295 lines
12 KiB
Python
295 lines
12 KiB
Python
# Copyright 2019-2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing RandomRotation op in DE
|
|
"""
|
|
import numpy as np
|
|
import cv2
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms
|
|
import mindspore.dataset.vision as vision
|
|
from mindspore.dataset.vision.utils import Inter
|
|
from mindspore import log as logger
|
|
from util import visualize_image, visualize_list, diff_mse, save_and_check_md5, \
|
|
config_get_set_seed, config_get_set_num_parallel_workers
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
|
|
def test_random_rotation_op_c(plot=False):
|
|
"""
|
|
Feature: RandomRotation op
|
|
Description: Test RandomRotation in Cpp transformations op
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
logger.info("test_random_rotation_op_c")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
decode_op = vision.Decode()
|
|
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
|
|
random_rotation_op = vision.RandomRotation((90, 90), expand=True)
|
|
data1 = data1.map(operations=decode_op, input_columns=["image"])
|
|
data1 = data1.map(operations=random_rotation_op, input_columns=["image"])
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(operations=decode_op, input_columns=["image"])
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
|
|
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
if num_iter > 0:
|
|
break
|
|
rotation_de = item1["image"]
|
|
original = item2["image"]
|
|
logger.info("shape before rotate: {}".format(original.shape))
|
|
rotation_cv = cv2.rotate(original, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
|
mse = diff_mse(rotation_de, rotation_cv)
|
|
logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
|
|
assert mse == 0
|
|
num_iter += 1
|
|
if plot:
|
|
visualize_image(original, rotation_de, mse, rotation_cv)
|
|
|
|
|
|
def test_random_rotation_op_c_area():
|
|
"""
|
|
Feature: RandomRotation op
|
|
Description: Test RandomRotation in Cpp transformations op with Interpolation AREA
|
|
Expectation: Number of returned data rows is correct
|
|
"""
|
|
logger.info("test_random_rotation_op_c_area")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
decode_op = vision.Decode()
|
|
# Use [180, 180] to force rotate 180 degrees, expand is set to be True to match output size
|
|
# Use resample with Interpolation AREA
|
|
random_rotation_op = vision.RandomRotation((180, 180), expand=True, resample=Inter.AREA)
|
|
data1 = data1.map(operations=decode_op, input_columns=["image"])
|
|
data1 = data1.map(operations=random_rotation_op, input_columns=["image"])
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(operations=decode_op, input_columns=["image"])
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
|
|
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
rotation_de = item1["image"]
|
|
original = item2["image"]
|
|
logger.info("shape before rotate: {}".format(original.shape))
|
|
rotation_cv = cv2.rotate(original, cv2.ROTATE_180)
|
|
mse = diff_mse(rotation_de, rotation_cv)
|
|
logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
|
|
assert mse == 0
|
|
num_iter += 1
|
|
assert num_iter == 3
|
|
|
|
|
|
def test_random_rotation_op_py(plot=False):
|
|
"""
|
|
Feature: RandomRotation op
|
|
Description: Test RandomRotation in Python transformations op
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
logger.info("test_random_rotation_op_py")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
|
|
transform1 = mindspore.dataset.transforms.Compose([vision.Decode(True),
|
|
vision.RandomRotation((90, 90), expand=True),
|
|
vision.ToTensor()])
|
|
data1 = data1.map(operations=transform1, input_columns=["image"])
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
transform2 = mindspore.dataset.transforms.Compose([vision.Decode(True),
|
|
vision.ToTensor()])
|
|
data2 = data2.map(operations=transform2, input_columns=["image"])
|
|
|
|
num_iter = 0
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
|
|
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
if num_iter > 0:
|
|
break
|
|
rotation_de = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
logger.info("shape before rotate: {}".format(original.shape))
|
|
rotation_cv = cv2.rotate(original, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
|
mse = diff_mse(rotation_de, rotation_cv)
|
|
logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
|
|
assert mse == 0
|
|
num_iter += 1
|
|
if plot:
|
|
visualize_image(original, rotation_de, mse, rotation_cv)
|
|
|
|
|
|
def test_random_rotation_op_py_ANTIALIAS():
|
|
"""
|
|
Feature: RandomRotation op
|
|
