mindspore/tests/st/ops/gpu/test_bernoulli.py

86 lines
2.6 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor
import mindspore.context as context
from mindspore.ops import functional as F
from mindspore.ops.operations import _inner_ops as inner
class Net(nn.Cell):
def __init__(self, seed=-1):
super(Net, self).__init__()
self.bernoulli = F.bernoulli
def construct(self, x, p):
return self.bernoulli(x, p)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_bernoulli():
"""
Feature: bernoulli function
Description: test cases for Bernoulli
Expectation: the result matches scipy
"""
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU")
x_shape = [32, 16, 2, 5]
x = np.ones(x_shape).astype(np.float32)
bernoulli = Net()
tx = Tensor(x)
output = bernoulli(tx, 0.5)
# check output
output_np = output.asnumpy()
nonzero_count = np.count_nonzero(output_np)
elem_count = x.size
assert elem_count * 0.4 < nonzero_count < elem_count * 0.6
class BernoulliDynamic(nn.Cell):
def __init__(self, seed=-1):
super(BernoulliDynamic, self).__init__()
self.test_dynamic = inner.GpuConvertToDynamicShape()
self.bernoulli = F.bernoulli
def construct(self, x, p):
x = self.test_dynamic(x)
p = self.test_dynamic(p)
return self.bernoulli(x, p)
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_bernoulli_dynamic():
"""
Feature: bernoulli function
Description: test cases for Bernoulli
Expectation: the result matches scipy
"""
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
x = np.ones([32, 16, 2, 5]).astype(np.float32)
p = np.ones([5]).astype(np.float32) * 0.5
net = BernoulliDynamic()
output = net(Tensor(x), Tensor(p))
nonzero_count = np.count_nonzero(output.asnumpy())
elem_count = x.size
assert elem_count * 0.4 < nonzero_count < elem_count * 0.6