610 lines
22 KiB
Python
610 lines
22 KiB
Python
# Copyright 2020 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import pytest
|
|
import mindspore.dataset as ds
|
|
from util import config_get_set_num_parallel_workers
|
|
|
|
|
|
# test5trainimgs.json contains 5 images whose un-decoded shape is [83554, 54214, 65512, 54214, 64631]
|
|
# the label of each image is [0,0,0,1,1] each image can be uniquely identified
|
|
# via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4}
|
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
|
manifest_map = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
|
|
|
text_file_dataset_path = "../data/dataset/testTextFileDataset/*"
|
|
text_file_data = ["This is a text file.", "Another file.", "Be happy every day.",
|
|
"End of file.", "Good luck to everyone."]
|
|
|
|
def split_with_invalid_inputs(d):
|
|
with pytest.raises(ValueError) as info:
|
|
_, _ = d.split([])
|
|
assert "sizes cannot be empty" in str(info.value)
|
|
|
|
with pytest.raises(ValueError) as info:
|
|
_, _ = d.split([5, 0.6])
|
|
assert "sizes should be list of int or list of float" in str(info.value)
|
|
|
|
with pytest.raises(ValueError) as info:
|
|
_, _ = d.split([-1, 6])
|
|
assert "there should be no negative or zero numbers" in str(info.value)
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
_, _ = d.split([3, 1])
|
|
assert "Sum of split sizes 4 is not equal to dataset size 5" in str(info.value)
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
_, _ = d.split([5, 1])
|
|
assert "Sum of split sizes 6 is not equal to dataset size 5" in str(info.value)
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
_, _ = d.split([0.15, 0.15, 0.15, 0.15, 0.15, 0.25])
|
|
assert "Sum of calculated split sizes 6 is not equal to dataset size 5" in str(info.value)
|
|
|
|
with pytest.raises(ValueError) as info:
|
|
_, _ = d.split([-0.5, 0.5])
|
|
assert "there should be no numbers outside the range (0, 1]" in str(info.value)
|
|
|
|
with pytest.raises(ValueError) as info:
|
|
_, _ = d.split([1.5, 0.5])
|
|
assert "there should be no numbers outside the range (0, 1]" in str(info.value)
|
|
|
|
with pytest.raises(ValueError) as info:
|
|
_, _ = d.split([0.5, 0.6])
|
|
assert "percentages do not sum up to 1" in str(info.value)
|
|
|
|
with pytest.raises(ValueError) as info:
|
|
_, _ = d.split([0.3, 0.6])
|
|
assert "percentages do not sum up to 1" in str(info.value)
|
|
|
|
with pytest.raises(RuntimeError) as info:
|
|
_, _ = d.split([0.05, 0.95])
|
|
assert "percentage 0.05 is too small" in str(info.value)
|
|
|
|
|
|
def test_unmappable_invalid_input():
|
|
d = ds.TextFileDataset(text_file_dataset_path)
|
|
split_with_invalid_inputs(d)
|
|
|
|
d = ds.TextFileDataset(text_file_dataset_path, num_shards=2, shard_id=0)
|
|
with pytest.raises(RuntimeError) as info:
|
|
_, _ = d.split([4, 1])
|
|
assert "Dataset should not be sharded before split" in str(info.value)
|
|
|
|
|
|
def test_unmappable_split():
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
|
|
|
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
|
|
s1, s2 = d.split([4, 1], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(item["text"].item().decode("utf8"))
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(item["text"].item().decode("utf8"))
|
|
|
|
assert s1_output == text_file_data[0:4]
|
|
assert s2_output == text_file_data[4:]
|
|
|
|
# exact percentages
|
|
s1, s2 = d.split([0.8, 0.2], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(item["text"].item().decode("utf8"))
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(item["text"].item().decode("utf8"))
|
|
|
|
assert s1_output == text_file_data[0:4]
|
|
assert s2_output == text_file_data[4:]
|
|
|
|
# fuzzy percentages
|
|
s1, s2 = d.split([0.33, 0.67], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(item["text"].item().decode("utf8"))
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(item["text"].item().decode("utf8"))
|
|
|
|
assert s1_output == text_file_data[0:2]
|
|
assert s2_output == text_file_data[2:]
|
|
|
|
