mindspore/tests/st/numpy_native/test_array_creations.py

1138 lines
38 KiB
Python

# Copyright 2020-2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""unit tests for numpy array operations"""
import pytest
import numpy as onp
import mindspore.numpy as mnp
import mindspore.ops.functional as F
from mindspore import context
from mindspore import set_seed
from mindspore.common import dtype as mstype
from .utils import rand_int, rand_bool, match_array, match_res, match_meta, \
match_all_arrays, run_multi_test, to_tensor
context.set_context(mode=context.PYNATIVE_MODE)
class Cases():
def __init__(self):
self.all_shapes = [
1, 2, (1,), (2,), (1, 2, 3), [1], [2], [1, 2, 3]
]
self.onp_dtypes = [onp.int32, 'int32', int,
onp.float32, 'float32', float,
onp.uint32, 'uint32',
onp.bool_, 'bool', bool]
self.mnp_dtypes = [mnp.int32, 'int32', int,
mnp.float32, 'float32', float,
mnp.uint32, 'uint32',
mnp.bool_, 'bool', bool]
self.array_sets = [1, 1.1, True, [1, 0, True], [1, 1.0, 2], (1,),
[(1, 2, 3), (4, 5, 6)], onp.random.random( # pylint: disable=no-member
(100, 100)).astype(onp.float32).tolist(),
onp.random.random((100, 100)).astype(onp.bool).tolist()]
self.arrs = [
rand_int(2),
rand_int(2, 3),
rand_int(2, 3, 4),
rand_int(2, 3, 4, 5),
]
# scalars expanded across the 0th dimension
self.scalars = [
rand_int(),
rand_int(1),
rand_int(1, 1),
rand_int(1, 1, 1),
]
# arrays of the same size expanded across the 0th dimension
self.expanded_arrs = [
rand_int(2, 3),
rand_int(1, 2, 3),
rand_int(1, 1, 2, 3),
rand_int(1, 1, 1, 2, 3),
]
# arrays with dimensions of size 1
self.nested_arrs = [
rand_int(1),
rand_int(1, 2),
rand_int(3, 1, 8),
rand_int(1, 3, 9, 1),
]
# arrays which can be broadcast
self.broadcastables = [
rand_int(5),
rand_int(6, 1),
rand_int(7, 1, 5),
rand_int(8, 1, 6, 1)
]
# boolean arrays which can be broadcast
self.bool_broadcastables = [
rand_bool(),
rand_bool(1),
rand_bool(5),
rand_bool(6, 1),
rand_bool(7, 1, 5),
rand_bool(8, 1, 6, 1),
]
self.mnp_prototypes = [
mnp.ones((2, 3, 4)),
mnp.ones((1, 3, 1, 2, 5)),
mnp.ones((2, 7, 1)),
[mnp.ones(3), (1, 2, 3), mnp.ones(3), [4, 5, 6]],
([(1, 2), mnp.ones(2)], (mnp.ones(2), [3, 4])),
]
self.onp_prototypes = [
onp.ones((2, 3, 4)),
onp.ones((1, 3, 1, 2, 5)),
onp.ones((2, 7, 1)),
[onp.ones(3), (1, 2, 3), onp.ones(3), [4, 5, 6]],
([(1, 2), onp.ones(2)], (onp.ones(2), [3, 4])),
]
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_asarray():
test_case = Cases()
for array in test_case.array_sets:
# Check for dtype matching
actual = onp.asarray(array)
expected = mnp.asarray(array).asnumpy()
# Since we set float32/int32 as the default dtype in mindspore, we need
# to make a conversion between numpy.asarray and mindspore.numpy.asarray
if actual.dtype is onp.dtype('float64'):
assert expected.dtype == onp.dtype('float32')
elif actual.dtype is onp.dtype('int64'):
assert expected.dtype == onp.dtype('int32')
else:
assert actual.dtype == expected.dtype
match_array(actual, expected, error=7)
for i in range(len(test_case.onp_dtypes)):
actual = onp.asarray(array, test_case.onp_dtypes[i])
expected = mnp.asarray(array, test_case.mnp_dtypes[i]).asnumpy()
match_array(actual, expected, error=7)
# Additional tests for nested tensor mixture
mnp_input = [(mnp.ones(3,), mnp.ones(3)), [[1, 1, 1], (1, 1, 1)]]
onp_input = [(onp.ones(3,), onp.ones(3)), [[1, 1, 1], (1, 1, 1)]]
actual = onp.asarray(onp_input)
expected = mnp.asarray(mnp_input).asnumpy()
match_array(actual, expected, error=7)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_array():
