(2)
|
|
input_size = 1
|
|
for i in input_shape:
|
|
input_size = input_size*i
|
|
data_np = np.arange(input_size).reshape(input_shape).astype(nptype)
|
|
self.x1 = Parameter(initializer(Tensor(data_np), input_shape), name='x1')
|
|
|
|
|
|
@jit
|
|
def construct(self):
|
|
y1 = self.DepthToSpace(self.x1)
|
|
return y1
|
|
|
|
|
|
def DepthToSpace(nptype, block_size=2, input_shape=(1, 12, 1, 1)):
|
|
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
|
|
input_size = 1
|
|
for i in input_shape:
|
|
input_size = input_size*i
|
|
expect = np.array([[[[0, 3],
|
|
[6, 9]],
|
|
[[1, 4],
|
|
[7, 10]],
|
|
[[2, 5],
|
|
[8, 11]]]]).astype(nptype)
|
|
|
|
dts = DepthToSpaceNet(nptype, block_size, input_shape)
|
|
output = dts()
|
|
print(output)
|
|
assert (output.asnumpy() == expect).all()
|
|
|
|
def DepthToSpace_pynative(nptype, block_size=2, input_shape=(1, 12, 1, 1)):
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target='GPU')
|
|
input_size = 1
|
|
for i in input_shape:
|
|
input_size = input_size*i
|
|
expect = np.array([[[[0, 3],
|
|
[6, 9]],
|
|
[[1, 4],
|
|
[7, 10]],
|
|
[[2, 5],
|
|
[8, 11]]]]).astype(nptype)
|
|
|
|
dts = P.DepthToSpace(2)
|
|
arr_input = Tensor(np.arange(input_size).reshape(input_shape).astype(nptype))
|
|
output = dts(arr_input)
|
|
|
|
assert (output.asnumpy() == expect).all()
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_float32():
|
|
DepthToSpace(np.float32)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_float16():
|
|
DepthToSpace(np.float16)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_int32():
|
|
DepthToSpace(np.int32)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_int64():
|
|
DepthToSpace(np.int64)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_int8():
|
|
DepthToSpace(np.int8)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_int16():
|
|
DepthToSpace(np.int16)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_uint8():
|
|
DepthToSpace(np.uint8)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_uint16():
|
|
DepthToSpace(np.uint16)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_uint32():
|
|
DepthToSpace(np.uint32)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_graph_uint64():
|
|
DepthToSpace(np.uint64)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_float32():
|
|
DepthToSpace_pynative(np.float32)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_float16():
|
|
DepthToSpace_pynative(np.float16)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_int32():
|
|
DepthToSpace_pynative(np.int32)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_int64():
|
|
DepthToSpace_pynative(np.int64)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_int8():
|
|
DepthToSpace_pynative(np.int8)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_int16():
|
|
DepthToSpace_pynative(np.int16)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_uint8():
|
|
DepthToSpace_pynative(np.uint8)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_uint16():
|
|
DepthToSpace_pynative(np.uint16)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_uint32():
|
|
DepthToSpace_pynative(np.uint32)
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_depthtospace_pynative_uint64():
|
|
DepthToSpace_pynative(np.uint64)
|