350 lines
12 KiB
Python
350 lines
12 KiB
Python
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import pytest
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
from util import config_get_set_num_parallel_workers, config_get_set_seed
|
|
|
|
|
|
DATA_FILE = "../data/dataset/testTextFileDataset/1.txt"
|
|
DATA_ALL_FILE = "../data/dataset/testTextFileDataset/*"
|
|
|
|
|
|
def test_textline_dataset_one_file():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with one file
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
data = ds.TextFileDataset(DATA_FILE)
|
|
count = 0
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info("{}".format(i["text"]))
|
|
count += 1
|
|
assert count == 3
|
|
|
|
|
|
def test_textline_dataset_all_file():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with all file
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
data = ds.TextFileDataset(DATA_ALL_FILE)
|
|
count = 0
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info("{}".format(i["text"]))
|
|
count += 1
|
|
assert count == 5
|
|
|
|
|
|
def test_textline_dataset_num_samples_none():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with no parameter for num_samples (None by default)
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
# Do not provide a num_samples argument, so it would be None by default
|
|
data = ds.TextFileDataset(DATA_FILE)
|
|
count = 0
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info("{}".format(i["text"]))
|
|
count += 1
|
|
assert count == 3
|
|
|
|
|
|
def test_textline_dataset_shuffle_false4():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with no shuffle and num_parallel_workers=4
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
|
original_seed = config_get_set_seed(987)
|
|
data = ds.TextFileDataset(DATA_ALL_FILE, shuffle=False)
|
|
count = 0
|
|
line = ["This is a text file.", "Another file.",
|
|
"Be happy every day.", "End of file.", "Good luck to everyone."]
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
strs = i["text"].item().decode("utf8")
|
|
assert strs == line[count]
|
|
count += 1
|
|
assert count == 5
|
|
# Restore configuration
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_textline_dataset_shuffle_false1():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with no shuffle and num_parallel_workers=1
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
original_seed = config_get_set_seed(987)
|
|
data = ds.TextFileDataset(DATA_ALL_FILE, shuffle=False)
|
|
count = 0
|
|
line = ["This is a text file.", "Be happy every day.", "Good luck to everyone.",
|
|
"Another file.", "End of file."]
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
strs = i["text"].item().decode("utf8")
|
|
assert strs == line[count]
|
|
count += 1
|
|
assert count == 5
|
|
# Restore configuration
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_textline_dataset_shuffle_files4():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with shuffle and num_parallel_workers=4
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
|
original_seed = config_get_set_seed(135)
|
|
data = ds.TextFileDataset(DATA_ALL_FILE, shuffle=ds.Shuffle.FILES)
|
|
count = 0
|
|
line = ["This is a text file.", "Another file.",
|
|
"Be happy every day.", "End of file.", "Good luck to everyone."]
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
strs = i["text"].item().decode("utf8")
|
|
assert strs == line[count]
|
|
count += 1
|
|
assert count == 5
|
|
# Restore configuration
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_textline_dataset_shuffle_files1():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with shuffle and num_parallel_workers=1
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
original_seed = config_get_set_seed(135)
|
|
data = ds.TextFileDataset(DATA_ALL_FILE, shuffle=ds.Shuffle.FILES)
|
|
count = 0
|
|
line = ["This is a text file.", "Be happy every day.", "Good luck to everyone.",
|
|
"Another file.", "End of file."]
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
strs = i["text"].item().decode("utf8")
|
|
assert strs == line[count]
|
|
count += 1
|
|
assert count == 5
|
|
# Restore configuration
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_textline_dataset_shuffle_global4():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with global shuffle and num_parallel_workers=4
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(4)
|
|
original_seed = config_get_set_seed(246)
|
|
data = ds.TextFileDataset(DATA_ALL_FILE, shuffle=ds.Shuffle.GLOBAL)
|
|
count = 0
|
|
line = ["Another file.", "Good luck to everyone.", "End of file.",
|
|
"This is a text file.", "Be happy every day."]
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
strs = i["text"].item().decode("utf8")
|
|
assert strs == line[count]
|
|
count += 1
|
|
assert count == 5
|
|
# Restore configuration
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_textline_dataset_shuffle_global1():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with global shuffle and num_parallel_workers=1
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
original_seed = config_get_set_seed(246)
|
|
data = ds.TextFileDataset(DATA_ALL_FILE, shuffle=ds.Shuffle.GLOBAL)
|
|
count = 0
|
|
line = ["Another file.", "Good luck to everyone.", "This is a text file.",
|
|
"End of file.", "Be happy every day."]