# array's function is very similar to asarray, so we mainly test the
# `copy` argument.
test_case = Cases()
for array in test_case.array_sets:
arr1 = mnp.asarray(array)
arr2 = mnp.array(arr1, copy=False)
arr3 = mnp.array(arr1)
arr4 = mnp.asarray(array, dtype='int32')
arr5 = mnp.asarray(arr4, dtype=mnp.int32)
assert arr1 is arr2
assert arr1 is not arr3
assert arr4 is arr5
# Additional tests for nested tensor/numpy_array mixture
mnp_input = [(mnp.ones(3,), mnp.ones(3)), [[1, 1, 1], (1, 1, 1)]]
onp_input = [(onp.ones(3,), onp.ones(3)), [[1, 1, 1], (1, 1, 1)]]
actual = onp.array(onp_input)
expected = mnp.array(mnp_input).asnumpy()
match_array(actual, expected, error=7)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_asfarray():
test_case = Cases()
for array in test_case.array_sets:
# Check for dtype matching
actual = onp.asfarray(array)
expected = mnp.asfarray(array).asnumpy()
# Since we set float32/int32 as the default dtype in mindspore, we need
# to make a conversion between numpy.asarray and mindspore.numpy.asarray
if actual.dtype is onp.dtype('float64'):
assert expected.dtype == onp.dtype('float32')
else:
assert actual.dtype == expected.dtype
match_array(actual, expected, error=7)
for i in range(len(test_case.onp_dtypes)):
actual = onp.asfarray(array, test_case.onp_dtypes[i])
expected = mnp.asfarray(array, test_case.mnp_dtypes[i]).asnumpy()
match_array(actual, expected, error=7)
# Additional tests for nested tensor/numpy_array mixture
mnp_input = [(mnp.ones(3,), mnp.ones(3)), [[1, 1, 1], (1, 1, 1)]]
onp_input = [(onp.ones(3,), onp.ones(3)), [[1, 1, 1], (1, 1, 1)]]
actual = onp.asfarray(onp_input)
expected = mnp.asfarray(mnp_input).asnumpy()
match_array(actual, expected, error=7)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_zeros():
test_case = Cases()
for shape in test_case.all_shapes:
for i in range(len(test_case.onp_dtypes)):
actual = onp.zeros(shape, test_case.onp_dtypes[i])
expected = mnp.zeros(shape, test_case.mnp_dtypes[i]).asnumpy()
match_array(actual, expected)
actual = onp.zeros(shape)
expected = mnp.zeros(shape).asnumpy()
match_array(actual, expected)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_ones():
test_case = Cases()
for shape in test_case.all_shapes:
for i in range(len(test_case.onp_dtypes)):
actual = onp.ones(shape, test_case.onp_dtypes[i])
expected = mnp.ones(shape, test_case.mnp_dtypes[i]).asnumpy()
match_array(actual, expected)
actual = onp.ones(shape)
expected = mnp.ones(shape).asnumpy()
match_array(actual, expected)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_full():
actual = onp.full((2, 2), [1, 2])
expected = mnp.full((2, 2), [1, 2]).asnumpy()
match_array(actual, expected)
actual = onp.full((2, 3), True)
expected = mnp.full((2, 3), True).asnumpy()
match_array(actual, expected)
actual = onp.full((3, 4, 5), 7.5)
expected = mnp.full((3, 4, 5), 7.5).asnumpy()
match_array(actual, expected)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_eye():
test_case = Cases()
for i in range(len(test_case.onp_dtypes)):
for m in range(1, 5):
actual = onp.eye(m, dtype=test_case.onp_dtypes[i])
expected = mnp.eye(m, dtype=test_case.mnp_dtypes[i]).asnumpy()
match_array(actual, expected)
for n in range(1, 5):
for k in range(0, 5):
actual = onp.eye(m, n, k, dtype=test_case.onp_dtypes[i])
expected = mnp.eye(
m, n, k, dtype=test_case.mnp_dtypes[i]).asnumpy()
match_array(actual, expected)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_identity():
test_case = Cases()
for i in range(len(test_case.onp_dtypes)):
for m in range(1, 5):