# Restore configuration num_parallel_workers
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
|
|
def test_unmappable_randomize_deterministic():
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
|
|
|
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
|
|
ds.config.set_seed(53)
|
|
|
|
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
|
|
s1, s2 = d.split([0.8, 0.2])
|
|
|
|
for _ in range(10):
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(item["text"].item().decode("utf8"))
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(item["text"].item().decode("utf8"))
|
|
|
|
# note no overlap
|
|
assert s1_output == [text_file_data[0], text_file_data[2], text_file_data[1], text_file_data[4]]
|
|
assert s2_output == [text_file_data[3]]
|
|
|
|
# Restore configuration num_parallel_workers
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
|
|
def test_unmappable_randomize_repeatable():
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
|
|
|
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
|
|
ds.config.set_seed(53)
|
|
|
|
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
|
|
s1, s2 = d.split([0.8, 0.2])
|
|
|
|
num_epochs = 5
|
|
s1 = s1.repeat(num_epochs)
|
|
s2 = s2.repeat(num_epochs)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(item["text"].item().decode("utf8"))
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(item["text"].item().decode("utf8"))
|
|
|
|
# note no overlap
|
|
assert s1_output == [text_file_data[0], text_file_data[2], text_file_data[1], text_file_data[4]] * num_epochs
|
|
assert s2_output == [text_file_data[3]] * num_epochs
|
|
|
|
# Restore configuration num_parallel_workers
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
|
|
def test_unmappable_get_dataset_size():
|
|
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
|
|
s1, s2 = d.split([0.8, 0.2])
|
|
|
|
assert d.get_dataset_size() == 5
|
|
assert s1.get_dataset_size() == 4
|
|
assert s2.get_dataset_size() == 1
|
|
|
|
|
|
def test_unmappable_multi_split():
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
|
|
|
# the labels outputted by ShuffleOp for seed 53 is [0, 2, 1, 4, 3]
|
|
ds.config.set_seed(53)
|
|
|
|
d = ds.TextFileDataset(text_file_dataset_path, shuffle=False)
|
|
s1, s2 = d.split([4, 1])
|
|
|
|
s1_correct_output = [text_file_data[0], text_file_data[2], text_file_data[1], text_file_data[4]]
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(item["text"].item().decode("utf8"))
|
|
assert s1_output == s1_correct_output
|
|
|
|
# no randomize in second split
|
|
s1s1, s1s2, s1s3 = s1.split([1, 2, 1], randomize=False)
|
|
|
|
s1s1_output = []
|
|
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s1_output.append(item["text"].item().decode("utf8"))
|
|
|
|
s1s2_output = []
|
|
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s2_output.append(item["text"].item().decode("utf8"))
|
|
|
|
s1s3_output = []
|
|
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s3_output.append(item["text"].item().decode("utf8"))
|
|
|
|
assert s1s1_output == [s1_correct_output[0]]
|
|
assert s1s2_output == [s1_correct_output[1], s1_correct_output[2]]
|
|
assert s1s3_output == [s1_correct_output[3]]
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(item["text"].item().decode("utf8"))
|
|
assert s2_output == [text_file_data[3]]
|
|
|
|
# randomize in second split
|
|
# the labels outputted by the ShuffleOp for seed 53 is [2, 3, 1, 0]
|
|
shuffled_ids = [2, 3, 1, 0]
|
|
|
|
s1s1, s1s2, s1s3 = s1.split([1, 2, 1])
|
|
|
|
s1s1_output = []
|
|
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s1_output.append(item["text"].item().decode("utf8"))
|
|
|
|
s1s2_output = []
|
|
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s2_output.append(item["text"].item().decode("utf8"))
|
|
|
|
s1s3_output = []
|
|
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s3_output.append(item["text"].item().decode("utf8"))
|
|
|
|
assert s1s1_output == [s1_correct_output[shuffled_ids[0]]]
|
|
assert s1s2_output == [s1_correct_output[shuffled_ids[1]], s1_correct_output[shuffled_ids[2]]]
|
|
assert s1s3_output == [s1_correct_output[shuffled_ids[3]]]