Description: Test RandomRotation in Python transformations op with resample=Inter.ANTIALIAS
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
logger.info("test_random_rotation_op_py_ANTIALIAS")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
|
|
transform1 = mindspore.dataset.transforms.Compose([vision.Decode(True),
|
|
vision.RandomRotation((90, 90),
|
|
expand=True,
|
|
resample=Inter.ANTIALIAS),
|
|
vision.ToTensor()])
|
|
data1 = data1.map(operations=transform1, input_columns=["image"])
|
|
|
|
num_iter = 0
|
|
for _ in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
num_iter += 1
|
|
logger.info("use RandomRotation by Inter.ANTIALIAS process {} images.".format(num_iter))
|
|
|
|
|
|
def test_random_rotation_expand():
|
|
"""
|
|
Feature: RandomRotation op
|
|
Description: Test RandomRotation with expand
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
logger.info("test_random_rotation_op")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = vision.Decode()
|
|
# expand is set to be True to match output size
|
|
random_rotation_op = vision.RandomRotation((0, 90), expand=True)
|
|
data1 = data1.map(operations=decode_op, input_columns=["image"])
|
|
data1 = data1.map(operations=random_rotation_op, input_columns=["image"])
|
|
|
|
num_iter = 0
|
|
for item in data1.create_dict_iterator(num_epochs=1):
|
|
rotation = item["image"]
|
|
logger.info("shape after rotate: {}".format(rotation.shape))
|
|
num_iter += 1
|
|
|
|
|
|
def test_random_rotation_md5():
|
|
"""
|
|
Feature: RandomRotation op
|
|
Description: Test RandomRotation with md5 check
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
logger.info("Test RandomRotation with md5 check")
|
|
original_seed = config_get_set_seed(5)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = vision.Decode()
|
|
resize_op = vision.RandomRotation((0, 90),
|
|
expand=True,
|
|
resample=Inter.BILINEAR,
|
|
center=(50, 50),
|
|
fill_value=150)
|
|
data1 = data1.map(operations=decode_op, input_columns=["image"])
|
|
data1 = data1.map(operations=resize_op, input_columns=["image"])
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
|
|
transform2 = mindspore.dataset.transforms.Compose([vision.Decode(True),
|
|
vision.RandomRotation((0, 90),
|
|
expand=True,
|
|
resample=Inter.BILINEAR,
|
|
center=(50, 50),
|
|
fill_value=150),
|
|
vision.ToTensor()])
|
|
data2 = data2.map(operations=transform2, input_columns=["image"])
|
|
|
|
# Compare with expected md5 from images
|
|
filename1 = "random_rotation_01_c_result.npz"
|
|
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
|
|
filename2 = "random_rotation_01_py_result.npz"
|
|
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore configuration
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
|
|
def test_rotation_diff(plot=False):
|
|
"""
|
|
Feature: RandomRotation op
|
|
Description: Test RandomRotation difference between Python and Cpp transformations op
|
|
Expectation: Both datasets are processed the same as expected
|
|
"""
|
|
logger.info("test_random_rotation_op")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
decode_op = vision.Decode()
|
|
|
|
rotation_op = vision.RandomRotation((45, 45))
|
|
ctrans = [decode_op,
|
|
rotation_op
|
|
]
|
|
|
|
data1 = data1.map(operations=ctrans, input_columns=["image"])
|
|
|
|
# Second dataset
|
|
transforms = [
|
|
vision.Decode(True),
|
|
vision.RandomRotation((45, 45)),
|
|
vision.ToTensor(),
|
|
]
|
|
transform = mindspore.dataset.transforms.Compose(transforms)
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
|
|
data2 = data2.map(operations=transform, input_columns=["image"])
|
|
|
|
num_iter = 0
|
|
image_list_c, image_list_py = [], []
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
|
|
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
num_iter += 1
|
|
c_image = item1["image"]
|
|
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image_list_c.append(c_image)
|
|
image_list_py.append(py_image)
|
|
|
|
logger.info("shape of c_image: {}".format(c_image.shape))
|
|
logger.info("shape of py_image: {}".format(py_image.shape))
|
|
|
|
logger.info("dtype of c_image: {}".format(c_image.dtype))
|
|
logger.info("dtype of py_image: {}".format(py_image.dtype))
|
|
|
|
mse = diff_mse(c_image, py_image)
|
|
assert mse < 0.001 # Rounding error
|
|
if plot:
|
|
visualize_list(image_list_c, image_list_py, visualize_mode=2)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_random_rotation_op_c(plot=True)
|
|
test_random_rotation_op_c_area()
|
|
test_random_rotation_op_py(plot=True)
|
|
test_random_rotation_op_py_ANTIALIAS()
|
|
test_random_rotation_expand()
|
|
test_random_rotation_md5()
|
|
test_rotation_diff(plot=True)
|