actual = onp.identity(m, dtype=test_case.onp_dtypes[i])
expected = mnp.identity(m, dtype=test_case.mnp_dtypes[i]).asnumpy()
match_array(actual, expected)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_arange():
actual = onp.arange(10)
expected = mnp.arange(10).asnumpy()
match_array(actual, expected)
actual = onp.arange(0, 10)
expected = mnp.arange(0, 10).asnumpy()
match_array(actual, expected)
actual = onp.arange(10, step=0.1)
expected = mnp.arange(10, step=0.1).asnumpy()
match_array(actual, expected, error=6)
actual = onp.arange(0.1, 9.9)
expected = mnp.arange(0.1, 9.9).asnumpy()
match_array(actual, expected, error=6)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_linspace():
actual = onp.linspace(2.0, 3.0, dtype=onp.float32)
expected = mnp.linspace(2.0, 3.0).asnumpy()
match_array(actual, expected, error=6)
actual = onp.linspace(2.0, 3.0, num=5, dtype=onp.float32)
expected = mnp.linspace(2.0, 3.0, num=5).asnumpy()
match_array(actual, expected, error=6)
actual = onp.linspace(
2.0, 3.0, num=5, endpoint=False, dtype=onp.float32)
expected = mnp.linspace(2.0, 3.0, num=5, endpoint=False).asnumpy()
match_array(actual, expected, error=6)
actual = onp.linspace(2.0, 3.0, num=5, retstep=True, dtype=onp.float32)
expected = mnp.linspace(2.0, 3.0, num=5, retstep=True)
match_array(actual[0], expected[0].asnumpy())
assert actual[1] == expected[1].asnumpy()
actual = onp.linspace(2.0, [3, 4, 5], num=5,
endpoint=False, dtype=onp.float32)
expected = mnp.linspace(
2.0, [3, 4, 5], num=5, endpoint=False).asnumpy()
match_array(actual, expected, error=6)
actual = onp.linspace(2.0, [[3, 4, 5]], num=5, endpoint=False, axis=2)
expected = mnp.linspace(2.0, [[3, 4, 5]], num=5, endpoint=False, axis=2).asnumpy()
match_array(actual, expected, error=6)
start = onp.random.random([2, 1, 4]).astype("float32")
stop = onp.random.random([1, 5, 1]).astype("float32")
actual = onp.linspace(start, stop, num=20, retstep=True,
endpoint=False, dtype=onp.float32)
expected = mnp.linspace(to_tensor(start), to_tensor(stop), num=20,
retstep=True, endpoint=False)
match_array(actual[0], expected[0].asnumpy(), error=6)
match_array(actual[1], expected[1].asnumpy(), error=6)
actual = onp.linspace(start, stop, num=20, retstep=True,
endpoint=False, dtype=onp.int16)
expected = mnp.linspace(to_tensor(start), to_tensor(stop), num=20,
retstep=True, endpoint=False, dtype=mnp.int16)
match_array(actual[0], expected[0].asnumpy(), error=6)
match_array(actual[1], expected[1].asnumpy(), error=6)
for axis in range(2):
actual = onp.linspace(start, stop, num=20, retstep=False,
endpoint=False, dtype=onp.float32, axis=axis)
expected = mnp.linspace(to_tensor(start), to_tensor(stop), num=20,
retstep=False, endpoint=False, dtype=mnp.float32, axis=axis)
match_array(actual, expected.asnumpy(), error=6)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_logspace():
actual = onp.logspace(2.0, 3.0, dtype=onp.float32)
expected = mnp.logspace(2.0, 3.0).asnumpy()
match_array(actual, expected, error=3)
actual = onp.logspace(2.0, 3.0, num=5, dtype=onp.float32)
expected = mnp.logspace(2.0, 3.0, num=5).asnumpy()
match_array(actual, expected, error=3)
actual = onp.logspace(
2.0, 3.0, num=5, endpoint=False, dtype=onp.float32)
expected = mnp.logspace(2.0, 3.0, num=5, endpoint=False).asnumpy()
match_array(actual, expected, error=3)
actual = onp.logspace(2.0, [3, 4, 5], num=5, base=2,
endpoint=False, dtype=onp.float32)
expected = mnp.logspace(
2.0, [3, 4, 5], num=5, base=2, endpoint=False).asnumpy()
