mindspore/tests/st/nn/test_lppool1d.py

64 lines
2.1 KiB
Python

# Copyright 2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np
import pytest
import mindspore as ms
import mindspore.nn as nn
class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.pool = nn.LPPool1d(norm_type=1, kernel_size=3, stride=1)
def construct(self, x):
out = self.pool(x)
return out
@pytest.mark.level0
@pytest.mark.platform_x86_cpu
@pytest.mark.platform_arm_cpu
@pytest.mark.platform_x86_gpu_training
@pytest.mark.platform_arm_ascend_training
@pytest.mark.platform_x86_ascend_training
@pytest.mark.env_onecard
@pytest.mark.parametrize('mode', [ms.GRAPH_MODE, ms.PYNATIVE_MODE])
def test_lppool1d_normal(mode):
"""
Feature: LPPool1d
Description: Verify the result of LPPool1d
Expectation: success
"""
ms.set_context(mode=mode)
net = Net()
x = ms.Tensor(np.arange(2 * 3 * 4).reshape((2, 3, 4)), dtype=ms.float32)
y = ms.Tensor(np.arange(3 * 4).reshape((3, 4)), dtype=ms.float32)
out = net(x)
out2 = net(y)
expect_out = np.array([[[3., 6.],
[15., 18.],
[27., 30.]],
[[39., 42.],
[51., 54.],
[63., 66.]]])
expect_out2 = np.array([[3., 6.],
[15., 18.],
[27., 30.]])
assert np.allclose(out.asnumpy(), expect_out)
assert np.allclose(out2.asnumpy(), expect_out2)