mindspore/tests/ut/python/dataset/test_random_grayscale.py

218 lines
7.7 KiB
Python

# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RandomGrayscale op in DE
"""
import numpy as np
import mindspore.dataset.transforms
import mindspore.dataset.vision as vision
import mindspore.dataset as ds
from mindspore import log as logger
from util import save_and_check_md5, visualize_list, \
config_get_set_seed, config_get_set_num_parallel_workers
GENERATE_GOLDEN = False
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def test_random_grayscale_valid_prob(plot=False):
"""
Feature: RandomGrayscale op
Description: Test RandomGrayscale op with valid input
Expectation: Passes the test
"""
logger.info("test_random_grayscale_valid_prob")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
"image"], shuffle=False)
transforms1 = [
vision.Decode(True),
# Note: prob is 1 so the output should always be grayscale images
vision.RandomGrayscale(1),
vision.ToTensor()
]
transform1 = mindspore.dataset.transforms.Compose(transforms1)
data1 = data1.map(operations=transform1, input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
"image"], shuffle=False)
transforms2 = [
vision.Decode(True),
vision.ToTensor()
]
transform2 = mindspore.dataset.transforms.Compose(transforms2)
data2 = data2.map(operations=transform2, input_columns=["image"])
image_gray = []
image = []
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_gray.append(image1)
image.append(image2)
if plot:
visualize_list(image, image_gray)
def test_random_grayscale_input_grayscale_images():
"""
Feature: RandomGrayscale op
Description: Test RandomGrayscale op with valid parameter with grayscale images as input
Expectation: Passes the test
"""
logger.info("test_random_grayscale_input_grayscale_images")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
"image"], shuffle=False)
transforms1 = [
vision.Decode(True),
vision.Grayscale(1),
# Note: If the input images is grayscale image with 1 channel.
vision.RandomGrayscale(0.5),
vision.ToTensor()
]
transform1 = mindspore.dataset.transforms.Compose(transforms1)
data1 = data1.map(operations=transform1, input_columns=["image"])
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
"image"], shuffle=False)
transforms2 = [
vision.Decode(True),
vision.ToTensor()
]
transform2 = mindspore.dataset.transforms.Compose(transforms2)
data2 = data2.map(operations=transform2, input_columns=["image"])
image_gray = []
image = []
for item1, item2 in zip(data1.create_dict_iterator(num_epochs=1, output_numpy=True),
data2.create_dict_iterator(num_epochs=1, output_numpy=True)):
image1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image2 = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_gray.append(image1)
image.append(image2)
assert len(image1.shape) == 3
assert image1.shape[2] == 1
assert len(image2.shape) == 3
assert image2.shape[2] == 3
# Restore config
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_grayscale_md5_valid_input():
"""
Feature: RandomGrayscale op
Description: Test RandomGrayscale with md5 comparison and valid parameter
Expectation: Passes the md5 comparison test
"""
logger.info("test_random_grayscale_md5_valid_input")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
"image"], shuffle=False)
transforms = [
vision.Decode(True),
vision.RandomGrayscale(0.8),
vision.ToTensor()
]
transform = mindspore.dataset.transforms.Compose(transforms)
data = data.map(operations=transform, input_columns=["image"])
# Check output images with md5 comparison
filename = "random_grayscale_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore config
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_grayscale_md5_no_param():
"""
Feature: RandomGrayscale op
Description: Test RandomGrayscale op with no parameter given
Expectation: Passes the test
"""
logger.info("test_random_grayscale_md5_no_param")
original_seed = config_get_set_seed(0)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
"image"], shuffle=False)
transforms = [
vision.Decode(True),
vision.RandomGrayscale(),
vision.ToTensor()
]
transform = mindspore.dataset.transforms.Compose(transforms)
data = data.map(operations=transform, input_columns=["image"])
# Check output images with md5 comparison
filename = "random_grayscale_02_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore config
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_random_grayscale_invalid_param():
"""
Feature: RandomGrayscale op
Description: Test RandomGrayscale op with invalid parameter given
Expectation: Error is raised as expected
"""
logger.info("test_random_grayscale_invalid_param")
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=[
"image"], shuffle=False)
try:
transforms = [
vision.Decode(True),
vision.RandomGrayscale(1.5),
vision.ToTensor()
]
transform = mindspore.dataset.transforms.Compose(transforms)
data = data.map(operations=transform, input_columns=["image"])
except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input prob is not within the required interval of [0.0, 1.0]." in str(
e)
if __name__ == "__main__":
test_random_grayscale_valid_prob(True)
test_random_grayscale_input_grayscale_images()
test_random_grayscale_md5_valid_input()
test_random_grayscale_md5_no_param()
test_random_grayscale_invalid_param()