match_array(actual, expected, error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_empty():
test_case = Cases()
for shape in test_case.all_shapes:
for mnp_dtype, onp_dtype in zip(test_case.mnp_dtypes,
test_case.onp_dtypes):
actual = mnp.empty(shape, mnp_dtype).asnumpy()
expected = onp.empty(shape, onp_dtype)
match_meta(actual, expected)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_empty_like():
test_case = Cases()
for mnp_proto, onp_proto in zip(test_case.mnp_prototypes, test_case.onp_prototypes):
actual = mnp.empty_like(mnp_proto).asnumpy()
expected = onp.empty_like(onp_proto)
assert actual.shape == expected.shape
for mnp_dtype, onp_dtype in zip(test_case.mnp_dtypes,
test_case.onp_dtypes):
actual = mnp.empty_like(mnp_proto, dtype=mnp_dtype).asnumpy()
expected = onp.empty_like(onp_proto, dtype=onp_dtype)
match_meta(actual, expected)
def run_x_like(mnp_fn, onp_fn):
test_case = Cases()
for mnp_proto, onp_proto in zip(test_case.mnp_prototypes, test_case.onp_prototypes):
actual = mnp_fn(mnp_proto).asnumpy()
expected = onp_fn(onp_proto)
match_array(actual, expected)
for shape in test_case.all_shapes:
actual = mnp_fn(mnp_proto, shape=shape).asnumpy()
expected = onp_fn(onp_proto, shape=shape)
match_array(actual, expected)
for mnp_dtype, onp_dtype in zip(test_case.mnp_dtypes,
test_case.onp_dtypes):
actual = mnp_fn(mnp_proto, dtype=mnp_dtype).asnumpy()
expected = onp_fn(onp_proto, dtype=onp_dtype)
match_array(actual, expected)
actual = mnp_fn(mnp_proto, dtype=mnp_dtype,
shape=shape).asnumpy()
expected = onp_fn(onp_proto, dtype=onp_dtype, shape=shape)
match_array(actual, expected)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_ones_like():
run_x_like(mnp.ones_like, onp.ones_like)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_zeros_like():
run_x_like(mnp.zeros_like, onp.zeros_like)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_full_like():
test_case = Cases()
for mnp_proto, onp_proto in zip(test_case.mnp_prototypes, test_case.onp_prototypes):
shape = onp.zeros_like(onp_proto).shape
fill_value = rand_int()
actual = mnp.full_like(mnp_proto, to_tensor(fill_value)).asnumpy()
expected = onp.full_like(onp_proto, fill_value)
match_array(actual, expected)
for i in range(len(shape) - 1, 0, -1):
fill_value = rand_int(*shape[i:])
actual = mnp.full_like(mnp_proto, to_tensor(fill_value)).asnumpy()
expected = onp.full_like(onp_proto, fill_value)
match_array(actual, expected)
fill_value = rand_int(1, *shape[i + 1:])
actual = mnp.full_like(mnp_proto, to_tensor(fill_value)).asnumpy()
expected = onp.full_like(onp_proto, fill_value)
match_array(actual, expected)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_tri_triu_tril():
x = mnp.ones((16, 32), dtype="bool")
match_array(mnp.tril(x).asnumpy(), onp.tril(x.asnumpy()))
match_array(mnp.tril(x, -1).asnumpy(), onp.tril(x.asnumpy(), -1))
match_array(mnp.triu(x).asnumpy(), onp.triu(x.asnumpy()))
match_array(mnp.triu(x, -1).asnumpy(), onp.triu(x.asnumpy(), -1))
x = mnp.ones((64, 64), dtype="uint8")
match_array(mnp.tril(x).asnumpy(), onp.tril(x.asnumpy()))
match_array(mnp.tril(x, 25).asnumpy(), onp.tril(x.asnumpy(), 25))
match_array(mnp.triu(x).asnumpy(), onp.triu(x.asnumpy()))
match_array(mnp.triu(x, 25).asnumpy(), onp.triu(x.asnumpy(), 25))
match_array(mnp.tri(64, 64).asnumpy(), onp.tri(64, 64))
match_array(mnp.tri(64, 64, -10).asnumpy(), onp.tri(64, 64, -10))
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_nancumsum():
x = rand_int(2, 3, 4, 5)
x[0][2][1][3] = onp.nan
x[1][0][2][4] = onp.nan
x[1][1][1][1] = onp.nan
match_res(mnp.nancumsum, onp.nancumsum, x)
