161 lines
8.9 KiB
Python
161 lines
8.9 KiB
Python
# Copyright 2021 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing Vol op in DE
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.audio as c_audio
|
|
from mindspore import log as logger
|
|
from mindspore.dataset.audio import utils
|
|
|
|
|
|
def count_unequal_element(data_expected, data_me, rtol, atol):
|
|
""" Precision calculation func """
|
|
assert data_expected.shape == data_me.shape
|
|
total_count = len(data_expected.flatten())
|
|
error = np.abs(data_expected - data_me)
|
|
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
|
|
loss_count = np.count_nonzero(greater)
|
|
assert (loss_count / total_count) < rtol, \
|
|
"\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}". \
|
|
format(data_expected[greater], data_me[greater], error[greater])
|
|
|
|
|
|
def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
|
|
""" Precision calculation formula """
|
|
if np.any(np.isnan(data_expected)):
|
|
assert np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan)
|
|
elif not np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan):
|
|
count_unequal_element(data_expected, data_me, rtol, atol)
|
|
|
|
|
|
def test_func_vol_eager():
|
|
""" mindspore eager mode normal testcase:vol op"""
|
|
|
|
logger.info("check vol op output")
|
|
ndarr_in = np.array([[0.3667, 0.5295, 0.2949, 0.4508, 0.6457, 0.3625, 0.4377, 0.3568],
|
|
[0.6488, 0.6525, 0.5140, 0.6725, 0.9261, 0.0609, 0.3910, 0.4608],
|
|
[0.0454, 0.0487, 0.6990, 0.1637, 0.5763, 0.1086, 0.5343, 0.4699],
|
|
[0.9993, 0.0776, 0.3498, 0.0429, 0.1588, 0.3061, 0.1166, 0.3716],
|
|
[0.7625, 0.2410, 0.8888, 0.5027, 0.0913, 0.2520, 0.5625, 0.9873]]).astype(np.float32)
|
|
# cal from benchmark
|
|
out_expect = np.array([[0.0733, 0.1059, 0.0590, 0.0902, 0.1291, 0.0725, 0.0875, 0.0714],
|
|
[0.1298, 0.1305, 0.1028, 0.1345, 0.1852, 0.0122, 0.0782, 0.0922],
|
|
[0.0091, 0.0097, 0.1398, 0.0327, 0.1153, 0.0217, 0.1069, 0.0940],
|
|
[0.1999, 0.0155, 0.0700, 0.0086, 0.0318, 0.0612, 0.0233, 0.0743],
|
|
[0.1525, 0.0482, 0.1778, 0.1005, 0.0183, 0.0504, 0.1125, 0.1975]])
|
|
op = c_audio.Vol(gain=0.2, gain_type=utils.GainType.AMPLITUDE)
|
|
out_mindspore = op(ndarr_in)
|
|
allclose_nparray(out_mindspore, out_expect, 0.0001, 0.0001)
|
|
|
|
ndarr_in = np.array([[[-0.5794799327850342, 0.19526369869709015],
|
|
[-0.5935744047164917, 0.2948109209537506],
|
|
[-0.42077431082725525, 0.04923877865076065]],
|
|
[[0.5497273802757263, -0.22815021872520447],
|
|
[-0.05891447141766548, -0.16206198930740356],
|
|
[-1.4782767295837402, -1.3815662860870361]]]).astype(np.float32)
|
|
# cal from benchmark
|
|
out_expect = np.array([[[-0.5761537551879883, 0.1941428929567337],
|
|
[-0.5901673436164856, 0.2931187152862549],
|
|
[-0.41835910081863403, 0.04895615205168724]],
|
|
[[0.5465719699859619, -0.22684065997600555],
|
|
[-0.0585763081908226, -0.16113176941871643],
|
|
[-1.0, -1.0]]])
|
|
op = c_audio.Vol(gain=-0.05, gain_type=utils.GainType.DB)
|
|
out_mindspore = op(ndarr_in)
|
|
allclose_nparray(out_mindspore, out_expect, 0.0001, 0.0001)
|
|
|
|
ndarr_in = np.array([[[0.09491927176713943, 0.11639882624149323, -0.1725238710641861, -0.18556903302669525],
|
|
[-0.7140364646911621, 1.6223102807998657, 1.6710518598556519, 0.6019048094749451]],
|
|
[[-0.8635917901992798, -0.31538113951683044, -0.2209240198135376, 1.3067045211791992],
|
|
[-2.0922982692718506, 0.6822009682655334, 0.20066820085048676, 0.006392406765371561]]])
|
|
# cal from benchmark
|
|
out_expect = np.array([[[0.042449187487363815, 0.05205513536930084, -0.07715501636266708, -0.08298899233341217],
|
|
[-0.31932681798934937, 0.7255191802978516, 0.7473170757293701, 0.2691799998283386]],
