218 lines
7.7 KiB
Python
218 lines
7.7 KiB
Python
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Testing RandomGrayscale op in DE
|
|
"""
|
|
import numpy as np
|
|
|
|
import mindspore.dataset.transforms
|
|
import mindspore.dataset.vision as vision
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
from util import save_and_check_md5, visualize_list, \
|
|
config_get_set_seed, config_get_set_num_parallel_workers
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
|
|
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
|
|
|
|
|
|
def test_random_grayscale_valid_prob(plot=False):
|
|
"""
|
|
Feature: RandomGrayscale op
|
|
Description: Test RandomGrayscale op with valid input
|
|
Expectation: Passes the test
|
|
"""
|
|
logger.info("test_random_grayscale_valid_prob")
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
|
|
"image"], shuffle=False)
|
|
transforms1 = [
|
|
vision.Decode(True),
|
|
# Note: prob is 1 so the output should always be grayscale images
|
|
vision.RandomGrayscale(1),
|
|
vision.ToTensor()
|
|
]
|
|
transform1 = mindspore.dataset.transforms.Compose(transforms1)
|
|
data1 = data1.map(operations=transform1, input_columns=["image"])
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
|
|
"image"], shuffle=False)
|
|
transforms2 = [
|
|
vision.Decode(True),
|
|
vision.ToTensor()
|
|
]
|
|
transform2 = mindspore.dataset.transforms.Compose(transforms2)
|
|
data2 = data2.map(operations=transform2, input_columns=["image"])
|
|
|
|
image_gray = []
|
|
image = []
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
|
|
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image_gray.append(image1)
|
|
image.append(image2)
|
|
if plot:
|
|
visualize_list(image, image_gray)
|
|
|
|
|
|
def test_random_grayscale_input_grayscale_images():
|
|
"""
|
|
Feature: RandomGrayscale op
|
|
Description: Test RandomGrayscale op with valid parameter with grayscale images as input
|
|
Expectation: Passes the test
|
|
"""
|
|
logger.info("test_random_grayscale_input_grayscale_images")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# First dataset
|
|
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
|
|
"image"], shuffle=False)
|
|
transforms1 = [
|
|
vision.Decode(True),
|
|
vision.Grayscale(1),
|
|
# Note: If the input images is grayscale image with 1 channel.
|
|
vision.RandomGrayscale(0.5),
|
|
vision.ToTensor()
|
|
]
|
|
transform1 = mindspore.dataset.transforms.Compose(transforms1)
|
|
data1 = data1.map(operations=transform1, input_columns=["image"])
|
|
|
|
# Second dataset
|
|
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
|
|
"image"], shuffle=False)
|
|
transforms2 = [
|
|
vision.Decode(True),
|
|
vision.ToTensor()
|
|
]
|
|
transform2 = mindspore.dataset.transforms.Compose(transforms2)
|
|
data2 = data2.map(operations=transform2, input_columns=["image"])
|
|
|
|
image_gray = []
|
|
image = []
|
|
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
|
|
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
|
|
image_gray.append(image1)
|
|
image.append(image2)
|
|
|
|
assert len(image1.shape) == 3
|
|
assert image1.shape[2] == 1
|
|
assert len(image2.shape) == 3
|
|
assert image2.shape[2] == 3
|
|
|
|
# Restore config
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
|
|
def test_random_grayscale_md5_valid_input():
|
|
"""
|
|
Feature: RandomGrayscale op
|
|
Description: Test RandomGrayscale with md5 comparison and valid parameter
|
|
Expectation: Passes the md5 comparison test
|
|
"""
|
|
logger.info("test_random_grayscale_md5_valid_input")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
|
|
"image"], shuffle=False)
|
|
transforms = [
|
|
vision.Decode(True),
|
|
vision.RandomGrayscale(0.8),
|
|
vision.ToTensor()
|
|
]
|
|
transform = mindspore.dataset.transforms.Compose(transforms)
|
|
data = data.map(operations=transform, input_columns=["image"])
|
|
|
|
# Check output images with md5 comparison
|
|
filename = "random_grayscale_01_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
|
|
def test_random_grayscale_md5_no_param():
|
|
"""
|
|
Feature: RandomGrayscale op
|
|
Description: Test RandomGrayscale op with no parameter given
|
|
Expectation: Passes the test
|
|
"""
|
|
logger.info("test_random_grayscale_md5_no_param")
|
|
original_seed = config_get_set_seed(0)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
|
|
"image"], shuffle=False)
|
|
transforms = [
|
|
vision.Decode(True),
|
|
vision.RandomGrayscale(),
|
|
vision.ToTensor()
|
|
]
|
|
transform = mindspore.dataset.transforms.Compose(transforms)
|
|
data = data.map(operations=transform, input_columns=["image"])
|
|
|
|
# Check output images with md5 comparison
|
|
filename = "random_grayscale_02_result.npz"
|
|
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
|
|
|
|
# Restore config
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
|
|
|
|
def test_random_grayscale_invalid_param():
|
|
"""
|
|
Feature: RandomGrayscale op
|
|
Description: Test RandomGrayscale op with invalid parameter given
|
|
Expectation: Error is raised as expected
|
|
"""
|
|
logger.info("test_random_grayscale_invalid_param")
|
|
|
|
# Generate dataset
|
|
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
|
|
"image"], shuffle=False)
|
|
try:
|
|
transforms = [
|
|
vision.Decode(True),
|
|
vision.RandomGrayscale(1.5),
|
|
vision.ToTensor()
|
|
]
|
|
transform = mindspore.dataset.transforms.Compose(transforms)
|
|
data = data.map(operations=transform, input_columns=["image"])
|
|
except ValueError as e:
|
|
logger.info("Got an exception in DE: {}".format(str(e)))
|
|
assert "Input prob is not within the required interval of [0.0, 1.0]." in str(
|
|
e)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_random_grayscale_valid_prob(True)
|
|
test_random_grayscale_input_grayscale_images()
|
|
test_random_grayscale_md5_valid_input()
|
|
test_random_grayscale_md5_no_param()
|
|
test_random_grayscale_invalid_param()
|