match_res(mnp.nancumsum, onp.nancumsum, x, axis=-2)
match_res(mnp.nancumsum, onp.nancumsum, x, axis=0)
match_res(mnp.nancumsum, onp.nancumsum, x, axis=3)
def mnp_diagonal(arr):
return mnp.diagonal(arr, offset=2, axis1=-1, axis2=0)
def onp_diagonal(arr):
return onp.diagonal(arr, offset=2, axis1=-1, axis2=0)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_diagonal():
arr = rand_int(3, 5)
for i in [-1, 0, 2]:
match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=0, axis2=1)
match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=1, axis2=0)
arr = rand_int(7, 4, 9)
for i in [-1, 0, 2]:
match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=0, axis2=-1)
match_res(mnp.diagonal, onp.diagonal, arr, offset=i, axis1=-2, axis2=2)
match_res(mnp.diagonal, onp.diagonal, arr,
offset=i, axis1=-1, axis2=-2)
def mnp_trace(arr):
return mnp.trace(arr, offset=4, axis1=1, axis2=2)
def onp_trace(arr):
return onp.trace(arr, offset=4, axis1=1, axis2=2)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_trace():
arr = rand_int(3, 5)
match_res(mnp.trace, onp.trace, arr, offset=-1, axis1=0, axis2=1)
arr = rand_int(7, 4, 9)
match_res(mnp.trace, onp.trace, arr, offset=0, axis1=-2, axis2=2)
def mnp_meshgrid(*xi):
a = mnp.meshgrid(*xi)
b = mnp.meshgrid(*xi, sparse=True)
c = mnp.meshgrid(*xi, indexing='ij')
d = mnp.meshgrid(*xi, sparse=False, indexing='ij')
return a, b, c, d
def onp_meshgrid(*xi):
a = onp.meshgrid(*xi)
b = onp.meshgrid(*xi, sparse=True)
c = onp.meshgrid(*xi, indexing='ij')
d = onp.meshgrid(*xi, sparse=False, indexing='ij')
return a, b, c, d
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_meshgrid():
xi = (onp.full(3, 2), onp.full(1, 5), onp.full(
(2, 3), 9), onp.full((4, 5, 6), 7))
for i in range(len(xi)):
arrs = xi[i:]
mnp_arrs = map(to_tensor, arrs)
for mnp_res, onp_res in zip(mnp_meshgrid(*mnp_arrs), onp_meshgrid(*arrs)):
match_all_arrays(mnp_res, onp_res)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_diagflat():
arrs = [rand_int(2, 3)]
for arr in arrs:
for i in [-2, 0, 7]:
match_res(mnp.diagflat, onp.diagflat, arr, k=i)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_diag():
arrs = [rand_int(7), rand_int(5, 5), rand_int(3, 8), rand_int(9, 6)]
for arr in arrs:
for i in [-10, -5, -1, 0, 2, 5, 6, 10]:
match_res(mnp.diag, onp.diag, arr, k=i)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_diag_indices():
mnp_res = mnp.diag_indices(5, 7)
onp_res = onp.diag_indices(5, 7)
match_all_arrays(mnp_res, onp_res)
def mnp_ix_(*args):
return mnp.ix_(*args)
def onp_ix_(*args):
return onp.ix_(*args)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_ix_():
arrs = [rand_int(i + 1) for i in range(10)]
for i in range(10):
test_arrs = arrs[:i + 1]
match_res(mnp_ix_, onp_ix_, *test_arrs)
def mnp_indices():
a = mnp.indices((2, 3))
b = mnp.indices((2, 3, 4), sparse=True)
return a, b
def onp_indices():
a = onp.indices((2, 3))
b = onp.indices((2, 3, 4), sparse=True)
return a, b
def test_indices():
run_multi_test(mnp_indices, onp_indices, ())
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_geomspace():
start = onp.arange(1, 7).reshape(2, 3)
end = [1000, 2000, 3000]
match_array(mnp.geomspace(1, 256, num=9).asnumpy(),
onp.geomspace(1, 256, num=9), error=1)
match_array(mnp.geomspace(1, 256, num=8, endpoint=False).asnumpy(),
onp.geomspace(1, 256, num=8, endpoint=False), error=1)
match_array(mnp.geomspace(to_tensor(start), end, num=4).asnumpy(),
onp.geomspace(start, end, num=4), error=1)
match_array(mnp.geomspace(to_tensor(start), end, num=4, endpoint=False).asnumpy(),
