52 lines
1.7 KiB
Python
52 lines
1.7 KiB
Python
# Copyright 2019 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import numpy as np
|
|
|
|
import mindspore.dataset as ds
|
|
from util import config_get_set_seed, config_get_set_num_parallel_workers
|
|
|
|
|
|
# Generate 1d int numpy array from 0 - 63
|
|
def generator_1d():
|
|
for i in range(4):
|
|
yield (np.array([i]),)
|
|
|
|
|
|
def test_case_0():
|
|
"""
|
|
Test 1D Generator.
|
|
Test without explicit kwargs for input args.
|
|
"""
|
|
original_seed = config_get_set_seed(55)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
# apply dataset qoperations
|
|
data1 = ds.GeneratorDataset(generator_1d, ["data"])
|
|
data1 = data1.shuffle(2)
|
|
data1 = data1.map((lambda x: x), ["data"])
|
|
data1 = data1.batch(2)
|
|
|
|
expected_data = np.array([[[1], [2]], [[3], [0]]])
|
|
for i, data_row in enumerate(data1.create_tuple_iterator(num_epochs=1, output_numpy=True)):
|
|
np.testing.assert_array_equal(data_row[0], expected_data[i])
|
|
|
|
# Restore configuration
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers((original_num_parallel_workers))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_case_0()
|