433 lines
22 KiB
Python
433 lines
22 KiB
Python
# Copyright 2021-2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing Spectrogram Python API
|
|
"""
|
|
import numpy as np
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.audio as audio
|
|
from mindspore import log as logger
|
|
from mindspore.dataset.audio.utils import WindowType, BorderType
|
|
|
|
|
|
def count_unequal_element(data_expected, data_me, rtol, atol):
|
|
""" Precision calculation func """
|
|
assert data_expected.shape == data_me.shape
|
|
total_count = len(data_expected.flatten())
|
|
error = np.abs(data_expected - data_me)
|
|
greater = np.greater(error, atol + np.abs(data_expected) * rtol)
|
|
loss_count = np.count_nonzero(greater)
|
|
assert (loss_count / total_count) < rtol, "\ndata_expected_std:{0}\ndata_me_error:{1}\nloss:{2}".format(
|
|
data_expected[greater], data_me[greater], error[greater])
|
|
|
|
|
|
def test_spectrogram_pipeline():
|
|
"""
|
|
Feature: Mindspore pipeline mode normal testcase: spectrogram op.
|
|
Description: Input audio signal to test pipeline.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_pipeline")
|
|
|
|
wav = [[[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]]]
|
|
dataset = ds.NumpySlicesDataset(wav, column_names=["audio"], shuffle=False)
|
|
out = audio.Spectrogram(n_fft=8)
|
|
dataset = dataset.map(operations=out, input_columns=["audio"], output_columns=["Spectrogram"],
|
|
column_order=['Spectrogram'])
|
|
result = np.array([[[2.8015e+01, 1.2100e+02, 3.1354e+02, 1.6900e+02, 2.5000e+01,
|
|
1.0843e+01, 1.2100e+02, 3.3150e+02],
|
|
[3.2145e+00, 3.3914e+01, 9.4728e+01, 4.5914e+01, 9.9142e+00,
|
|
4.5858e+00, 3.3914e+01, 9.5685e+01],
|
|
[1.0000e+00, 1.7157e-01, 1.5000e+00, 1.7157e-01, 1.7157e-01,
|
|
5.0000e-01, 1.7157e-01, 7.5000e-01],
|
|
[4.2893e-02, 2.5736e-01, 5.8579e-01, 2.5736e-01, 2.5736e-01,
|
|
5.8579e-01, 2.5736e-01, 1.2868e-01],
|
|
[5.0000e-01, 1.0000e+00, 8.5787e-02, 1.0000e+00, 1.0000e+00,
|
|
5.0000e-01, 1.0000e+00, 6.2868e-01]]])
|
|
for data1 in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
count_unequal_element(data1["Spectrogram"], result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_eager():
|
|
"""
|
|
Feature: Mindspore eager mode normal testcase: spectrogram op.
|
|
Description: Input audio signal to test eager.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_eager")
|
|
wav = np.array([[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]])
|
|
out = audio.Spectrogram(n_fft=8, win_length=8, window=WindowType.HANN,
|
|
pad_mode=BorderType.REFLECT)(np.array(wav, dtype="float"))
|
|
result = np.array([[[2.8015e+01, 1.2100e+02, 3.1354e+02, 1.6900e+02, 2.5000e+01,
|
|
1.0843e+01, 1.2100e+02, 3.3150e+02],
|
|
[3.2145e+00, 3.3914e+01, 9.4728e+01, 4.5914e+01, 9.9142e+00,
|
|
4.5858e+00, 3.3914e+01, 9.5685e+01],
|
|
[1.0000e+00, 1.7157e-01, 1.5000e+00, 1.7157e-01, 1.7157e-01,
|
|
5.0000e-01, 1.7157e-01, 7.5000e-01],
|
|
[4.2893e-02, 2.5736e-01, 5.8579e-01, 2.5736e-01, 2.5736e-01,
|
|
5.8579e-01, 2.5736e-01, 1.2868e-01],
|
|
[5.0000e-01, 1.0000e+00, 8.5787e-02, 1.0000e+00, 1.0000e+00,
|
|
5.0000e-01, 1.0000e+00, 6.2868e-01]]])
|
|
count_unequal_element(out, result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_window_hamming_padmode_constant():
|
|
"""
|
|
Feature: Test spectrogram parameter: window, pad_mode.
