340 lines
13 KiB
Python
340 lines
13 KiB
Python
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
"""
|
|
Test Compose op in Dataset
|
|
"""
|
|
import numpy as np
|
|
import pytest
|
|
import mindspore.common.dtype as mstype
|
|
import mindspore.dataset as ds
|
|
import mindspore.dataset.transforms as transforms
|
|
import mindspore.dataset.vision as vision
|
|
|
|
from util import visualize_list, save_and_check_md5, config_get_set_seed, config_get_set_num_parallel_workers
|
|
|
|
GENERATE_GOLDEN = False
|
|
|
|
|
|
def test_compose():
|
|
"""
|
|
Feature: Compose Op
|
|
Description: Test Compose op, C++ implementation and Python implementation, valid and invalid input
|
|
Expectation: For valid input, dataset pipeline runs successfully, and results are verified.
|
|
For invalid input, error message is verified.
|
|
"""
|
|
original_seed = config_get_set_seed(0)
|
|
|
|
def test_config(arr, op_list):
|
|
try:
|
|
data = ds.NumpySlicesDataset(
|
|
arr, column_names="col", shuffle=False)
|
|
data = data.map(input_columns=["col"], operations=op_list)
|
|
res = []
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
res.append(i["col"].tolist())
|
|
return res
|
|
except (TypeError, ValueError) as e:
|
|
return str(e)
|
|
|
|
# Test simple compose with only 1 op, this would generate a warning
|
|
assert test_config([[1, 0], [3, 4]], transforms.Compose(
|
|
[transforms.Fill(2)])) == [[2, 2], [2, 2]]
|
|
|
|
# Test 1 column -> 2 columns -> 1 -> 2 -> 1
|
|
assert test_config([[1, 0]],
|
|
transforms.Compose(
|
|
[transforms.Duplicate(), transforms.Concatenate(), transforms.Duplicate(),
|
|
transforms.Concatenate()])) \
|
|
== [[1, 0] * 4]
|
|
|
|
# Test one Python transform followed by a C++ transform. Type after OneHot is a float (mixed use-case)
|
|
assert test_config([1, 0],
|
|
transforms.Compose([transforms.OneHot(2), transforms.TypeCast(mstype.int32)])) \
|
|
== [[0, 1], [1, 0]]
|
|
|
|
# Test exceptions.
|
|
with pytest.raises(TypeError) as error_info:
|
|
transforms.Compose([1, transforms.TypeCast(mstype.int32)])
|
|
assert "op_list[0] is neither a c_transform op (TensorOperation) nor a callable pyfunc." in str(
|
|
error_info.value)
|
|
|
|
# Test empty op list
|
|
with pytest.raises(ValueError) as error_info:
|
|
test_config([1, 0], transforms.Compose([]))
|
|
assert "op_list can not be empty." in str(error_info.value)
|
|
|
|
# Test Python compose op
|
|
assert test_config([1, 0], transforms.Compose(
|
|
[transforms.OneHot(2)])) == [[0, 1], [1, 0]]
|
|
assert test_config([1, 0], transforms.Compose([transforms.OneHot(2), (lambda x: x + x)])) == [[0, 2],
|
|
[2, 0]]
|
|
|
|
# Test nested Python compose op
|
|
assert test_config([1, 0],
|
|
transforms.Compose([transforms.Compose([transforms.OneHot(2)]), (lambda x: x + x)])) \
|
|
== [[0, 2], [2, 0]]
|
|
|
|
# Test passing a list of Python implementations without Compose wrapper
|
|
assert test_config([1, 0],
|
|
[transforms.Compose([transforms.OneHot(2)]), (lambda x: x + x)]) \
|
|
== [[0, 2], [2, 0]]
|
|
assert test_config([1, 0], [transforms.OneHot(
|
|
2), (lambda x: x + x)]) == [[0, 2], [2, 0]]
|
|
|
|
# Test a non callable function
|
|
with pytest.raises(TypeError) as error_info:
|
|
transforms.Compose([1])
|
|
assert "op_list[0] is neither a c_transform op (TensorOperation) nor a callable pyfunc." in str(
|
|
error_info.value)
|
|
|
|
# Test empty Python implementation list
|
|
with pytest.raises(ValueError) as error_info:
|
|
test_config([1, 0], transforms.Compose([]))
|
|
assert "op_list can not be empty." in str(error_info.value)
|
|
|
|
# Pass in extra brackets
|
|
with pytest.raises(RuntimeError) as error_info:
|
|
transforms.Compose([(lambda x: x + x)])()
|
|
assert "Input Tensor is not valid." in str(error_info.value)
|
|
|
|
# Restore configuration
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_lambdas():
|
|
"""
|
|
Feature: Compose op
|
|
Description: Test multi column Python Compose op
|
|
Expectation: Output is equal to the expected value
|
|
"""
|
|
original_seed = config_get_set_seed(0)
|
|
|
|
def test_config(arr, input_columns, output_cols, op_list):
|
|
data = ds.NumpySlicesDataset(
|
|
arr, column_names=input_columns, shuffle=False)
|
|
data = data.map(operations=op_list, input_columns=input_columns, output_columns=output_cols,
|
|
column_order=output_cols)
|
|
res = []
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
