236 lines
11 KiB
Python
236 lines
11 KiB
Python
# Copyright 2021-2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
|
|
import numpy as np
|
|
import pytest
|
|
|
|
from mindspore import log
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.text as text
|
|
import mindspore.dataset.text.transforms as T
|
|
|
|
DATASET_ROOT_PATH = "../data/dataset/testVectors/"
|
|
|
|
|
|
def test_vectors_all_tovectors_params_eager():
|
|
"""
|
|
Feature: Vectors
|
|
Description: Test with all parameters which include `unk_init`
|
|
and `lower_case_backup` in function ToVectors in eager mode
|
|
Expectation: Output is equal to the expected value
|
|
"""
|
|
vectors = text.Vectors.from_file(DATASET_ROOT_PATH + "vectors.txt", max_vectors=4)
|
|
myUnk = [-1, -1, -1, -1, -1, -1]
|
|
to_vectors = T.ToVectors(vectors, unk_init=myUnk, lower_case_backup=True)
|
|
result1 = to_vectors("Ok")
|
|
result2 = to_vectors("!")
|
|
result3 = to_vectors("This")
|
|
result4 = to_vectors("is")
|
|
result5 = to_vectors("my")
|
|
result6 = to_vectors("home")
|
|
result7 = to_vectors("none")
|
|
res = [[0.418, 0.24968, -0.41242, 0.1217, 0.34527, -0.04445718411],
|
|
[0.013441, 0.23682, -0.16899, 0.40951, 0.63812, 0.47709],
|
|
[0.15164, 0.30177, -0.16763, 0.17684, 0.31719, 0.33973],
|
|
[0.70853, 0.57088, -0.4716, 0.18048, 0.54449, 0.72603],
|
|
[-1, -1, -1, -1, -1, -1],
|
|
[-1, -1, -1, -1, -1, -1],
|
|
[-1, -1, -1, -1, -1, -1]]
|
|
res_array = np.array(res, dtype=np.float32)
|
|
|
|
assert np.array_equal(result1, res_array[0])
|
|
assert np.array_equal(result2, res_array[1])
|
|
assert np.array_equal(result3, res_array[2])
|
|
assert np.array_equal(result4, res_array[3])
|
|
assert np.array_equal(result5, res_array[4])
|
|
assert np.array_equal(result6, res_array[5])
|
|
assert np.array_equal(result7, res_array[6])
|
|
|
|
|
|
def test_vectors_from_file():
|
|
"""
|
|
Feature: Vectors
|
|
Description: Test with only default parameter
|
|
Expectation: Output is equal to the expected value
|
|
"""
|
|
vectors = text.Vectors.from_file(DATASET_ROOT_PATH + "vectors.txt")
|
|
to_vectors = text.ToVectors(vectors)
|
|
data = ds.TextFileDataset(DATASET_ROOT_PATH + "words.txt", shuffle=False)
|
|
data = data.map(operations=to_vectors, input_columns=["text"])
|
|
ind = 0
|
|
res = [[0.418, 0.24968, -0.41242, 0.1217, 0.34527, -0.04445718411],
|
|
[0, 0, 0, 0, 0, 0],
|
|
[0.15164, 0.30177, -0.16763, 0.17684, 0.31719, 0.33973],
|
|
[0.70853, 0.57088, -0.4716, 0.18048, 0.54449, 0.72603],
|
|
[0.68047, -0.039263, 0.30186, -0.17792, 0.42962, 0.032246],
|
|
[0.26818, 0.14346, -0.27877, 0.016257, 0.11384, 0.69923],
|
|
[0, 0, 0, 0, 0, 0]]
|
|
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
res_array = np.array(res[ind], dtype=np.float32)
|
|
assert np.array_equal(res_array, d["text"]), ind
|
|
ind += 1
|
|
|
|
|
|
def test_vectors_from_file_all_buildfromfile_params():
|
|
"""
|
|
Feature: Vectors
|
|
Description: Test with all parameters which include `path` and `max_vector` in function BuildFromFile
|
|
Expectation: Output is equal to the expected value
|
|
"""
|
|
vectors = text.Vectors.from_file(DATASET_ROOT_PATH + "vectors.txt", max_vectors=100)
|
|
to_vectors = text.ToVectors(vectors)
|
|
data = ds.TextFileDataset(DATASET_ROOT_PATH + "words.txt", shuffle=False)
|
|
data = data.map(operations=to_vectors, input_columns=["text"])
|
|
ind = 0
|
|