|
|
Description: Test parameter.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_window_hamming_padmode_constant")
|
|
wav = np.array([[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]])
|
|
out = audio.Spectrogram(n_fft=8, window=WindowType.HAMMING,
|
|
pad_mode=BorderType.CONSTANT)(np.array(wav, dtype="float"))
|
|
result = np.array([[[1.1389e+01, 1.3736e+02, 3.5534e+02, 2.0164e+02, 3.0914e+01,
|
|
1.3465e+01, 1.3736e+02, 2.5064e+02],
|
|
[5.6934e+00, 3.1860e+01, 8.5291e+01, 3.8484e+01, 9.1907e+00,
|
|
4.5576e+00, 3.1860e+01, 1.0027e+02],
|
|
[1.9633e-01, 7.4475e-02, 1.2696e+00, 7.4475e-02, 7.4475e-02,
|
|
4.2320e-01, 7.4475e-02, 1.1765e+01],
|
|
[5.0570e-01, 3.8456e-01, 6.8326e-01, 3.8456e-01, 3.8456e-01,
|
|
6.8326e-01, 3.8456e-01, 5.4501e+00],
|
|
[6.1665e-01, 8.4640e-01, 7.2610e-02, 8.4640e-01, 8.4640e-01,
|
|
4.2320e-01, 8.4640e-01, 1.0642e+00]]])
|
|
count_unequal_element(out, result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_nfft_10_window_bartlett_padmode_edge():
|
|
"""
|
|
Feature: Test spectrogram parameter: n_fft, window, pad_mode.
|
|
Description: Test parameter.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_nfft_10_window_bartlett_padmode_edge")
|
|
wav = np.array([[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]])
|
|
out = audio.Spectrogram(n_fft=10, window=WindowType.BARTLETT,
|
|
pad_mode=BorderType.EDGE)(np.array(wav, dtype="float"))
|
|
result = np.array([[[4.0960e+01, 2.6244e+02, 4.0000e+02, 7.7440e+01, 2.5000e+01,
|
|
2.6244e+02, 5.9536e+02],
|
|
[4.7655e+00, 5.6721e+01, 9.4681e+01, 2.3822e+01, 5.9597e+00,
|
|
5.6721e+01, 1.1597e+02],
|
|
[5.3889e-01, 5.8360e-03, 9.2361e-01, 5.8359e-03, 9.2361e-01,
|
|
5.8360e-03, 2.4944e-01],
|
|
[1.1449e-01, 9.9859e-01, 3.1897e-01, 2.9828e-01, 1.0403e+00,
|
|
9.9859e-01, 1.3072e+00],
|
|
[1.8111e-01, 2.7416e-01, 4.7639e-01, 2.7416e-01, 4.7639e-01,
|
|
2.7416e-01, 7.0557e-02],
|
|
[6.4000e-01, 3.6000e-01, 0.0000e+00, 2.5600e+00, 1.0000e+00,
|
|
3.6000e-01, 1.4400e+00]]])
|
|
count_unequal_element(out, result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_onsided_false():
|
|
"""
|
|
Feature: Test spectrogram parameter: onesided.
|
|
Description: Test parameter.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_onsided_false")
|
|
wav = np.array([[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]])
|
|
out = audio.Spectrogram(n_fft=10, window=WindowType.BARTLETT,
|
|
pad_mode=BorderType.EDGE, onesided=False)(np.array(wav, dtype="float"))
|
|
result = np.array([[[4.0960e+01, 2.6244e+02, 4.0000e+02, 7.7440e+01, 2.5000e+01,
|
|
2.6244e+02, 5.9536e+02],
|
|
[4.7655e+00, 5.6721e+01, 9.4681e+01, 2.3822e+01, 5.9597e+00,
|
|
5.6721e+01, 1.1597e+02],
|
|
[5.3889e-01, 5.8360e-03, 9.2361e-01, 5.8359e-03, 9.2361e-01,
|
|
5.8360e-03, 2.4944e-01],
|
|
[1.1449e-01, 9.9859e-01, 3.1897e-01, 2.9828e-01, 1.0403e+00,
|
|
9.9859e-01, 1.3072e+00],
|
|
[1.8111e-01, 2.7416e-01, 4.7639e-01, 2.7416e-01, 4.7639e-01,
|
|
2.7416e-01, 7.0557e-02],
|
|
[6.4000e-01, 3.6000e-01, 0.0000e+00, 2.5600e+00, 1.0000e+00,
|
|
3.6000e-01, 1.4400e+00],
|
|
[1.8111e-01, 2.7416e-01, 4.7639e-01, 2.7416e-01, 4.7639e-01,
|
|
2.7416e-01, 7.0557e-02],
|
|
[1.1449e-01, 9.9859e-01, 3.1897e-01, 2.9828e-01, 1.0403e+00,
|
|
9.9859e-01, 1.3072e+00],
|
|
[5.3889e-01, 5.8360e-03, 9.2361e-01, 5.8359e-03, 9.2361e-01,
|
|
5.8360e-03, 2.4944e-01],
|
|
[4.7655e+00, 5.6721e+01, 9.4681e+01, 2.3822e+01, 5.9597e+00,
|
|
5.6721e+01, 1.1597e+02]]])
|
|
count_unequal_element(out, result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_power_0():
|
|
"""
|
|
Feature: Test spectrogram parameter: power.
