398 lines
15 KiB
Python
398 lines
15 KiB
Python
# Copyright 2021-2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Test STL10 dataset operators
|
|
"""
|
|
import os
|
|
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.vision as vision
|
|
from mindspore import log as logger
|
|
|
|
DATA_DIR = "../data/dataset/testSTL10Data"
|
|
WRONG_DIR = "../data/dataset/testMnistData"
|
|
|
|
|
|
def loadfile(path_to_data, path_to_labels=None):
|
|
"""
|
|
Feature: loadfile.
|
|
Description: Parse stl10 file.
|
|
Expectation: Get image and label of stl10 dataset.
|
|
"""
|
|
labels = None
|
|
if path_to_labels:
|
|
with open(os.path.realpath(path_to_labels), 'rb') as f:
|
|
labels = np.fromfile(f, dtype=np.uint8) - 1 # 0-based
|
|
|
|
with open(path_to_data, 'rb') as f:
|
|
# read whole file in uint8 chunks
|
|
everything = np.fromfile(f, dtype=np.uint8)
|
|
images = np.reshape(everything, (-1, 3, 96, 96))
|
|
images = np.transpose(images, (0, 1, 3, 2))
|
|
return images, labels
|
|
|
|
|
|
def load_stl10(path, usage):
|
|
"""
|
|
Feature: load_stl10.
|
|
Description: Load stl10.
|
|
Expectation: Get data of stl10 dataset.
|
|
"""
|
|
assert usage in ["train", "test", "unlabeled", "train+unlabeled", "all"]
|
|
|
|
if usage == "train":
|
|
image_path = os.path.join(path, "train_X.bin")
|
|
label_path = os.path.join(path, "train_y.bin")
|
|
images, labels = loadfile(image_path, label_path)
|
|
|
|
elif usage == "train+unlabeled":
|
|
image_path = os.path.join(path, "train_X.bin")
|
|
label_path = os.path.join(path, "train_y.bin")
|
|
images, labels = loadfile(image_path, label_path)
|
|
|
|
image_path = os.path.join(path, "unlabeled_X.bin")
|
|
unlabeled_image, _ = loadfile(image_path)
|
|
|
|
images = np.concatenate((images, unlabeled_image))
|
|
labels = np.concatenate((labels, np.asarray([-1] * unlabeled_image.shape[0])))
|
|
|
|
elif usage == "unlabeled":
|
|
image_path = os.path.join(path, "unlabeled_X.bin")
|
|
|
|
images, _ = loadfile(image_path)
|
|
labels = np.asarray([-1] * images.shape[0])
|
|
|
|
elif usage == "test":
|
|
image_path = os.path.join(path, "test_X.bin")
|
|
label_path = os.path.join(path, "test_y.bin")
|
|
|
|
images, labels = loadfile(image_path, label_path)
|
|
|
|
elif usage == "all":
|
|
image_path = os.path.join(path, "test_X.bin")
|
|
label_path = os.path.join(path, "test_y.bin")
|
|
images, labels = loadfile(image_path, label_path)
|
|
|
|
image_path = os.path.join(path, "train_X.bin")
|
|
label_path = os.path.join(path, "train_y.bin")
|
|
|
|
train_image, train_label = loadfile(image_path, label_path)
|
|
|
|
images = np.concatenate((images, train_image))
|
|
labels = np.concatenate((labels, train_label))
|
|
|
|
image_path = os.path.join(path, "unlabeled_X.bin")
|
|
unlabeled_image, _ = loadfile(image_path)
|
|
|
|
images = np.concatenate((images, unlabeled_image))
|
|
labels = np.concatenate((labels, np.asarray([-1] * unlabeled_image.shape[0])))
|
|
|
|
return images, labels
|
|
|
|
|
|
def visualize_dataset(images, labels):
|
|
"""
|
|
Feature: visualize_dataset.
|
|
Description: Visualize stl10 dataset.
|
|
Expectation: Plot images.
|
|
"""
|
|
num_samples = len(images)
|
|
for i in range(num_samples):
|
|
plt.subplot(1, num_samples, i + 1)
|
|
plt.imshow(np.transpose(images[i], (1, 2, 0)))
|
|
plt.title(labels[i])
|
|
plt.show()
|
|
|
|
|
|
def test_stl10_content_check():
|
|
"""
|
|
Feature: test_stl10_content_check.
|
|
Description: Validate STL10ataset image readings.
|
|
Expectation: Get correct number of data and correct content.