for col_name in output_cols:
|
|
res.append(i[col_name].tolist())
|
|
return res
|
|
|
|
arr = ([[1]], [[3]])
|
|
|
|
assert test_config(arr, ["col0", "col1"], ["a"],
|
|
transforms.Compose([(lambda x, y: x)])) == [[1]]
|
|
assert test_config(arr, ["col0", "col1"], ["a"], transforms.Compose(
|
|
[lambda x, y: x, lambda x: x])) == [[1]]
|
|
assert test_config(arr, ["col0", "col1"], ["a", "b"],
|
|
transforms.Compose([lambda x, y: x, lambda x: (x, x * 2)])) == \
|
|
[[1], [2]]
|
|
assert test_config(arr, ["col0", "col1"], ["a", "b"],
|
|
[lambda x, y: (x, x + y), lambda x, y: (x, y * 2)]) == [[1], [8]]
|
|
|
|
# Restore configuration
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_c_py_compose_transforms_module():
|
|
"""
|
|
Feature: Compose op
|
|
Description: Test combining Cpp and Python transformations
|
|
Expectation: Output is equal to the expected value
|
|
"""
|
|
original_seed = config_get_set_seed(0)
|
|
|
|
def test_config(arr, input_columns, output_cols, op_list):
|
|
data = ds.NumpySlicesDataset(
|
|
arr, column_names=input_columns, shuffle=False)
|
|
data = data.map(operations=op_list, input_columns=input_columns, output_columns=output_cols,
|
|
column_order=output_cols)
|
|
res = []
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
for col_name in output_cols:
|
|
res.append(i[col_name].tolist())
|
|
return res
|
|
|
|
arr = [1, 0]
|
|
assert test_config(arr, ["cols"], ["cols"],
|
|
[transforms.OneHot(2), transforms.Mask(transforms.Relational.EQ, 1)]) == \
|
|
[[False, True],
|
|
[True, False]]
|
|
assert test_config(arr, ["cols"], ["cols"],
|
|
[transforms.OneHot(2), (lambda x: x + x), transforms.Fill(1)]) \
|
|
== [[1, 1], [1, 1]]
|
|
assert test_config(arr, ["cols"], ["cols"],
|
|
[transforms.OneHot(2), (lambda x: x + x), transforms.Fill(1), (lambda x: x + x)]) \
|
|
== [[2, 2], [2, 2]]
|
|
assert test_config([[1, 3]], ["cols"], ["cols"],
|
|
[transforms.PadEnd([3], -1), (lambda x: x + x)]) \
|
|
== [[2, 6, -2]]
|
|
|
|
arr = ([[1]], [[3]])
|
|
assert test_config(arr, ["col0", "col1"], ["a"], [
|
|
(lambda x, y: x + y), transforms.PadEnd([2], -1)]) == [[4, -1]]
|
|
|
|
# Restore configuration
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_c_py_compose_vision_module(plot=False, run_golden=True):
|
|
"""
|
|
Feature: Compose Op
|
|
Description: Test Compose op combining Python and C++ vision transforms
|
|
Expectation: Dataset pipeline runs successfully, results are visually verified and md5 results are verified
|
|
"""
|
|
original_seed = config_get_set_seed(10)
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
|
|
|
|
def test_config(plot, file_name, op_list):
|
|
data_dir = "../data/dataset/testImageNetData/train/"
|
|
data1 = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
|
|
data1 = data1.map(operations=op_list, input_columns=["image"])
|
|
data2 = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
|
|
data2 = data2.map(operations=vision.Decode(), input_columns=["image"])
|
|
original_images = []
|
|
transformed_images = []
|
|
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
transformed_images.append(item["image"])
|
|
for item in data2.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
original_images.append(item["image"])
|
|
|
|
if run_golden:
|
|
# Compare with expected md5 from images
|
|
save_and_check_md5(
|
|
data1, file_name, generate_golden=GENERATE_GOLDEN)
|
|
|
|
if plot:
|
|
visualize_list(original_images, transformed_images)
|
|
|
|
test_config(op_list=[vision.Decode(),
|
|
vision.ToPIL(),
|
|
vision.Resize((224, 224)),
|
|
vision.ToNumpy()],
|
|
plot=plot, file_name="compose_c_py_1.npz")
|
|
|
|
test_config(op_list=[vision.Decode(),
|
|
vision.Resize((224, 244)),
|
|
vision.ToPIL(),
|
|
vision.ToNumpy(),
|
|
vision.Resize((24, 24))],
|
|
plot=plot, file_name="compose_c_py_2.npz")
|
|
|
|
test_config(op_list=[vision.Decode(True),
|
|
vision.Resize((224, 224)),
|
|
np.array,
|
|
vision.RandomColor()],
|
|
plot=plot, file_name="compose_c_py_3.npz")
|
|
|
|
# Restore configuration
|
|
ds.config.set_seed(original_seed)
|
|
ds.config.set_num_parallel_workers((original_num_parallel_workers))
|
|
|
|
|
|
def test_vision_with_transforms():
|
|
"""
|
|
Feature: Data transforms and vision ops
|
|
Description: Test (Python implementation) vision operations with C++ implementation transforms operations
|
|
Expectation: Valid input succeeds. Invalid input fails.
