296 lines
9.6 KiB
Python
296 lines
9.6 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
from util import save_and_check_dict, save_and_check_md5
|
|
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
|
|
# Dataset in DIR_1 has 5 rows and 5 columns
|
|
DATA_DIR_1 = ["../data/dataset/testTFBert5Rows1/5TFDatas.data"]
|
|
SCHEMA_DIR_1 = "../data/dataset/testTFBert5Rows1/datasetSchema.json"
|
|
# Dataset in DIR_2 has 5 rows and 2 columns
|
|
DATA_DIR_2 = ["../data/dataset/testTFBert5Rows2/5TFDatas.data"]
|
|
SCHEMA_DIR_2 = "../data/dataset/testTFBert5Rows2/datasetSchema.json"
|
|
# Dataset in DIR_3 has 3 rows and 2 columns
|
|
DATA_DIR_3 = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR_3 = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
# Dataset in DIR_4 has 5 rows and 7 columns
|
|
DATA_DIR_4 = ["../data/dataset/testTFBert5Rows/5TFDatas.data"]
|
|
SCHEMA_DIR_4 = "../data/dataset/testTFBert5Rows/datasetSchema.json"
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
|
|
def test_zip_01():
|
|
"""
|
|
Test zip: zip 2 datasets, #rows-data1 == #rows-data2, #cols-data1 < #cols-data2
|
|
"""
|
|
logger.info("test_zip_01")
|
|
ds.config.set_seed(1)
|
|
data1 = ds.TFRecordDataset(DATA_DIR_2, SCHEMA_DIR_2)
|
|
data2 = ds.TFRecordDataset(DATA_DIR_1, SCHEMA_DIR_1)
|
|
dataz = ds.zip((data1, data2))
|
|
# Note: zipped dataset has 5 rows and 7 columns
|
|
filename = "zip_01_result.npz"
|
|
save_and_check_dict(dataz, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_zip_02():
|
|
"""
|
|
Test zip: zip 2 datasets, #rows-data1 < #rows-data2, #cols-data1 == #cols-data2
|
|
"""
|
|
logger.info("test_zip_02")
|
|
ds.config.set_seed(1)
|
|
data1 = ds.TFRecordDataset(DATA_DIR_3, SCHEMA_DIR_3)
|
|
data2 = ds.TFRecordDataset(DATA_DIR_2, SCHEMA_DIR_2)
|
|
dataz = ds.zip((data1, data2))
|
|
# Note: zipped dataset has 3 rows and 4 columns
|
|
filename = "zip_02_result.npz"
|
|
save_and_check_md5(dataz, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_zip_03():
|
|
"""
|
|
Test zip: zip 2 datasets, #rows-data1 > #rows-data2, #cols-data1 > #cols-data2
|
|
"""
|
|
logger.info("test_zip_03")
|
|
ds.config.set_seed(1)
|
|
data1 = ds.TFRecordDataset(DATA_DIR_1, SCHEMA_DIR_1)
|
|
data2 = ds.TFRecordDataset(DATA_DIR_3, SCHEMA_DIR_3)
|
|
dataz = ds.zip((data1, data2))
|
|
# Note: zipped dataset has 3 rows and 7 columns
|
|
filename = "zip_03_result.npz"
|
|
save_and_check_md5(dataz, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_zip_04():
|
|
"""
|
|
Test zip: zip >2 datasets
|
|
"""
|
|
logger.info("test_zip_04")
|
|
ds.config.set_seed(1)
|
|
data1 = ds.TFRecordDataset(DATA_DIR_1, SCHEMA_DIR_1)
|
|
data2 = ds.TFRecordDataset(DATA_DIR_2, SCHEMA_DIR_2)
|
|
data3 = ds.TFRecordDataset(DATA_DIR_3, SCHEMA_DIR_3)
|
|
dataz = ds.zip((data1, data2, data3))
|
|
# Note: zipped dataset has 3 rows and 9 columns
|
|
filename = "zip_04_result.npz"
|
|
save_and_check_md5(dataz, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_zip_05():
|
|
"""
|
|
Test zip: zip dataset with renamed columns
|
|
"""
|
|
logger.info("test_zip_05")
|
|
ds.config.set_seed(1)
|
|
data1 = ds.TFRecordDataset(DATA_DIR_4, SCHEMA_DIR_4, shuffle=True)
|
|
data2 = ds.TFRecordDataset(DATA_DIR_2, SCHEMA_DIR_2, shuffle=True)
|
|
|
|
data2 = data2.rename(input_columns="input_ids", output_columns="new_input_ids")
|
|
data2 = data2.rename(input_columns="segment_ids", output_columns="new_segment_ids")
|
|
|
|
dataz = ds.zip((data1, data2))
|
|
# Note: zipped dataset has 5 rows and 9 columns
|
|
filename = "zip_05_result.npz"
|
|
save_and_check_dict(dataz, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_zip_06():
|
|
"""
|
|
Test zip: zip dataset with renamed columns and repeat zipped dataset
|
|
"""
|
|
logger.info("test_zip_06")
|
|
ds.config.set_seed(1)
|
|
data1 = ds.TFRecordDataset(DATA_DIR_4, SCHEMA_DIR_4, shuffle=False)
|
|
data2 = ds.TFRecordDataset(DATA_DIR_2, SCHEMA_DIR_2, shuffle=False)
|
|
|
|
data2 = data2.rename(input_columns="input_ids", output_columns="new_input_ids")
|
|
data2 = data2.rename(input_columns="segment_ids", output_columns="new_segment_ids")
|
|
|
|
dataz = ds.zip((data1, data2))
|
|
dataz = dataz.repeat(2)
|
|
# Note: resultant dataset has 10 rows and 9 columns
|
|
filename = "zip_06_result.npz"
|
|
save_and_check_dict(dataz, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
|
|
def test_zip_exception_01():
|
|
"""
|
|
Test zip: zip same datasets
|
|
"""
|
|
logger.info("test_zip_exception_01")
|
|
data1 = ds.TFRecordDataset(DATA_DIR_1, SCHEMA_DIR_1)