onp.geomspace(start, end, num=4, endpoint=False), error=1)
match_array(mnp.geomspace(to_tensor(start), end, num=4, axis=-1).asnumpy(),
onp.geomspace(start, end, num=4, axis=-1), error=1)
match_array(mnp.geomspace(to_tensor(start), end, num=4, endpoint=False, axis=-1).asnumpy(),
onp.geomspace(start, end, num=4, endpoint=False, axis=-1), error=1)
start = onp.arange(1, 1 + 2*3*4*5).reshape(2, 3, 4, 5)
end = [1000, 2000, 3000, 4000, 5000]
for i in range(-5, 5):
match_array(mnp.geomspace(to_tensor(start), end, num=4, axis=i).asnumpy(),
onp.geomspace(start, end, num=4, axis=i), error=1)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_vander():
arrs = [rand_int(i + 3) for i in range(3)]
for i in range(3):
mnp_vander = mnp.vander(to_tensor(arrs[i]))
onp_vander = onp.vander(arrs[i])
match_all_arrays(mnp_vander, onp_vander, error=1e-4)
mnp_vander = mnp.vander(to_tensor(arrs[i]), N=2, increasing=True)
onp_vander = onp.vander(arrs[i], N=2, increasing=True)
match_all_arrays(mnp_vander, onp_vander, error=1e-4)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_tensor_fill():
x = rand_int(2, 1, 4).astype(onp.float32)
mnp_x = to_tensor(x)
x.fill(6)
match_all_arrays(mnp_x.fill(6), x)
x.fill(None)
match_all_arrays(mnp_x.fill(None), x)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_bartlett():
for i in [-3, -1, 0, 1, 5, 6, 10, 15]:
match_all_arrays(mnp.bartlett(i), onp.bartlett(i), error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_blackman():
for i in [-3, -1, 0, 1, 5, 6, 10, 15]:
match_all_arrays(mnp.blackman(i), onp.blackman(i), error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_hamming():
for i in [-3, -1, 0, 1, 5, 6, 10, 15]:
match_all_arrays(mnp.hamming(i), onp.hamming(i), error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_hanning():
for i in [-3, -1, 0, 1, 5, 6, 10, 15]:
match_all_arrays(mnp.hanning(i), onp.hanning(i), error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_triu_indices():
m = rand_int().tolist()
n = rand_int().tolist()
k = rand_int().tolist()
mnp_res = mnp.triu_indices(n, k, m)
onp_res = onp.triu_indices(n, k, m)
match_all_arrays(mnp_res, onp_res)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_tril_indices():
m = rand_int().tolist()
n = rand_int().tolist()
k = rand_int().tolist()
mnp_res = mnp.tril_indices(n, k, m)
onp_res = onp.tril_indices(n, k, m)
match_all_arrays(mnp_res, onp_res)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_triu_indices_from():
m = int(rand_int().tolist())
n = int(rand_int().tolist())
t = mnp.asarray(rand_int(m, n).tolist())
k = rand_int().tolist()
mnp_res = mnp.triu_indices_from(t, k)
onp_res = onp.triu_indices_from(t.asnumpy(), k)
match_all_arrays(mnp_res, onp_res)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_tril_indices_from():
m = int(rand_int().tolist())
n = int(rand_int().tolist())
t = mnp.asarray(rand_int(m, n).tolist())
k = rand_int().tolist()
mnp_res = mnp.tril_indices_from(t, k)
onp_res = onp.tril_indices_from(t.asnumpy(), k)
match_all_arrays(mnp_res, onp_res)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_histogram_bin_edges():
x = onp.random.randint(-10, 10, 10)
match_res(mnp.histogram_bin_edges, onp.histogram_bin_edges, x, onp.arange(5))
match_res(mnp.histogram_bin_edges, onp.histogram_bin_edges, x, bins=(1, 2, 3), range=None, error=3)
match_res(mnp.histogram_bin_edges, onp.histogram_bin_edges, x, bins=10, range=(2, 20), error=3)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_randn():
"""
Feature: Numpy method randn.