|
|
"""
|
|
|
|
original_seed = config_get_set_seed(0)
|
|
|
|
def test_config(op_list):
|
|
data_dir = "../data/dataset/testImageNetData/train/"
|
|
data1 = ds.ImageFolderDataset(dataset_dir=data_dir, shuffle=False)
|
|
data1 = data1.map(operations=op_list, input_columns=["image"])
|
|
transformed_images = []
|
|
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
transformed_images.append(item["image"])
|
|
return transformed_images
|
|
|
|
# Test with Mask Op
|
|
output_arr = test_config([vision.Decode(True),
|
|
vision.CenterCrop((2)), vision.ToNumpy(),
|
|
transforms.Mask(transforms.Relational.GE, 100)])
|
|
|
|
exp_arr = [np.array([[[True, False, False],
|
|
[True, False, False]],
|
|
[[True, False, False],
|
|
[True, False, False]]]),
|
|
np.array([[[True, False, False],
|
|
[True, False, False]],
|
|
[[True, False, False],
|
|
[True, False, False]]])]
|
|
|
|
for exp_a, output in zip(exp_arr, output_arr):
|
|
np.testing.assert_array_equal(exp_a, output)
|
|
|
|
# Test with Fill Op
|
|
output_arr = test_config([vision.Decode(True),
|
|
vision.CenterCrop((4)), vision.ToNumpy(),
|
|
transforms.Fill(10)])
|
|
|
|
exp_arr = [np.ones((4, 4, 3)) * 10] * 2
|
|
for exp_a, output in zip(exp_arr, output_arr):
|
|
np.testing.assert_array_equal(exp_a, output)
|
|
|
|
# Test with Concatenate Op, which will raise an error since ConcatenateOp only supports rank 1 tensors.
|
|
with pytest.raises(RuntimeError) as error_info:
|
|
test_config([vision.Decode(True),
|
|
vision.CenterCrop((2)), vision.ToNumpy(),
|
|
transforms.Concatenate(0)])
|
|
assert "only 1D input supported" in str(error_info.value)
|
|
|
|
# Restore configuration
|
|
ds.config.set_seed(original_seed)
|
|
|
|
|
|
def test_compose_with_custom_function():
|
|
"""
|
|
Feature: Compose op
|
|
Description: Test Python Compose op with custom function
|
|
Expectation: Output is equal to the expected value
|
|
"""
|
|
|
|
def custom_function(x):
|
|
return (x, x * x)
|
|
|
|
# First dataset
|
|
op_list = [
|
|
lambda x: x * 3,
|
|
custom_function,
|
|
# convert two column output to one
|
|
lambda *images: np.stack(images)
|
|
]
|
|
|
|
data = ds.NumpySlicesDataset([[1, 2]], column_names=[
|
|
"col0"], shuffle=False)
|
|
data = data.map(input_columns=["col0"], operations=op_list)
|
|
#
|
|
|
|
res = []
|
|
for i in data.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
res.append(i["col0"].tolist())
|
|
assert res == [[[3, 6], [9, 36]]]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_compose()
|
|
test_lambdas()
|
|
test_c_py_compose_transforms_module()
|
|
test_c_py_compose_vision_module(plot=True)
|
|
test_vision_with_transforms()
|
|
test_compose_with_custom_function()
|