|
|
"""
|
|
logger.info("Test STL10Dataset Op with content check")
|
|
# 1. train data.
|
|
data1 = ds.STL10Dataset(DATA_DIR, usage="train", num_samples=1, shuffle=False)
|
|
images, labels = load_stl10(DATA_DIR, "train")
|
|
num_iter = 0
|
|
# in this example, each dictionary has keys "image" and "label".
|
|
for i, d in enumerate(data1.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
np.testing.assert_array_equal(d["image"], np.transpose(images[i], (1, 2, 0)))
|
|
np.testing.assert_array_equal(d["label"], labels[i])
|
|
num_iter += 1
|
|
assert num_iter == 1
|
|
|
|
# 2. test data.
|
|
data1 = ds.STL10Dataset(DATA_DIR, usage="test", num_samples=1, shuffle=False)
|
|
images, labels = load_stl10(DATA_DIR, "test")
|
|
num_iter = 0
|
|
# in this example, each dictionary has keys "image" and "label".
|
|
for i, d in enumerate(data1.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
np.testing.assert_array_equal(d["image"], np.transpose(images[i], (1, 2, 0)))
|
|
np.testing.assert_array_equal(d["label"], labels[i])
|
|
num_iter += 1
|
|
assert num_iter == 1
|
|
|
|
# 3. unlabeled data.
|
|
data1 = ds.STL10Dataset(DATA_DIR, usage="unlabeled", num_samples=1, shuffle=False)
|
|
images, labels = load_stl10(DATA_DIR, "unlabeled")
|
|
num_iter = 0
|
|
# in this example, each dictionary has keys "image" and "label".
|
|
for i, d in enumerate(data1.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
np.testing.assert_array_equal(d["image"], np.transpose(images[i], (1, 2, 0)))
|
|
np.testing.assert_array_equal(d["label"], labels[i])
|
|
num_iter += 1
|
|
assert num_iter == 1
|
|
|
|
# 4. train+unlabeled data.
|
|
data1 = ds.STL10Dataset(DATA_DIR, usage="train+unlabeled", num_samples=2, shuffle=False)
|
|
images, labels = load_stl10(DATA_DIR, "train+unlabeled")
|
|
num_iter = 0
|
|
# in this example, each dictionary has keys "image" and "label".
|
|
for i, d in enumerate(data1.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
np.testing.assert_array_equal(d["image"], np.transpose(images[i], (1, 2, 0)))
|
|
np.testing.assert_array_equal(d["label"], labels[i])
|
|
num_iter += 1
|
|
assert num_iter == 2
|
|
|
|
# 4. all data.
|
|
data1 = ds.STL10Dataset(DATA_DIR, usage="all", num_samples=3, shuffle=False)
|
|
images, labels = load_stl10(DATA_DIR, "all")
|
|
num_iter = 0
|
|
# in this example, each dictionary has keys "image" and "label".
|
|
for i, d in enumerate(data1.create_dict_iterator(num_epochs=1, output_numpy=True)):
|
|
np.testing.assert_array_equal(d["image"], np.transpose(images[i], (1, 2, 0)))
|
|
np.testing.assert_array_equal(d["label"], labels[i])
|
|
num_iter += 1
|
|
assert num_iter == 3
|
|
|
|
|
|
def test_stl10_basic():
|
|
"""
|
|
Feature: test_stl10_basic.
|
|
Description: Test basic usage of STL10Dataset.
|
|
Expectation: Get correct number of data.
|
|
"""
|
|
logger.info("Test STL10Dataset Op")
|
|
|
|
# case 1: test loading whole dataset.
|
|
all_data = ds.STL10Dataset(DATA_DIR, "all")
|
|
num_iter = 0
|
|
for _ in all_data.create_dict_iterator(num_epochs=1):
|
|
num_iter += 1
|
|
assert num_iter == 3
|
|
|
|
# case 2: test num_samples.
|
|
all_data = ds.STL10Dataset(DATA_DIR, "all", num_samples=1)
|
|
num_iter = 0
|
|
for _ in all_data.create_dict_iterator(num_epochs=1):
|
|
num_iter += 1
|
|
assert num_iter == 1
|
|
|
|
# case 3: test repeat.
|
|
all_data = ds.STL10Dataset(DATA_DIR, "all", num_samples=2)
|
|
all_data = all_data.repeat(5)
|
|
num_iter = 0
|
|
for _ in all_data.create_dict_iterator(num_epochs=1):
|
|
num_iter += 1
|
|
assert num_iter == 10
|
|
|
|
# case 4: test batch with drop_remainder=False.
|
|
all_data = ds.STL10Dataset(DATA_DIR, "all", num_samples=2)
|
|
assert all_data.get_dataset_size() == 2
|
|
assert all_data.get_batch_size() == 1
|
|
all_data = all_data.batch(batch_size=2) # drop_remainder is default to be False.
