mindspore/tests/ut/python/dataset/test_vocab.py

356 lines
14 KiB
Python

# Copyright 2020-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import pytest
import mindspore.dataset as ds
import mindspore.dataset.text as text
import mindspore.common.dtype as mstype
from mindspore import log as logger
# this file contains "home is behind the world head" each word is 1 line
DATA_FILE = "../data/dataset/testVocab/words.txt"
VOCAB_FILE = "../data/dataset/testVocab/vocab_list.txt"
SIMPLE_VOCAB_FILE = "../data/dataset/testVocab/simple_vocab_list.txt"
def test_get_vocab():
"""
Feature: Python text.Vocab class
Description: Test vocab() method of text.Vocab
Expectation: Success.
"""
logger.info("test tokens_to_ids")
vocab = text.Vocab.from_list(["w1", "w2", "w3"], special_tokens=["<unk>"], special_first=True)
vocab_ = vocab.vocab()
assert "<unk>" in vocab_ and "w1" in vocab_ and "w2" in vocab_ and "w3" in vocab_
def test_vocab_tokens_to_ids():
"""
Feature: Python text.Vocab class
Description: Test tokens_to_ids() method of text.Vocab
Expectation: Success.
"""
logger.info("test tokens_to_ids")
vocab = text.Vocab.from_list(["w1", "w2", "w3"], special_tokens=["<unk>"], special_first=True)
ids = vocab.tokens_to_ids(["w1", "w3"])
assert ids == [1, 3]
ids = vocab.tokens_to_ids(["w1", "w4"])
assert ids == [1, -1]
ids = vocab.tokens_to_ids("<unk>")
assert ids == 0
ids = vocab.tokens_to_ids("hello")
assert ids == -1
ids = vocab.tokens_to_ids(np.array(["w1", "w3"]))
assert ids == [1, 3]
ids = vocab.tokens_to_ids(np.array("w1"))
assert ids == 1
def test_vocab_ids_to_tokens():
"""
Feature: Python text.Vocab class
Description: Test ids_to_tokens() method of text.Vocab
Expectation: Success.
"""
logger.info("test ids_to_tokens")
vocab = text.Vocab.from_list(["w1", "w2", "w3"], special_tokens=["<unk>"], special_first=True)
tokens = vocab.ids_to_tokens([2, 3])
assert tokens == ["w2", "w3"]
tokens = vocab.ids_to_tokens([2, 7])
assert tokens == ["w2", ""]
tokens = vocab.ids_to_tokens(0)
assert tokens == "<unk>"
tokens = vocab.ids_to_tokens(7)
assert tokens == ""
tokens = vocab.ids_to_tokens(np.array([2, 3]))
assert tokens == ["w2", "w3"]
tokens = vocab.ids_to_tokens(np.array(2))
assert tokens == "w2"
def test_vocab_exception():
"""
Feature: Python text.Vocab class
Description: Test exceptions of text.Vocab
Expectation: Raise RuntimeError when vocab is not initialized, raise TypeError when input is wrong.
"""
vocab = text.Vocab()
with pytest.raises(RuntimeError):
vocab.ids_to_tokens(2)
with pytest.raises(RuntimeError):
vocab.tokens_to_ids(["w3"])
vocab = text.Vocab.from_list(["w1", "w2", "w3"], special_tokens=["<unk>"], special_first=True)
with pytest.raises(TypeError):
vocab.ids_to_tokens("abc")
with pytest.raises(TypeError):
vocab.ids_to_tokens([2, 1.2, "abc"])
with pytest.raises(ValueError):
vocab.ids_to_tokens(-2)
with pytest.raises(TypeError):
vocab.tokens_to_ids([1, "w3"])
with pytest.raises(TypeError):
vocab.tokens_to_ids(999)
def test_lookup_callable():
"""
Feature: Python text.Vocab class
Description: Test Lookup with text.Vocab as the argument
Expectation: Output is equal to the expected output
"""
logger.info("test_lookup_callable")
vocab = text.Vocab.from_list(['', '', '', '', ''])
lookup = text.Lookup(vocab)
word = ""
assert lookup(word) == 3
def test_from_list_tutorial():
"""
Feature: Python text.Vocab class
Description: Test from_list() method from text.Vocab basic usage tutorial
Expectation: Output is equal to the expected output
"""
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", "<unk>"], True)
lookup = text.Lookup(vocab, "<unk>")
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
data = data.map(operations=lookup, input_columns=["text"])
ind = 0
res = [2, 1, 4, 5, 6, 7]
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
assert d["text"] == res[ind], ind
ind += 1
def test_from_file_tutorial():
"""
Feature: Python text.Vocab class
Description: Test from_file() method from text.Vocab basic usage tutorial
Expectation: Output is equal to the expected output
"""
vocab = text.Vocab.from_file(VOCAB_FILE, ",", None, ["<pad>", "<unk>"], True)
lookup = text.Lookup(vocab)
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
data = data.map(operations=lookup, input_columns=["text"])
ind = 0
res = [10, 11, 12, 15, 13, 14]
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
assert d["text"] == res[ind], ind
ind += 1
def test_from_dict_tutorial():
"""
Feature: Python text.Vocab class
Description: Test from_dict() method from text.Vocab basic usage tutorial
Expectation: Output is equal to the expected output
"""
vocab = text.Vocab.from_dict({"home": 3, "behind": 2, "the": 4, "world": 5, "<unk>": 6})
lookup = text.Lookup(vocab, "<unk>") # any unknown token will be mapped to the id of <unk>
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
data = data.map(operations=lookup, input_columns=["text"])
res = [3, 6, 2, 4, 5, 6]
ind = 0
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
assert d["text"] == res[ind], ind
ind += 1