|
|
Description: Test parameter.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_power_0")
|
|
wav = np.array([[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]])
|
|
out = audio.Spectrogram(n_fft=8, window=WindowType.HANN,
|
|
pad_mode=BorderType.REFLECT, power=0)(np.array(wav, dtype="float"))
|
|
result = np.array([[[[5.2929e+00, 0.0000e+00],
|
|
[1.1000e+01, 0.0000e+00],
|
|
[1.7707e+01, 0.0000e+00],
|
|
[1.3000e+01, 0.0000e+00],
|
|
[5.0000e+00, 0.0000e+00],
|
|
[3.2929e+00, 0.0000e+00],
|
|
[1.1000e+01, 0.0000e+00],
|
|
[1.8207e+01, 0.0000e+00]],
|
|
[[-1.7929e+00, -2.5288e-07],
|
|
[-5.5000e+00, 1.9142e+00],
|
|
[-9.7071e+00, 7.0711e-01],
|
|
[-6.5000e+00, -1.9142e+00],
|
|
[-2.5000e+00, -1.9142e+00],
|
|
[-1.2929e+00, 1.7071e+00],
|
|
[-5.5000e+00, 1.9142e+00],
|
|
[-9.7071e+00, 1.2071e+00]],
|
|
[[-1.0000e+00, 0.0000e+00],
|
|
[0.0000e+00, -4.1421e-01],
|
|
[1.0000e+00, -7.0711e-01],
|
|
[0.0000e+00, 4.1421e-01],
|
|
[0.0000e+00, 4.1421e-01],
|
|
[0.0000e+00, -7.0711e-01],
|
|
[0.0000e+00, -4.1421e-01],
|
|
[5.0000e-01, -7.0711e-01]],
|
|
[[-2.0711e-01, -2.5288e-07],
|
|
[-5.0000e-01, -8.5787e-02],
|
|
[-2.9289e-01, 7.0711e-01],
|
|
[5.0000e-01, 8.5786e-02],
|
|
[5.0000e-01, 8.5786e-02],
|
|
[-7.0711e-01, -2.9289e-01],
|
|
[-5.0000e-01, -8.5787e-02],
|
|
[-2.9289e-01, 2.0711e-01]],
|
|
[[7.0711e-01, 0.0000e+00],
|
|
[1.0000e+00, 0.0000e+00],
|
|
[2.9289e-01, 0.0000e+00],
|
|
[-1.0000e+00, 0.0000e+00],
|
|
[-1.0000e+00, 0.0000e+00],
|
|
[7.0711e-01, 0.0000e+00],
|
|
[1.0000e+00, 0.0000e+00],
|
|
[7.9289e-01, 0.0000e+00]]]])
|
|
count_unequal_element(out, result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_center_false():
|
|
"""
|
|
Feature: Test spectrogram parameter: center.
|
|
Description: Test parameter.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_center_false")
|
|
wav = np.array([[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]])
|
|
out = audio.Spectrogram(n_fft=8, window=WindowType.HANN,
|
|
center=False, pad_mode=BorderType.REFLECT)(np.array(wav, dtype="float"))
|
|
result = np.array([[[1.2100e+02, 3.1354e+02, 1.6900e+02, 2.5000e+01, 1.0843e+01,
|
|
1.2100e+02],
|
|
[3.3914e+01, 9.4728e+01, 4.5914e+01, 9.9142e+00, 4.5858e+00,
|
|
3.3914e+01],
|
|
[1.7157e-01, 1.5000e+00, 1.7157e-01, 1.7157e-01, 5.0000e-01,
|
|
1.7157e-01],
|
|
[2.5736e-01, 5.8579e-01, 2.5736e-01, 2.5736e-01, 5.8579e-01,
|
|
2.5736e-01],
|
|
[1.0000e+00, 8.5787e-02, 1.0000e+00, 1.0000e+00, 5.0000e-01,
|
|
1.0000e+00]]])
|
|
count_unequal_element(out, result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_normalized_true():
|
|
"""
|
|
Feature: Test spectrogram parameter: normalized.