|
|
assert all_data.get_batch_size() == 2
|
|
assert all_data.get_dataset_size() == 1
|
|
|
|
num_iter = 0
|
|
for _ in all_data.create_dict_iterator(num_epochs=1):
|
|
num_iter += 1
|
|
assert num_iter == 1
|
|
|
|
# case 5: test batch with drop_remainder=True.
|
|
all_data = ds.STL10Dataset(DATA_DIR, "all", num_samples=2)
|
|
assert all_data.get_dataset_size() == 2
|
|
assert all_data.get_batch_size() == 1
|
|
all_data = all_data.batch(batch_size=2, drop_remainder=True) # the rest of incomplete batch will be dropped.
|
|
assert all_data.get_dataset_size() == 1
|
|
assert all_data.get_batch_size() == 2
|
|
num_iter = 0
|
|
for _ in all_data.create_dict_iterator(num_epochs=1):
|
|
num_iter += 1
|
|
assert num_iter == 1
|
|
|
|
|
|
def test_stl10_sequential_sampler():
|
|
"""
|
|
Feature: test_stl10_sequential_sampler.
|
|
Description: Test usage of STL10Dataset with SequentialSampler.
|
|
Expectation: Get correct number of data.
|
|
"""
|
|
logger.info("Test STL10Dataset Op with SequentialSampler")
|
|
num_samples = 2
|
|
sampler = ds.SequentialSampler(num_samples=num_samples)
|
|
all_data_1 = ds.STL10Dataset(DATA_DIR, "all", sampler=sampler)
|
|
all_data_2 = ds.STL10Dataset(DATA_DIR, "all", shuffle=False, num_samples=num_samples)
|
|
label_list_1, label_list_2 = [], []
|
|
num_iter = 0
|
|
for item1, item2 in zip(all_data_1.create_dict_iterator(num_epochs=1),
|
|
all_data_2.create_dict_iterator(num_epochs=1)):
|
|
label_list_1.append(item1["label"].asnumpy())
|
|
label_list_2.append(item2["label"].asnumpy())
|
|
num_iter += 1
|
|
np.testing.assert_array_equal(label_list_1, label_list_2)
|
|
assert num_iter == num_samples
|
|
|
|
|
|
def test_stl10_exception():
|
|
"""
|
|
Feature: test_stl10_exception.
|
|
Description: Test error cases for STL10Dataset.
|
|
Expectation: Raise exception.
|
|
"""
|
|
logger.info("Test error cases for STL10Dataset")
|
|
error_msg_1 = "sampler and shuffle cannot be specified at the same time"
|
|
with pytest.raises(RuntimeError, match=error_msg_1):
|
|
ds.STL10Dataset(DATA_DIR, "all", shuffle=False, sampler=ds.PKSampler(3))
|
|
|
|
error_msg_2 = "sampler and sharding cannot be specified at the same time"
|
|
with pytest.raises(RuntimeError, match=error_msg_2):
|
|
ds.STL10Dataset(DATA_DIR, "all", sampler=ds.PKSampler(3), num_shards=2, shard_id=0)
|
|
|
|
error_msg_3 = "num_shards is specified and currently requires shard_id as well"
|
|
with pytest.raises(RuntimeError, match=error_msg_3):
|
|
ds.STL10Dataset(DATA_DIR, "all", num_shards=10)
|
|
|
|
error_msg_4 = "shard_id is specified but num_shards is not"
|
|
with pytest.raises(RuntimeError, match=error_msg_4):
|
|
ds.STL10Dataset(DATA_DIR, "all", shard_id=0)
|
|
|
|
error_msg_5 = "Input shard_id is not within the required interval"
|
|
with pytest.raises(ValueError, match=error_msg_5):
|
|
ds.STL10Dataset(DATA_DIR, "all", num_shards=5, shard_id=-1)
|
|
with pytest.raises(ValueError, match=error_msg_5):
|
|
ds.STL10Dataset(DATA_DIR, "all", num_shards=5, shard_id=5)
|
|
with pytest.raises(ValueError, match=error_msg_5):
|
|
ds.STL10Dataset(DATA_DIR, "all", num_shards=2, shard_id=5)
|
|
error_msg_6 = "num_parallel_workers exceeds"
|
|
with pytest.raises(ValueError, match=error_msg_6):
|
|
ds.STL10Dataset(DATA_DIR, "all", shuffle=False, num_parallel_workers=0)
|
|
with pytest.raises(ValueError, match=error_msg_6):
|
|
ds.STL10Dataset(DATA_DIR, "all", shuffle=False, num_parallel_workers=256)
|
|
with pytest.raises(ValueError, match=error_msg_6):
|
|
ds.STL10Dataset(DATA_DIR, "all", shuffle=False, num_parallel_workers=-2)
|
|
error_msg_7 = "Argument shard_id"
|
|
with pytest.raises(TypeError, match=error_msg_7):
|
|
ds.STL10Dataset(DATA_DIR, "all", num_shards=2, shard_id="0")
|
|
|
|
def exception_func(item):
|
|
raise Exception("Error occur!")