Description: Test numpy method randn.
Expectation: No exception.
"""
set_seed(1)
t1 = mnp.randn(1, 2, 3)
t2 = mnp.randn(1, 2, 3)
assert (t1.asnumpy() == t2.asnumpy()).all()
with pytest.raises(ValueError):
mnp.randn(dtype="int32")
with pytest.raises(ValueError):
mnp.randn(dtype=mstype.int32)
with pytest.raises(TypeError):
mnp.randn({1})
with pytest.raises(TypeError):
mnp.randn(1, 1.2, 2)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_rand():
"""
Feature: Numpy method rand.
Description: Test numpy method rand.
Expectation: No exception.
"""
set_seed(1)
t1 = mnp.rand(1, 2, 3)
t2 = mnp.rand(1, 2, 3)
assert (t1.asnumpy() == t2.asnumpy()).all()
with pytest.raises(ValueError):
mnp.rand(dtype="int32")
with pytest.raises(ValueError):
mnp.rand(dtype=mstype.int32)
with pytest.raises(TypeError):
mnp.rand({1})
with pytest.raises(TypeError):
mnp.rand(1, 1.2, 2)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_randint():
"""
Feature: Numpy method randint.
Description: Test numpy method randint.
Expectation: No exception.
"""
set_seed(1)
t1 = mnp.randint(1, 5, 3)
t2 = mnp.randint(1, 5, 3)
assert (t1.asnumpy() == t2.asnumpy()).all()
with pytest.raises(TypeError):
mnp.randint(1.2)
with pytest.raises(ValueError):
mnp.randint(0)
with pytest.raises(TypeError):
mnp.randint(1, 1.2)
with pytest.raises(ValueError):
mnp.randint(2, 1)
with pytest.raises(ValueError):
mnp.randint(1, dtype="float")
with pytest.raises(ValueError):
mnp.randint(1, dtype=mstype.float32)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_ops_arange():
"""
Feature: Ops function arange.
Description: Test ops function arange.
Expectation: No exception.