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(item["text"].item().decode("utf8"))
|
|
assert s2_output == [text_file_data[3]]
|
|
|
|
# Restore configuration num_parallel_workers
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
|
|
def test_mappable_invalid_input():
|
|
d = ds.ManifestDataset(manifest_file)
|
|
split_with_invalid_inputs(d)
|
|
|
|
d = ds.ManifestDataset(manifest_file, num_shards=2, shard_id=0)
|
|
with pytest.raises(RuntimeError) as info:
|
|
_, _ = d.split([4, 1])
|
|
assert "Dataset should not be sharded before split" in str(info.value)
|
|
|
|
|
|
def test_mappable_split_general():
|
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
|
d = d.take(5)
|
|
|
|
# absolute rows
|
|
s1, s2 = d.split([4, 1], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1_output == [0, 1, 2, 3]
|
|
assert s2_output == [4]
|
|
|
|
# exact percentages
|
|
s1, s2 = d.split([0.8, 0.2], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1_output == [0, 1, 2, 3]
|
|
assert s2_output == [4]
|
|
|
|
# fuzzy percentages
|
|
s1, s2 = d.split([0.33, 0.67], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1_output == [0, 1]
|
|
assert s2_output == [2, 3, 4]
|
|
|
|
|
|
def test_mappable_split_optimized():
|
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
|
|
|
# absolute rows
|
|
s1, s2 = d.split([4, 1], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1_output == [0, 1, 2, 3]
|
|
assert s2_output == [4]
|
|
|
|
# exact percentages
|
|
s1, s2 = d.split([0.8, 0.2], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1_output == [0, 1, 2, 3]
|
|
assert s2_output == [4]
|
|
|
|
# fuzzy percentages
|
|
s1, s2 = d.split([0.33, 0.67], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1_output == [0, 1]
|
|
assert s2_output == [2, 3, 4]
|
|
|
|
|
|
def test_mappable_randomize_deterministic():
|
|
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
|
ds.config.set_seed(53)
|
|
|
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
|
s1, s2 = d.split([0.8, 0.2])
|
|
|
|
for _ in range(10):
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
# note no overlap
|
|
assert s1_output == [0, 1, 3, 4]
|
|
assert s2_output == [2]
|
|
|
|
|
|
def test_mappable_randomize_repeatable():
|
|
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
|
ds.config.set_seed(53)
|
|
|
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
|
s1, s2 = d.split([0.8, 0.2])
|
|
|
|
num_epochs = 5
|
|
s1 = s1.repeat(num_epochs)
|
|
s2 = s2.repeat(num_epochs)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
# note no overlap
|
|
assert s1_output == [0, 1, 3, 4] * num_epochs
|
|
assert s2_output == [2] * num_epochs
|
|
|
|
|
|
def test_mappable_sharding():
|
|
# set arbitrary seed for repeatability for shard after split
|
|
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
|
ds.config.set_seed(53)
|
|
|
|
num_epochs = 5
|
|
first_split_num_rows = 4
|
|
|
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
|
s1, s2 = d.split([first_split_num_rows, 1])
|
|
|
|
distributed_sampler = ds.DistributedSampler(2, 0)
|
|
s1.use_sampler(distributed_sampler)
|
|
|
|
s1 = s1.repeat(num_epochs)
|
|
|
|
# testing sharding, second dataset to simulate another instance
|
|
d2 = ds.ManifestDataset(manifest_file, shuffle=False)
|
|
d2s1, d2s2 = d2.split([first_split_num_rows, 1])
|
|
|
|
distributed_sampler = ds.DistributedSampler(2, 1)
|
|
d2s1.use_sampler(distributed_sampler)
|
|
|
|
d2s1 = d2s1.repeat(num_epochs)
|
|
|
|
# shard 0
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
# shard 1
|
|
d2s1_output = []
|
|
for item in d2s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
d2s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
rows_per_shard_per_epoch = 2
|
|
assert len(s1_output) == rows_per_shard_per_epoch * num_epochs
|
|
assert len(d2s1_output) == rows_per_shard_per_epoch * num_epochs
|
|
|
|
# verify each epoch that
|
|
# 1. shards contain no common elements
|
|
# 2. the data was split the same way, and that the union of shards equal the split
|
|
correct_sorted_split_result = [0, 1, 3, 4]
|
|
for i in range(num_epochs):
|
|