|
|
Description: Test parameter.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_normalized_true")
|
|
wav = np.array([[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]])
|
|
out = audio.Spectrogram(n_fft=8, window=WindowType.HANN,
|
|
center=False, normalized=True, pad_mode=BorderType.REFLECT)(np.array(wav, dtype="float"))
|
|
result = np.array([[[4.0333e+01, 1.0451e+02, 5.6333e+01, 8.3333e+00, 3.6144e+00,
|
|
4.0333e+01],
|
|
[1.1305e+01, 3.1576e+01, 1.5305e+01, 3.3047e+00, 1.5286e+00,
|
|
1.1305e+01],
|
|
[5.7191e-02, 5.0000e-01, 5.7191e-02, 5.7191e-02, 1.6667e-01,
|
|
5.7191e-02],
|
|
[8.5786e-02, 1.9526e-01, 8.5786e-02, 8.5786e-02, 1.9526e-01,
|
|
8.5786e-02],
|
|
[3.3333e-01, 2.8596e-02, 3.3333e-01, 3.3333e-01, 1.6667e-01,
|
|
3.3333e-01]]])
|
|
count_unequal_element(out, result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_inputrank_3():
|
|
"""
|
|
Feature: Test spectrogram parameter: input rank.
|
|
Description: Test input rank.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_inputrank_3")
|
|
wav = np.array([[[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1]],
|
|
[[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1]]])
|
|
out = audio.Spectrogram(n_fft=8, window=WindowType.HANN, pad_mode=BorderType.REFLECT)(np.array(wav, dtype="float"))
|
|
result = np.array([[[[2.8015e+01, 1.2100e+02, 3.1354e+02, 1.6900e+02, 3.3558e+01],
|
|
[3.2145e+00, 3.3914e+01, 9.4728e+01, 4.5914e+01, 6.7145e+00],
|
|
[1.0000e+00, 1.7157e-01, 1.5000e+00, 1.7157e-01, 7.5000e-01],
|
|
[4.2893e-02, 2.5736e-01, 5.8579e-01, 2.5736e-01, 1.2868e-01],
|
|
[5.0000e-01, 1.0000e+00, 8.5787e-02, 1.0000e+00, 6.2868e-01]]],
|
|
[[[2.8015e+01, 1.2100e+02, 3.1354e+02, 1.6900e+02, 3.3558e+01],
|
|
[3.2145e+00, 3.3914e+01, 9.4728e+01, 4.5914e+01, 6.7145e+00],
|
|
[1.0000e+00, 1.7157e-01, 1.5000e+00, 1.7157e-01, 7.5000e-01],
|
|
[4.2893e-02, 2.5736e-01, 5.8579e-01, 2.5736e-01, 1.2868e-01],
|
|
[5.0000e-01, 1.0000e+00, 8.5787e-02, 1.0000e+00, 6.2868e-01]]]])
|
|
count_unequal_element(out, result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_winlength_7():
|
|
"""
|
|
Feature: Test spectrogram parameter: win_length.
|
|
Description: Test parameter.
|
|
Expectation: Success.