|
|
[[-0.38620999455451965, -0.14104272425174713, -0.09880022704601288, 0.5843760371208191],
|
|
[-0.935704231262207, 0.30508953332901, 0.0897415429353714, 0.0028587712440639734]]])
|
|
op = c_audio.Vol(gain=0.2, gain_type=utils.GainType.POWER)
|
|
out_mindspore = op(ndarr_in)
|
|
allclose_nparray(out_mindspore, out_expect, 0.0001, 0.0001)
|
|
|
|
|
|
def test_func_vol_pipeline():
|
|
""" mindspore pipeline mode normal testcase:vol op"""
|
|
|
|
logger.info("test vol op with gain_type='power'")
|
|
data = np.array([[[0.7012, 0.2500, 0.0108],
|
|
[0.3617, 0.6367, 0.6096]]]).astype(np.float32)
|
|
out_expect = np.array([[1.0000, 0.7906, 0.0342],
|
|
[1.0000, 1.0000, 1.0000]])
|
|
data1 = ds.NumpySlicesDataset(data, column_names=["multi_dimensional_data"])
|
|
transforms = [c_audio.Vol(gain=10, gain_type=utils.GainType.POWER)]
|
|
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
out_put = item["multi_dimensional_data"]
|
|
allclose_nparray(out_put, out_expect, 0.0001, 0.0001)
|
|
|
|
logger.info("test vol op with gain_type='amplitude' and datatype='float64'")
|
|
data = np.array([[[0.9342139979247938, 0.613965955965896, 0.5356328030249583, 0.589909976354571],
|
|
[0.7301220295167696, 0.31194499547960186, 0.3982210622160919, 0.20984374897512215],
|
|
[0.18619300588033616, 0.9443723899839336, 0.7395507950492876, 0.4904588086175671]]])
|
|
data = data.astype(np.float64)
|
|
out_expect = np.array([[0.18684279918670654, 0.12279318571090699, 0.10712655782699586, 0.1179819941520691],
|
|
[0.1460244059562683, 0.062388998270034794, 0.07964421510696412, 0.04196875095367432],
|
|
[0.03723860085010529, 0.1888744831085205, 0.14791015386581421, 0.09809176325798036]])
|
|
data1 = ds.NumpySlicesDataset(data, column_names=["multi_dimensional_data"])
|
|
transforms = [c_audio.Vol(gain=0.2, gain_type=utils.GainType.AMPLITUDE)]
|
|
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
out_put = item["multi_dimensional_data"]
|
|
allclose_nparray(out_put, out_expect, 0.0001, 0.0001)
|
|
|
|
logger.info("test vol op with gain_type='db'")
|
|
data = np.array([[[0.1302, 0.5908, 0.1225, 0.7044],
|
|
[0.6405, 0.6540, 0.9908, 0.8605],
|
|
[0.7023, 0.0115, 0.8790, 0.5806]]]).astype(np.float32)
|
|
out_expect = np.array([[0.1096, 0.4971, 0.1031, 0.5927],
|
|
[0.5389, 0.5503, 0.8336, 0.7240],
|
|
[0.5909, 0.0097, 0.7396, 0.4885]])
|
|
data1 = ds.NumpySlicesDataset(data, column_names=["multi_dimensional_data"])
|
|
transforms = [c_audio.Vol(gain=-1.5, gain_type=utils.GainType.DB)]
|
|
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
out_put = item["multi_dimensional_data"]
|
|
allclose_nparray(out_put, out_expect, 0.0001, 0.0001)
|
|
|
|
|
|
def test_vol_invalid_input():
|
|
def test_invalid_input(test_name, gain, gain_type, error, error_msg):
|
|
logger.info("Test Vol with invalid input: {0}".format(test_name))
|
|
with pytest.raises(error) as error_info:
|
|
c_audio.Vol(gain, gain_type)
|
|
assert error_msg in str(error_info.value)
|
|
|
|
test_invalid_input("invalid gain value when gain_type equals 'power'", -1.5, utils.GainType.POWER, ValueError,
|
|
"Input gain is not within the required interval of (0, 16777216].")
|
|
test_invalid_input("invalid gain value when gain_type equals 'amplitude'", -1.5, utils.GainType.AMPLITUDE,
|
|
ValueError, "Input gain is not within the required interval of [0, 16777216].")
|
|
test_invalid_input("invalid gain value when gain_type equals 'amplitude'", 1.5, "TEST", TypeError,
|
|
"Argument gain_type with value TEST is not of type [<enum 'GainType'>], but got <class 'str'>.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_func_vol_eager()
|
|
test_func_vol_pipeline()
|
|
test_vol_invalid_input()
|