|
|
|
|
try:
|
|
dataz = ds.zip((data1, data1))
|
|
|
|
num_iter = 0
|
|
for _, item in enumerate(dataz.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
logger.info("item[input_mask] is {}".format(item["input_mask"]))
|
|
num_iter += 1
|
|
logger.info("Number of data in zipped dataz: {}".format(num_iter))
|
|
|
|
except Exception as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
|
|
|
|
def test_zip_exception_02():
|
|
"""
|
|
Test zip: zip datasets with duplicate column name
|
|
"""
|
|
logger.info("test_zip_exception_02")
|
|
data1 = ds.TFRecordDataset(DATA_DIR_1, SCHEMA_DIR_1)
|
|
data2 = ds.TFRecordDataset(DATA_DIR_4, SCHEMA_DIR_4)
|
|
|
|
try:
|
|
dataz = ds.zip((data1, data2))
|
|
|
|
num_iter = 0
|
|
for _, item in enumerate(dataz.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
logger.info("item[input_mask] is {}".format(item["input_mask"]))
|
|
num_iter += 1
|
|
logger.info("Number of data in zipped dataz: {}".format(num_iter))
|
|
|
|
except Exception as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
|
|
|
|
def test_zip_exception_03():
|
|
"""
|
|
Test zip: zip with tuple of 1 dataset
|
|
"""
|
|
logger.info("test_zip_exception_03")
|
|
data1 = ds.TFRecordDataset(DATA_DIR_1, SCHEMA_DIR_1)
|
|
|
|
try:
|
|
dataz = ds.zip((data1))
|
|
dataz = dataz.repeat(2)
|
|
|
|
num_iter = 0
|
|
for _, item in enumerate(dataz.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
logger.info("item[input_mask] is {}".format(item["input_mask"]))
|
|
num_iter += 1
|
|
logger.info("Number of data in zipped dataz: {}".format(num_iter))
|
|
|
|
except Exception as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
|
|
|
|
def test_zip_exception_04():
|
|
"""
|
|
Test zip: zip with empty tuple of datasets
|
|
"""
|
|
logger.info("test_zip_exception_04")
|
|
|
|
try:
|
|
dataz = ds.zip(())
|
|
dataz = dataz.repeat(2)
|
|
|
|
num_iter = 0
|
|
for _, item in enumerate(dataz.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
logger.info("item[input_mask] is {}".format(item["input_mask"]))
|
|
num_iter += 1
|
|
logger.info("Number of data in zipped dataz: {}".format(num_iter))
|
|
|
|
except Exception as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
|
|
|
|
def test_zip_exception_05():
|
|
"""
|
|
Test zip: zip with non-tuple of 2 datasets
|
|
"""
|
|
logger.info("test_zip_exception_05")
|
|
data1 = ds.TFRecordDataset(DATA_DIR_1, SCHEMA_DIR_1)
|
|
data2 = ds.TFRecordDataset(DATA_DIR_2, SCHEMA_DIR_2)
|
|
|
|
try:
|
|
dataz = ds.zip(data1, data2)
|
|
|
|
num_iter = 0
|
|
for _, item in enumerate(dataz.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
logger.info("item[input_mask] is {}".format(item["input_mask"]))
|
|
num_iter += 1
|
|
logger.info("Number of data in zipped dataz: {}".format(num_iter))
|
|
|
|
except Exception as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
|
|
|
|
def test_zip_exception_06():
|
|
"""
|
|
Test zip: zip with non-tuple of 1 dataset
|
|
"""
|
|
logger.info("test_zip_exception_06")
|
|
data1 = ds.TFRecordDataset(DATA_DIR_1, SCHEMA_DIR_1)
|
|
|
|
try:
|
|
dataz = ds.zip(data1)
|
|
|
|
num_iter = 0
|
|
for _, item in enumerate(dataz.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
logger.info("item[input_mask] is {}".format(item["input_mask"]))
|
|
num_iter += 1
|
|
logger.info("Number of data in zipped dataz: {}".format(num_iter))
|
|
|
|
except Exception as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
|
|
|
|
def test_zip_exception_07():
|
|
"""
|
|
Test zip: zip with string as parameter
|
|
"""
|
|
logger.info("test_zip_exception_07")
|
|
|
|
try:
|
|
dataz = ds.zip(('dataset1', 'dataset2'))
|
|
|
|
num_iter = 0
|
|
for _ in dataz.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
num_iter += 1
|
|
assert False
|
|
|
|
except Exception as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
|
|
try:
|
|
data = ds.TFRecordDataset(DATA_DIR_1, SCHEMA_DIR_1)
|
|
dataz = data.zip(('dataset1',))
|
|
|
|
num_iter = 0
|
|
for _ in dataz.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
num_iter += 1
|
|
assert False
|
|
|
|
except Exception as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
|
|
if __name__ == '__main__':
|
|
test_zip_01()
|
|
test_zip_02()
|
|
test_zip_03()
|
|
test_zip_04()
|
|
test_zip_05()
|
|
test_zip_06()
|
|
test_zip_exception_01()
|
|
test_zip_exception_02()
|
|
test_zip_exception_03()
|
|
test_zip_exception_04()
|
|
test_zip_exception_05()
|
|
test_zip_exception_06()
|
|
test_zip_exception_07()
|