mindspore/tests/st/ops/gpu/test_cast_op.py

622 lines
19 KiB
Python

# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.common.dtype as mstype
import mindspore.context as context
from mindspore.common.tensor import Tensor
from mindspore.nn import Cell
from mindspore.ops import operations as P
from mindspore.ops.operations import _inner_ops as inner
class Net(Cell):
def __init__(self, type0, type1):
super(Net, self).__init__()
self.Cast = P.Cast()
self.type0 = type0
self.type1 = type1
def construct(self, x0, x1):
output = (self.Cast(x0, self.type0),
self.Cast(x1, self.type1))
return output
class NetDynamic(Cell):
def __init__(self, type0, type1):
super(NetDynamic, self).__init__()
self.conv = inner.GpuConvertToDynamicShape()
self.Cast = P.Cast()
self.type0 = type0
self.type1 = type1
def construct(self, x0, x1):
x0_conv = self.conv(x0)
x1_conv = self.conv(x1)
output = (self.Cast(x0_conv, self.type0),
self.Cast(x1_conv, self.type1))
return output
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.float16
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
t1 = mstype.float32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float16'
type1 = output[1].asnumpy().dtype
assert type1 == 'float32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast1():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
t0 = mstype.float32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
t1 = mstype.float32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float32'
type1 = output[1].asnumpy().dtype
assert type1 == 'float32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast2():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
t0 = mstype.int32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
t1 = mstype.float64
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int32'
type1 = output[1].asnumpy().dtype
assert type1 == 'float64'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast3():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
t0 = mstype.int32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.int32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int32'
type1 = output[1].asnumpy().dtype
assert type1 == 'int32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast4():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
t0 = mstype.float16
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
t1 = mstype.int8
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float16'
type1 = output[1].asnumpy().dtype
assert type1 == 'int8'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast5():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
t0 = mstype.uint8
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
t1 = mstype.bool_
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'uint8'
type1 = output[1].asnumpy().dtype
assert type1 == 'bool'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast6():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
t0 = mstype.float64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
t1 = mstype.float32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float64'
type1 = output[1].asnumpy().dtype
assert type1 == 'float32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast7():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
t0 = mstype.float32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
t1 = mstype.float16
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float32'
type1 = output[1].asnumpy().dtype
assert type1 == 'float16'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast8():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
t0 = mstype.int32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
t1 = mstype.int16
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int32'
type1 = output[1].asnumpy().dtype
assert type1 == 'int16'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast9():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
t0 = mstype.int64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
t1 = mstype.float16
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int64'
type1 = output[1].asnumpy().dtype
assert type1 == 'float16'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast10():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
t0 = mstype.int8
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
t1 = mstype.float64
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int8'
type1 = output[1].asnumpy().dtype
assert type1 == 'float64'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast11():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
t0 = mstype.int16
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
t1 = mstype.int32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int16'
type1 = output[1].asnumpy().dtype
assert type1 == 'int32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast12():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.bool))
t0 = mstype.int64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
t1 = mstype.float32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int64'
type1 = output[1].asnumpy().dtype
assert type1 == 'float32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast13():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
t0 = mstype.int32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
t1 = mstype.float16
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int32'
type1 = output[1].asnumpy().dtype
assert type1 == 'float16'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast14():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
t0 = mstype.float64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
t1 = mstype.float32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float64'
type1 = output[1].asnumpy().dtype
assert type1 == 'float32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast15():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
t0 = mstype.float16
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
t1 = mstype.int32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float16'
type1 = output[1].asnumpy().dtype
assert type1 == 'int32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast16():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
t0 = mstype.float16
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
t1 = mstype.float64
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float16'
type1 = output[1].asnumpy().dtype
assert type1 == 'float64'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast17():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
t0 = mstype.float32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
t1 = mstype.float16
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float32'
type1 = output[1].asnumpy().dtype
assert type1 == 'float16'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast18():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
t0 = mstype.float32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
t1 = mstype.float16
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float32'
type1 = output[1].asnumpy().dtype
assert type1 == 'float16'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast19():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int8))
t0 = mstype.bool_
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int16))
t1 = mstype.bool_
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'bool'
type1 = output[1].asnumpy().dtype
assert type1 == 'bool'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast20():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int64))
t0 = mstype.bool_
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float16))
t1 = mstype.bool_
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'bool'
type1 = output[1].asnumpy().dtype
assert type1 == 'bool'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast21():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.bool_
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
t1 = mstype.bool_
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'bool'
type1 = output[1].asnumpy().dtype
assert type1 == 'bool'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast22():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.uint8))
t0 = mstype.bool_
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
t1 = mstype.bool_
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'bool'
type1 = output[1].asnumpy().dtype
assert type1 == 'bool'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast23():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
t0 = mstype.float32
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
t1 = mstype.float16
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float32'
type1 = output[1].asnumpy().dtype
assert type1 == 'float16'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast24():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
t0 = mstype.int64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
t1 = mstype.int32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int64'
type1 = output[1].asnumpy().dtype
assert type1 == 'int32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast25():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
t0 = mstype.int16
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float64))
t1 = mstype.int8
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int16'
type1 = output[1].asnumpy().dtype
assert type1 == 'int8'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast26():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
t0 = mstype.int64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.int32))
t1 = mstype.float64
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int64'
type1 = output[1].asnumpy().dtype
assert type1 == 'float64'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast27():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.float64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.uint64
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'float64'
type1 = output[1].asnumpy().dtype
assert type1 == 'uint64'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast28():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.int8
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.int16
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int8'
type1 = output[1].asnumpy().dtype
assert type1 == 'int16'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast29():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.int64
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.uint8
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int64'
type1 = output[1].asnumpy().dtype
assert type1 == 'uint8'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast30():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.uint16
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.uint32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'uint16'
type1 = output[1].asnumpy().dtype
assert type1 == 'uint32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast31():
x0 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t0 = mstype.uint16
x1 = Tensor(np.arange(24).reshape((4, 3, 2)).astype(np.float32))
t1 = mstype.uint32
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = NetDynamic(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'uint16'
type1 = output[1].asnumpy().dtype
assert type1 == 'uint32'
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_cast32():
np.random.seed(10)
x = np.random.uniform(-5, 5, (3, 2)).astype(np.float16)
x0 = Tensor(x)
t0 = mstype.int32
x1 = Tensor(x)
t1 = mstype.float64
context.set_context(mode=context.GRAPH_MODE, device_target='GPU')
net = Net(t0, t1)
output = net(x0, x1)
type0 = output[0].asnumpy().dtype
assert type0 == 'int32'
expected = x.astype(np.int32)
assert (output[0].asnumpy() == expected).all()
type1 = output[1].asnumpy().dtype
assert type1 == 'float64'