"""
actual = onp.arange(5)
expected = F.arange(5).asnumpy()
match_array(actual, expected)
actual = onp.arange(0, 5)
expected = F.arange(0, 5).asnumpy()
match_array(actual, expected)
actual = onp.arange(5, step=0.2)
expected = F.arange(5, step=0.2).asnumpy()
match_array(actual, expected)
actual = onp.arange(0.1, 0.9)
expected = F.arange(0.1, 0.9).asnumpy()
match_array(actual, expected)
with pytest.raises(TypeError):
F.arange([1])
with pytest.raises(ValueError):
F.arange(10, 1)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_asarray_exception():
with pytest.raises(TypeError):
mnp.asarray({1, 2, 3})
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_linspace_exception():
with pytest.raises(TypeError):
mnp.linspace(0, 1, num=2.5)
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_empty_like_exception():
with pytest.raises(ValueError):
mnp.empty_like([[1, 2, 3], [4, 5]])
@pytest.mark.level1
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_x86_cpu
@pytest.mark.env_onecard
def test_pad():
x_np = onp.random.random([2, 3, 4]).astype("float32")
x_ms = mnp.asarray(x_np.tolist())
# pad constant
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)))
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)))
match_all_arrays(mnp_res, onp_res, error=1e-5)
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 3), (4, 5)), constant_values=((3, 4), (5, 6), (7, 8)))
onp_res = onp.pad(x_np, ((1, 1), (2, 3), (4, 5)), constant_values=((3, 4), (5, 6), (7, 8)))
match_all_arrays(mnp_res, onp_res, error=1e-5)
# pad statistic
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)), mode="mean", stat_length=((1, 2), (2, 10), (3, 4)))
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)), mode="mean", stat_length=((1, 2), (2, 10), (3, 4)))
match_all_arrays(mnp_res, onp_res, error=1e-5)
# pad edge
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)), mode="edge")
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)), mode="edge")
match_all_arrays(mnp_res, onp_res, error=1e-5)
# pad wrap
mnp_res = mnp.pad(x_ms, ((1, 1), (2, 2), (3, 4)), mode="wrap")
onp_res = onp.pad(x_np, ((1, 1), (2, 2), (3, 4)), mode="wrap")
match_all_arrays(mnp_res, onp_res, error=1e-5)
# pad linear_ramp
mnp_res = mnp.pad(x_ms, ((1, 3), (5, 2), (3, 0)), mode="linear_ramp", end_values=((0, 10), (9, 1), (-10, 99)))
onp_res = onp.pad(x_np, ((1, 3), (5, 2), (3, 0)), mode="linear_ramp", end_values=((0, 10), (9, 1), (-10, 99)))
match_all_arrays(mnp_res, onp_res, error=1e-5)
def pad_with_msfunc(vector, pad_width, iaxis, kwargs):
pad_value = kwargs.get('padder', 10)
vector[:pad_width[0]] = pad_value
vector[-pad_width[1]:] = pad_value
return vector
def pad_with_npfunc(vector, pad_width, iaxis, kwargs):
pad_value = kwargs.get('padder', 10)
vector[:pad_width[0]] = pad_value
vector[-pad_width[1]:] = pad_value
@pytest.mark.level1
@pytest.mark.platform_x86_gpu_training
@pytest.mark.env_onecard
def test_pad_gpu():
x_np = onp.random.random([2, 1, 4, 3]).astype("float32")
x_ms = mnp.asarray(x_np.tolist())
# pad symmetric odd
mnp_res = mnp.pad(x_ms, ((10, 3), (5, 2), (3, 0), (2, 6)), mode='symmetric', reflect_type='odd')
onp_res = onp.pad(x_np, ((10, 3), (5, 2), (3, 0), (2, 6)), mode='symmetric', reflect_type='odd')
match_all_arrays(mnp_res, onp_res, error=1e-5)
# pad symmetric even
mnp_res = mnp.pad(x_ms, ((10, 13), (5, 12), (3, 0), (2, 6)), mode='symmetric', reflect_type='even')
onp_res = onp.pad(x_np, ((10, 13), (5, 12), (3, 0), (2, 6)), mode='symmetric', reflect_type='even')
match_all_arrays(mnp_res, onp_res, error=1e-5)
# pad reflect odd
mnp_res = mnp.pad(x_ms, ((10, 3), (5, 2), (3, 0), (2, 6)), mode='reflect', reflect_type='odd')
onp_res = onp.pad(x_np, ((10, 3), (5, 2), (3, 0), (2, 6)), mode='reflect', reflect_type='odd')
match_all_arrays(mnp_res, onp_res, error=1e-5)
# pad reflect even
mnp_res = mnp.pad(x_ms, ((10, 13)), mode='reflect', reflect_type='even')
onp_res = onp.pad(x_np, ((10, 13)), mode='reflect', reflect_type='even')
match_all_arrays(mnp_res, onp_res, error=1e-5)
# pad func
x_np = onp.random.random([2, 4]).astype("float32")
x_ms = mnp.asarray(x_np.tolist())
mnp_res = mnp.pad(x_ms, ((5, 5)), mode=pad_with_msfunc, padder=99)
onp_res = onp.pad(x_np, ((5, 5)), mode=pad_with_npfunc, padder=99)
match_all_arrays(mnp_res, onp_res, error=1e-5)