mindspore/tests/ut/python/dataset/test_time_masking.py

130 lines
5.8 KiB
Python

# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing TimeMasking op in DE.
"""
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.audio as audio
from mindspore import log as logger
CHANNEL = 2
FREQ = 20
TIME = 30
def gen(shape):
np.random.seed(0)
data = np.random.random(shape)
yield (np.array(data, dtype=np.float32),)
def count_unequal_element(data_expected, data_me, rtol, atol):
""" Precision calculation func """
assert data_expected.shape == data_me.shape
total_count = len(data_expected.flatten())
error = np.abs(data_expected - data_me)
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
loss_count = np.count_nonzero(greater)
assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format(
data_expected[greater], data_me[greater], error[greater])
def allclose_nparray(data_expected, data_me, rtol, atol, equal_nan=True):
""" Precision calculation formula """
if np.any(np.isnan(data_expected)):
assert np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan)
elif not np.allclose(data_me, data_expected, rtol, atol, equal_nan=equal_nan):
count_unequal_element(data_expected, data_me, rtol, atol)
def test_func_time_masking_eager_random_input():
""" mindspore eager mode normal testcase:time_masking op"""
logger.info("test time_masking op")
spectrogram = next(gen((CHANNEL, FREQ, TIME)))[0]
out_put = audio.TimeMasking(False, 3, 1, 10)(spectrogram)
assert out_put.shape == (CHANNEL, FREQ, TIME)
def test_func_time_masking_eager_precision():
""" mindspore eager mode normal testcase:time_masking op"""
logger.info("test time_masking op")
spectrogram = np.array([[[0.17274511, 0.85174704, 0.07162686, -0.45436913],
[-1.045921, -1.8204843, 0.62333095, -0.09532598],
[1.8175547, -0.25779432, -0.58152324, -0.00221091]],
[[-1.205032, 0.18922766, -0.5277673, -1.3090396],
[1.8914849, -0.97001046, -0.23726775, 0.00525892],
[-1.0271876, 0.33526883, 1.7413973, 0.12313101]]]).astype(np.float32)
out_ms = audio.TimeMasking(False, 2, 0, 0)(spectrogram)
out_benchmark = np.array([[[0., 0., 0.07162686, -0.45436913],
[0., 0., 0.62333095, -0.09532598],
[0., 0., -0.58152324, -0.00221091]],
[[0., 0., -0.5277673, -1.3090396],
[0., 0., -0.23726775, 0.00525892],
[0., 0., 1.7413973, 0.12313101]]]).astype(np.float32)
allclose_nparray(out_ms, out_benchmark, 0.0001, 0.0001)
def test_func_time_masking_pipeline():
""" mindspore pipeline mode normal testcase:time_masking op"""
logger.info("test time_masking op, pipeline")
generator = gen([CHANNEL, FREQ, TIME])
data1 = ds.GeneratorDataset(source=generator, column_names=["multi_dimensional_data"])
transforms = [audio.TimeMasking(True, 8)]
data1 = data1.map(operations=transforms, input_columns=["multi_dimensional_data"])
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
out_put = item["multi_dimensional_data"]
assert out_put.shape == (CHANNEL, FREQ, TIME)
def test_time_masking_invalid_input():
def test_invalid_param(test_name, iid_masks, time_mask_param, mask_start, error, error_msg):
logger.info("Test TimeMasking with wrong params: {0}".format(test_name))
with pytest.raises(error) as error_info:
audio.TimeMasking(iid_masks, time_mask_param, mask_start)
assert error_msg in str(error_info.value)
def test_invalid_input(test_name, iid_masks, time_mask_param, mask_start, error, error_msg):
logger.info("Test TimeMasking with wrong params: {0}".format(test_name))
with pytest.raises(error) as error_info:
spectrogram = next(gen((CHANNEL, FREQ, TIME)))[0]
_ = audio.TimeMasking(iid_masks, time_mask_param, mask_start)(spectrogram)
assert error_msg in str(error_info.value)
test_invalid_param("invalid mask_start", True, 2, -10, ValueError,
"Input mask_start is not within the required interval of [0, 16777216].")
test_invalid_param("invalid mask_param", True, -2, 10, ValueError,
"Input mask_param is not within the required interval of [0, 16777216].")
test_invalid_param("invalid iid_masks", "True", 2, 10, TypeError,
"Argument iid_masks with value True is not of type [<class 'bool'>], but got <class 'str'>.")
test_invalid_input("invalid mask_start", False, 2, 100, RuntimeError,
"'mask_start' should be less than the length of the masked dimension")
test_invalid_input("invalid mask_width", False, 200, 2, RuntimeError,
"'time_mask_param' should be less than or equal to the length of time dimension")
if __name__ == "__main__":
test_func_time_masking_eager_random_input()
test_func_time_masking_eager_precision()
test_func_time_masking_pipeline()
test_time_masking_invalid_input()