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
strs = i["text"].item().decode("utf8")
|
|
assert strs == line[count]
|
|
count += 1
|
|
assert count == 5
|
|
# Restore configuration
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers)
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_textline_dataset_num_samples():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with num_samples parameter
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
data = ds.TextFileDataset(DATA_FILE, num_samples=2)
|
|
count = 0
|
|
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
count += 1
|
|
assert count == 2
|
|
|
|
|
|
def test_textline_dataset_distribution():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with num_shards and shard_id parameters
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
data = ds.TextFileDataset(DATA_ALL_FILE, num_shards=2, shard_id=1)
|
|
count = 0
|
|
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
count += 1
|
|
assert count == 3
|
|
|
|
|
|
def test_textline_dataset_repeat():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset with repeat
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
data = data.repeat(3)
|
|
count = 0
|
|
line = ["This is a text file.", "Be happy every day.", "Good luck to everyone.",
|
|
"This is a text file.", "Be happy every day.", "Good luck to everyone.",
|
|
"This is a text file.", "Be happy every day.", "Good luck to everyone."]
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
strs = i["text"].item().decode("utf8")
|
|
assert strs == line[count]
|
|
count += 1
|
|
assert count == 9
|
|
|
|
|
|
def test_textline_dataset_output_tensor():
|
|
"""
|
|
Feature: Test text dataset output string and construct mindspore.Tensor.
|
|
Description: Set output_numpy=False in create_dict_iterator.
|
|
Expectation: Output tensor successfully
|
|
"""
|
|
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
expected_text = ["This is a text file.", "Be happy every day.", "Good luck to everyone."]
|
|
|
|
count = 0
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=False):
|
|
logger.info("{}".format(i["text"]))
|
|
assert expected_text[count] == str(i["text"])
|
|
count += 1
|
|
assert count == 3
|
|
|
|
count = 0
|
|
for i in data.create_tuple_iterator(num_epochs=1, output_numpy=False, do_copy=True):
|
|
logger.info("{}".format(i[0]))
|
|
assert expected_text[count] == str(i[0])
|
|
count += 1
|
|
assert count == 3
|
|
|
|
count = 0
|
|
for i in data.create_tuple_iterator(num_epochs=1, output_numpy=False, do_copy=False):
|
|
logger.info("{}".format(i[0]))
|
|
assert expected_text[count] == str(i[0])
|
|
count += 1
|
|
assert count == 3
|
|
|
|
count = 0
|
|
for i in data:
|
|
logger.info("{}".format(i[0]))
|
|
assert expected_text[count] == str(i[0])
|
|
count += 1
|
|
assert count == 3
|
|
|
|
|
|
def test_textline_dataset_get_datasetsize():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset get_dataset_size
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
data = ds.TextFileDataset(DATA_FILE)
|
|
size = data.get_dataset_size()
|
|
assert size == 3
|
|
|
|
|
|
def test_textline_dataset_to_device():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test TextFileDataset to_device
|
|
Expectation: The dataset is processed as expected
|
|
"""
|
|
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
|
|
data = data.to_device()
|
|
data.send()
|
|
|
|
|
|
def test_textline_dataset_exceptions():
|
|
"""
|
|
Feature: TextFileDataset
|
|
Description: Test error cases for TextFileDataset
|
|
Expectation: Correct error is thrown as expected
|
|
"""
|
|
with pytest.raises(ValueError) as error_info:
|
|
_ = ds.TextFileDataset(DATA_FILE, num_samples=-1)
|
|
assert "num_samples exceeds the boundary" in str(error_info.value)
|
|
|
|
with pytest.raises(ValueError) as error_info:
|
|
_ = ds.TextFileDataset("does/not/exist/no.txt")
|
|
assert "The following patterns did not match any files" in str(error_info.value)
|
|
|
|
with pytest.raises(ValueError) as error_info:
|
|
_ = ds.TextFileDataset("")
|
|
assert "The following patterns did not match any files" in str(error_info.value)
|
|
|
|
def exception_func(item):
|
|
raise Exception("Error occur!")
|
|
with pytest.raises(RuntimeError) as error_info:
|
|
data = ds.TextFileDataset(DATA_FILE)
|
|
data = data.map(operations=exception_func, input_columns=["text"], num_parallel_workers=1)
|
|
for _ in data.__iter__():
|
|
pass
|
|
assert "map operation: [PyFunc] failed. The corresponding data files" in str(error_info.value)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_textline_dataset_one_file()
|
|
test_textline_dataset_all_file()
|
|
test_textline_dataset_num_samples_none()
|
|
test_textline_dataset_shuffle_false4()
|
|
test_textline_dataset_shuffle_false1()
|
|
test_textline_dataset_shuffle_files4()
|
|
test_textline_dataset_shuffle_files1()
|
|
test_textline_dataset_shuffle_global4()
|
|
test_textline_dataset_shuffle_global1()
|
|
test_textline_dataset_num_samples()
|
|
test_textline_dataset_distribution()
|
|
test_textline_dataset_repeat()
|
|
test_textline_dataset_output_tensor()
|
|
test_textline_dataset_get_datasetsize()
|
|
test_textline_dataset_to_device()
|
|
test_textline_dataset_exceptions()
|