res = [[0.418, 0.24968, -0.41242, 0.1217, 0.34527, -0.04445718411],
|
|
[0, 0, 0, 0, 0, 0],
|
|
[0.15164, 0.30177, -0.16763, 0.17684, 0.31719, 0.33973],
|
|
[0.70853, 0.57088, -0.4716, 0.18048, 0.54449, 0.72603],
|
|
[0.68047, -0.039263, 0.30186, -0.17792, 0.42962, 0.032246],
|
|
[0.26818, 0.14346, -0.27877, 0.016257, 0.11384, 0.69923],
|
|
[0, 0, 0, 0, 0, 0]]
|
|
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
res_array = np.array(res[ind], dtype=np.float32)
|
|
assert np.array_equal(res_array, d["text"]), ind
|
|
ind += 1
|
|
|
|
|
|
def test_vectors_from_file_all_buildfromfile_params_eager():
|
|
"""
|
|
Feature: Vectors
|
|
Description: Test with all parameters which include `path` and `max_vector` in function BuildFromFile in eager mode
|
|
Expectation: Output is equal to the expected value
|
|
"""
|
|
vectors = text.Vectors.from_file(DATASET_ROOT_PATH + "vectors.txt", max_vectors=4)
|
|
to_vectors = T.ToVectors(vectors)
|
|
result1 = to_vectors("ok")
|
|
result2 = to_vectors("!")
|
|
result3 = to_vectors("this")
|
|
result4 = to_vectors("is")
|
|
result5 = to_vectors("my")
|
|
result6 = to_vectors("home")
|
|
result7 = to_vectors("none")
|
|
res = [[0.418, 0.24968, -0.41242, 0.1217, 0.34527, -0.04445718411],
|
|
[0.013441, 0.23682, -0.16899, 0.40951, 0.63812, 0.47709],
|
|
[0.15164, 0.30177, -0.16763, 0.17684, 0.31719, 0.33973],
|
|
[0.70853, 0.57088, -0.4716, 0.18048, 0.54449, 0.72603],
|
|
[0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0],
|
|
[0, 0, 0, 0, 0, 0]]
|
|
res_array = np.array(res, dtype=np.float32)
|
|
|
|
assert np.array_equal(result1, res_array[0])
|
|
assert np.array_equal(result2, res_array[1])
|
|
assert np.array_equal(result3, res_array[2])
|
|
assert np.array_equal(result4, res_array[3])
|
|
assert np.array_equal(result5, res_array[4])
|
|
assert np.array_equal(result6, res_array[5])
|
|
assert np.array_equal(result7, res_array[6])
|
|
|
|
|
|
def test_vectors_from_file_eager():
|
|
"""
|
|
Feature: Vectors
|
|
Description: Test with only default parameter in eager mode
|
|
Expectation: Output is equal to the expected value
|
|
"""
|
|
vectors = text.Vectors.from_file(DATASET_ROOT_PATH + "vectors.txt")
|
|
to_vectors = T.ToVectors(vectors)
|
|
result1 = to_vectors("ok")
|
|
result2 = to_vectors("!")
|
|
result3 = to_vectors("this")
|
|
result4 = to_vectors("is")
|
|
result5 = to_vectors("my")
|
|
result6 = to_vectors("home")
|
|
result7 = to_vectors("none")
|
|
res = [[0.418, 0.24968, -0.41242, 0.1217, 0.34527, -0.04445718411],
|
|
[0.013441, 0.23682, -0.16899, 0.40951, 0.63812, 0.47709],
|
|
[0.15164, 0.30177, -0.16763, 0.17684, 0.31719, 0.33973],
|
|
[0.70853, 0.57088, -0.4716, 0.18048, 0.54449, 0.72603],
|
|
[0.68047, -0.039263, 0.30186, -0.17792, 0.42962, 0.032246],
|
|
[0.26818, 0.14346, -0.27877, 0.016257, 0.11384, 0.69923],
|
|
[0, 0, 0, 0, 0, 0]]
|
|
res_array = np.array(res, dtype=np.float32)
|
|
|
|
assert np.array_equal(result1, res_array[0])
|
|
assert np.array_equal(result2, res_array[1])
|
|
assert np.array_equal(result3, res_array[2])
|
|
assert np.array_equal(result4, res_array[3])
|
|
assert np.array_equal(result5, res_array[4])
|
|
assert np.array_equal(result6, res_array[5])
|
|
assert np.array_equal(result7, res_array[6])
|
|
|
|
|
|
def test_vectors_invalid_input():
|
|
"""
|
|
Feature: Vectors
|
|
Description: Test the validate function with invalid parameters.