|
|
|
|
error_msg_8 = "The corresponding data files"
|
|
with pytest.raises(RuntimeError, match=error_msg_8):
|
|
all_data = ds.STL10Dataset(DATA_DIR, "all")
|
|
all_data = all_data.map(operations=exception_func, input_columns=["image"], num_parallel_workers=1)
|
|
for _ in all_data.__iter__():
|
|
pass
|
|
|
|
with pytest.raises(RuntimeError, match=error_msg_8):
|
|
all_data = ds.STL10Dataset(DATA_DIR, "all")
|
|
all_data = all_data.map(operations=vision.Decode(), input_columns=["image"], num_parallel_workers=1)
|
|
for _ in all_data.__iter__():
|
|
pass
|
|
|
|
error_msg_9 = "does not exist or permission denied!"
|
|
with pytest.raises(ValueError, match=error_msg_9):
|
|
all_data = ds.STL10Dataset(WRONG_DIR, "all")
|
|
for _ in all_data.__iter__():
|
|
pass
|
|
|
|
|
|
def test_stl10_visualize(plot=False):
|
|
"""
|
|
Feature: test_stl10_visualize.
|
|
Description: Visualize STL10Dataset results.
|
|
Expectation: Get correct number of data and plot them.
|
|
"""
|
|
logger.info("Test STL10Dataset visualization")
|
|
all_data = ds.STL10Dataset(DATA_DIR, "all", num_samples=2, shuffle=False)
|
|
num_iter = 0
|
|
image_list, label_list = [], []
|
|
for item in all_data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
image = item["image"]
|
|
label = item["label"]
|
|
image_list.append(image)
|
|
label_list.append("label {}".format(label))
|
|
assert isinstance(image, np.ndarray)
|
|
assert image.shape == (96, 96, 3)
|
|
assert image.dtype == np.uint8
|
|
assert label.dtype == np.int32
|
|
num_iter += 1
|
|
assert num_iter == 2
|
|
if plot:
|
|
visualize_dataset(image_list, label_list)
|
|
|
|
|
|
def test_stl10_usage():
|
|
"""
|
|
Feature: test_stl10_usage.
|
|
Description: Validate STL10Dataset image readings.
|
|
Expectation: Get correct number of data.
|
|
"""
|
|
logger.info("Test STL10Dataset usage flag")
|
|
|
|
def test_config(usage, path=None):
|
|
path = DATA_DIR if path is None else path
|
|
try:
|
|
data = ds.STL10Dataset(path, usage=usage, shuffle=False)
|
|
num_rows = 0
|
|
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
num_rows += 1
|
|
except (ValueError, TypeError, RuntimeError) as e:
|
|
return str(e)
|
|
return num_rows
|
|
|
|
assert test_config("train") == 1
|
|
assert test_config("test") == 1
|
|
assert test_config("unlabeled") == 1
|
|
assert test_config("train+unlabeled") == 2
|
|
assert test_config("all") == 3
|
|
|
|
assert "Input usage is not within the valid set of ['train', 'test', 'unlabeled', 'train+unlabeled', 'all']."\
|
|
in test_config("invalid")
|
|
assert "Argument usage with value ['list'] is not of type [<class 'str'>]" in test_config(["list"])
|
|
|
|
# change this directory to the folder that contains all STL10 files.
|
|
all_files_path = None
|
|
# the following tests on the entire datasets.
|
|
if all_files_path is not None:
|
|
assert test_config("train", all_files_path) == 1
|
|
|
|
assert ds.STL10Dataset(all_files_path, usage="train").get_dataset_size() == 1
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_stl10_content_check()
|
|
test_stl10_basic()
|
|
test_stl10_sequential_sampler()
|
|
test_stl10_exception()
|
|
test_stl10_visualize(plot=True)
|
|
test_stl10_usage()
|