combined_data = []
|
|
for j in range(rows_per_shard_per_epoch):
|
|
combined_data.append(s1_output[i * rows_per_shard_per_epoch + j])
|
|
combined_data.append(d2s1_output[i * rows_per_shard_per_epoch + j])
|
|
|
|
assert sorted(combined_data) == correct_sorted_split_result
|
|
|
|
# test other split
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
d2s2_output = []
|
|
for item in d2s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
d2s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s2_output == [2]
|
|
assert d2s2_output == [2]
|
|
|
|
|
|
def test_mappable_get_dataset_size():
|
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
|
s1, s2 = d.split([4, 1])
|
|
|
|
assert d.get_dataset_size() == 5
|
|
assert s1.get_dataset_size() == 4
|
|
assert s2.get_dataset_size() == 1
|
|
|
|
|
|
def test_mappable_multi_split():
|
|
# the labels outputted by ManifestDataset for seed 53 is [0, 1, 3, 4, 2]
|
|
ds.config.set_seed(53)
|
|
|
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
|
s1, s2 = d.split([4, 1])
|
|
|
|
s1_correct_output = [0, 1, 3, 4]
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
assert s1_output == s1_correct_output
|
|
|
|
# no randomize in second split
|
|
s1s1, s1s2, s1s3 = s1.split([1, 2, 1], randomize=False)
|
|
|
|
s1s1_output = []
|
|
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s1s2_output = []
|
|
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s1s3_output = []
|
|
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s3_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1s1_output == [s1_correct_output[0]]
|
|
assert s1s2_output == [s1_correct_output[1], s1_correct_output[2]]
|
|
assert s1s3_output == [s1_correct_output[3]]
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
assert s2_output == [2]
|
|
|
|
# randomize in second split
|
|
# the labels outputted by the RandomSampler for seed 53 is [3, 1, 2, 0]
|
|
random_sampler_ids = [3, 1, 2, 0]
|
|
|
|
s1s1, s1s2, s1s3 = s1.split([1, 2, 1])
|
|
|
|
s1s1_output = []
|
|
for item in s1s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s1s2_output = []
|
|
for item in s1s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s1s3_output = []
|
|
for item in s1s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1s3_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1s1_output == [s1_correct_output[random_sampler_ids[0]]]
|
|
assert s1s2_output == [s1_correct_output[random_sampler_ids[1]], s1_correct_output[random_sampler_ids[2]]]
|
|
assert s1s3_output == [s1_correct_output[random_sampler_ids[3]]]
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
assert s2_output == [2]
|
|
|
|
|
|
def test_rounding():
|
|
d = ds.ManifestDataset(manifest_file, shuffle=False)
|
|
|
|
# under rounding
|
|
s1, s2 = d.split([0.5, 0.5], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1_output == [0, 1, 2]
|
|
assert s2_output == [3, 4]
|
|
|
|
# over rounding
|
|
s1, s2, s3 = d.split([0.15, 0.55, 0.3], randomize=False)
|
|
|
|
s1_output = []
|
|
for item in s1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s1_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s2_output = []
|
|
for item in s2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s2_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
s3_output = []
|
|
for item in s3.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
s3_output.append(manifest_map[(item["image"].shape[0], item["label"].item())])
|
|
|
|
assert s1_output == [0]
|
|
assert s2_output == [1, 2]
|
|
assert s3_output == [3, 4]
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_unmappable_invalid_input()
|
|
test_unmappable_split()
|
|
test_unmappable_randomize_deterministic()
|
|
test_unmappable_randomize_repeatable()
|
|
test_unmappable_get_dataset_size()
|
|
test_unmappable_multi_split()
|
|
test_mappable_invalid_input()
|
|
test_mappable_split_general()
|
|
test_mappable_split_optimized()
|
|
test_mappable_randomize_deterministic()
|
|
test_mappable_randomize_repeatable()
|
|
test_mappable_sharding()
|
|
test_mappable_get_dataset_size()
|
|
test_mappable_multi_split()
|
|
test_rounding()
|