57 lines
2.1 KiB
Python
57 lines
2.1 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.nn as nn
|
|
import mindspore.common.dtype as mstype
|
|
from mindspore.common.initializer import Normal
|
|
from mindspore import Tensor
|
|
from mindspore import context
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_conv2d_depthwiseconv2d_str():
|
|
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init='normal')
|
|
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
|
|
output = net(input_data)
|
|
assert output.shape == (3, 128, 32, 28)
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_conv2d_depthwiseconv2d_initializer():
|
|
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=Normal())
|
|
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
|
|
output = net(input_data)
|
|
assert output.shape == (3, 128, 32, 28)
|
|
|
|
|
|
@pytest.mark.level1
|
|
@pytest.mark.platform_x86_gpu_training
|
|
@pytest.mark.env_onecard
|
|
def test_conv2d_depthwiseconv2d_tensor():
|
|
weight_init = Tensor(np.random.randn(128, 1, 2, 3).astype(np.float32))
|
|
net = nn.Conv2d(128, 128, (2, 3), stride=4, pad_mode='valid', padding=0, group=128, weight_init=weight_init)
|
|
input_data = Tensor(np.ones([3, 128, 127, 114]), dtype=mstype.float32)
|
|
output = net(input_data)
|
|
assert output.shape == (3, 128, 32, 28)
|