|
|
Expectation:
|
|
"""
|
|
def test_invalid_input(test_name, file_path, error, error_msg, max_vectors=None,
|
|
unk_init=None, lower_case_backup=False, token="ok"):
|
|
log.info("Test Vectors with wrong input: {0}".format(test_name))
|
|
with pytest.raises(error) as error_info:
|
|
vectors = text.Vectors.from_file(file_path, max_vectors=max_vectors)
|
|
to_vectors = T.ToVectors(vectors, unk_init=unk_init, lower_case_backup=lower_case_backup)
|
|
to_vectors(token)
|
|
assert error_msg in str(error_info.value)
|
|
|
|
test_invalid_input("Not all vectors have the same number of dimensions",
|
|
DATASET_ROOT_PATH + "vectors_dim_different.txt", error=RuntimeError,
|
|
error_msg="all vectors must have the same number of dimensions, but got dim 5 while expecting 6")
|
|
test_invalid_input("the file is empty.", DATASET_ROOT_PATH + "vectors_empty.txt",
|
|
error=RuntimeError, error_msg="invalid file, file is empty.")
|
|
test_invalid_input("the count of `unknown_init`'s element is different with word vector.",
|
|
DATASET_ROOT_PATH + "vectors.txt",
|
|
error=RuntimeError, error_msg="Unexpected error. ToVectors: " +
|
|
"unk_init must be the same length as vectors, but got unk_init: 2 and vectors: 6",
|
|
unk_init=[-1, -1])
|
|
test_invalid_input("The file not exist", DATASET_ROOT_PATH + "not_exist.txt", error=RuntimeError,
|
|
error_msg="get real path failed")
|
|
test_invalid_input("The token is 1-dimensional",
|
|
DATASET_ROOT_PATH + "vectors_with_wrong_info.txt", error=RuntimeError,
|
|
error_msg="token with 1-dimensional vector.")
|
|
test_invalid_input("max_vectors parameter must be greater than 0",
|
|
DATASET_ROOT_PATH + "vectors.txt", error=ValueError,
|
|
error_msg="Input max_vectors is not within the required interval", max_vectors=-1)
|
|
test_invalid_input("invalid max_vectors parameter type as a float",
|
|
DATASET_ROOT_PATH + "vectors.txt", error=TypeError,
|
|
error_msg="Argument max_vectors with value 1.0 is not of type [<class 'int'>],"
|
|
" but got <class 'float'>.", max_vectors=1.0)
|
|
test_invalid_input("invalid max_vectors parameter type as a string",
|
|
DATASET_ROOT_PATH + "vectors.txt", error=TypeError,
|
|
error_msg="Argument max_vectors with value 1 is not of type [<class 'int'>],"
|
|
" but got <class 'str'>.", max_vectors="1")
|
|
test_invalid_input("invalid token parameter type as a float", DATASET_ROOT_PATH + "vectors.txt", error=RuntimeError,
|
|
error_msg="input tensor type should be string.", token=1.0)
|
|
test_invalid_input("invalid lower_case_backup parameter type as a string", DATASET_ROOT_PATH + "vectors.txt",
|
|
error=TypeError, error_msg="Argument lower_case_backup with " +
|
|
"value True is not of type [<class 'bool'>],"
|
|
" but got <class 'str'>.", lower_case_backup="True")
|
|
test_invalid_input("invalid lower_case_backup parameter type as a string", DATASET_ROOT_PATH + "vectors.txt",
|
|
error=TypeError, error_msg="Argument lower_case_backup with " +
|
|
"value True is not of type [<class 'bool'>],"
|
|
" but got <class 'str'>.", lower_case_backup="True")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_vectors_all_tovectors_params_eager()
|
|
test_vectors_from_file()
|
|
test_vectors_from_file_all_buildfromfile_params()
|
|
test_vectors_from_file_all_buildfromfile_params_eager()
|
|
test_vectors_from_file_eager()
|
|
test_vectors_invalid_input()
|