|
|
"""
|
|
logger.info("test_spectrogram_winlength_7")
|
|
wav = np.array([[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]])
|
|
out = audio.Spectrogram(n_fft=8, win_length=7, window=WindowType.HANN,)(np.array(wav, dtype="float"))
|
|
result = np.array([[[2.0140e+01, 4.9000e+01, 1.5006e+02, 2.5284e+02, 1.5006e+02,
|
|
4.9000e+01, 4.5220e+00, 1.2250e+01, 7.6562e+01, 1.9600e+02,
|
|
2.7265e+02],
|
|
[5.0272e+00, 1.9488e+01, 5.5103e+01, 1.0153e+02, 5.5103e+01,
|
|
1.9488e+01, 2.0179e+00, 6.5089e+00, 2.9144e+01, 7.1406e+01,
|
|
1.0662e+02],
|
|
[4.2200e-01, 5.4020e-01, 1.0554e+00, 4.8321e+00, 1.0554e+00,
|
|
5.4020e-01, 9.6867e-01, 4.0345e-01, 7.8188e-01, 1.0872e+00,
|
|
3.3055e+00],
|
|
[1.2817e-01, 3.8618e-01, 2.1917e-01, 2.6102e-01, 2.1917e-01,
|
|
3.8618e-01, 4.3028e-01, 3.7738e-01, 2.0158e-01, 4.2135e-01,
|
|
5.7616e-02],
|
|
[3.7364e-01, 7.1574e-01, 8.1719e-01, 9.0949e-13, 8.1720e-01,
|
|
7.1573e-01, 2.7823e-01, 7.1573e-01, 8.1719e-01, 7.1574e-01,
|
|
3.7364e-01]]])
|
|
count_unequal_element(out, result, 0.0001, 0.0001)
|
|
|
|
|
|
def test_spectrogram_param():
|
|
"""
|
|
Feature: Test spectrogram invalid parameter.
|
|
Description: Test some invalid parameters.
|
|
Expectation: Success.
|
|
"""
|
|
try:
|
|
_ = audio.Spectrogram(n_fft=-1)
|
|
except ValueError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Input n_fft is not within the required interval of [1, 2147483647]." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(n_fft=0)
|
|
except ValueError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Input n_fft is not within the required interval of [1, 2147483647]." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(win_length=-1)
|
|
except ValueError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Input win_length is not within the required interval of [1, 2147483647]." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(win_length="s")
|
|
except TypeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Argument win_length with value s is not of type [<class 'int'>], but got <class 'str'>." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(hop_length=-1)
|
|
except ValueError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Input hop_length is not within the required interval of [1, 2147483647]." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(hop_length=-100)
|
|
except ValueError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Input hop_length is not within the required interval of [1, 2147483647]." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(win_length=300, n_fft=200)
|
|
except ValueError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Input win_length should be no more than n_fft, but got win_length: 300 and n_fft: 200." \
|
|
in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(pad=-1)
|
|
except ValueError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Input pad is not within the required interval of [0, 2147483647]." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(power=-1)
|
|
except ValueError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Input power is not within the required interval of [0, 16777216]." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(n_fft=False)
|
|
except TypeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Argument n_fft with value False is not of type (<class 'int'>,)" in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(n_fft="s")
|
|
except TypeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Argument n_fft with value s is not of type [<class 'int'>], but got <class 'str'>." \
|
|
in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(window=False)
|
|
except TypeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Argument window with value False is not of type [<enum 'WindowType'>], but got <class 'bool'>." \
|
|
in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(pad_mode=False)
|
|
except TypeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Argument pad_mode with value False is not of type [<enum 'BorderType'>], but got <class 'bool'>." \
|
|
in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(onesided="s")
|
|
except TypeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Argument onesided with value s is not of type [<class 'bool'>], but got <class 'str'>." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(center="s")
|
|
except TypeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Argument center with value s is not of type [<class 'bool'>], but got <class 'str'>." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(normalized="s")
|
|
except TypeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Argument normalized with value s is not of type [<class 'bool'>], but got <class 'str'>." in str(error)
|
|
try:
|
|
_ = audio.Spectrogram(normalized=1)
|
|
except TypeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Argument normalized with value 1 is not of type [<class 'bool'>], but got <class 'int'>." in str(error)
|
|
try:
|
|
wav = np.array([[1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 2, 2, 1, 1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5]])
|
|
_ = audio.Spectrogram(n_fft=100, center=False)(wav)
|
|
except RuntimeError as error:
|
|
logger.info("Got an exception in Spectrogram: {}".format(str(error)))
|
|
assert "Unexpected error. Spectrogram: n_fft should be more than 0 and less than 30," \
|
|
" but got n_fft: 100." in str(error)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_spectrogram_pipeline()
|
|
test_spectrogram_eager()
|
|
test_spectrogram_window_hamming_padmode_constant()
|
|
test_spectrogram_nfft_10_window_bartlett_padmode_edge()
|
|
test_spectrogram_onsided_false()
|
|
test_spectrogram_power_0()
|
|
test_spectrogram_center_false()
|
|
test_spectrogram_normalized_true()
|
|
test_spectrogram_inputrank_3()
|
|
test_spectrogram_winlength_7()
|
|
test_spectrogram_param()
|