def test_from_dict_exception():
"""
Feature: Python text.Vocab class
Description: Test from_dict() method from text.Vocab with invalid input
Expectation: Error is raised as expected
"""
try:
vocab = text.Vocab.from_dict({"home": -1, "behind": 0})
if not vocab:
raise ValueError("Vocab is None")
except ValueError as e:
assert "is not within the required interval" in str(e)
def test_from_list():
"""
Feature: Python text.Vocab class
Description: Test from_list() method from text.Vocab with various valid input cases and invalid input
Expectation: Output is equal to the expected output, except for invalid input cases where correct error is raised
"""
def gen(texts):
for word in texts.split(" "):
yield (np.array(word, dtype='S'),)
def test_config(lookup_str, vocab_input, special_tokens, special_first, unknown_token):
try:
vocab = text.Vocab.from_list(vocab_input, special_tokens, special_first)
data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"])
data = data.map(operations=text.Lookup(vocab, unknown_token), input_columns=["text"])
res = []
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
res.append(d["text"].item())
return res
except (ValueError, RuntimeError, TypeError) as e:
return str(e)
# test basic default config, special_token=None, unknown_token=None
assert test_config("w1 w2 w3", ["w1", "w2", "w3"], None, True, None) == [0, 1, 2]
# test normal operations
assert test_config("w1 w2 w3 s1 s2 ephemeral", ["w1", "w2", "w3"], ["s1", "s2"], True, "s2") == [2, 3, 4, 0, 1, 1]
assert test_config("w1 w2 w3 s1 s2", ["w1", "w2", "w3"], ["s1", "s2"], False, "s2") == [0, 1, 2, 3, 4]
assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, True, "w1") == [2, 1, 0]
assert test_config("w3 w2 w1", ["w1", "w2", "w3"], None, False, "w1") == [2, 1, 0]
# test unknown token lookup
assert test_config("w1 un1 w3 un2", ["w1", "w2", "w3"], ["<pad>", "<unk>"], True, "<unk>") == [2, 1, 4, 1]
assert test_config("w1 un1 w3 un2", ["w1", "w2", "w3"], ["<pad>", "<unk>"], False, "<unk>") == [0, 4, 2, 4]
# test exceptions
assert "doesn't exist in vocab." in test_config("un1", ["w1"], [], False, "unk")
assert "doesn't exist in vocab and no unknown token is specified." in test_config("un1", ["w1"], [], False, None)
assert "doesn't exist in vocab" in test_config("un1", ["w1"], [], False, None)
assert "word_list contains duplicate" in test_config("w1", ["w1", "w1"], [], True, "w1")
assert "special_tokens contains duplicate" in test_config("w1", ["w1", "w2"], ["s1", "s1"], True, "w1")
assert "special_tokens and word_list contain duplicate" in test_config("w1", ["w1", "w2"], ["s1", "w1"], True, "w1")
assert "is not of type" in test_config("w1", ["w1", "w2"], ["s1"], True, 123)
def test_from_list_lookup_empty_string():
"""
Feature: Python text.Vocab class
Description: Test from_list() with and without empty string in the Lookup op where unknown_token=None
Expectation: Output is equal to the expected output when "" in Lookup op and error is raised otherwise
"""
# "" is a valid word in vocab, which can be looked up by LookupOp
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", ""], True)
lookup = text.Lookup(vocab, "")
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
data = data.map(operations=lookup, input_columns=["text"])
ind = 0
res = [2, 1, 4, 5, 6, 7]
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
assert d["text"] == res[ind], ind
ind += 1
# unknown_token of LookUp is None, it will convert to std::nullopt in C++,
# so it has nothing to do with "" in vocab and C++ will skip looking up unknown_token
vocab = text.Vocab.from_list("home IS behind the world ahead !".split(" "), ["<pad>", ""], True)
lookup = text.Lookup(vocab)
data = ds.TextFileDataset(DATA_FILE, shuffle=False)
data = data.map(operations=lookup, input_columns=["text"])
try:
for _ in data.create_dict_iterator(num_epochs=1, output_numpy=True):
pass
except RuntimeError as e:
assert "token: \"is\" doesn't exist in vocab and no unknown token is specified" in str(e)
def test_from_file():
"""
Feature: Python text.Vocab class
Description: Test from_file() method from text.Vocab with various valid and invalid special_tokens and vocab_size
Expectation: Output is equal to the expected output for valid parameters and error is raised otherwise
"""
def gen(texts):
for word in texts.split(" "):
yield (np.array(word, dtype='S'),)
def test_config(lookup_str, vocab_size, special_tokens, special_first):
try:
vocab = text.Vocab.from_file(SIMPLE_VOCAB_FILE, vocab_size=vocab_size, special_tokens=special_tokens,
special_first=special_first)
data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"])
data = data.map(operations=text.Lookup(vocab, "s2"), input_columns=["text"])
res = []
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
res.append(d["text"].item())
return res
except ValueError as e:
return str(e)
# test special tokens are prepended
assert test_config("w1 w2 w3 s1 s2 s3", None, ["s1", "s2", "s3"], True) == [3, 4, 5, 0, 1, 2]
# test special tokens are appended
assert test_config("w1 w2 w3 s1 s2 s3", None, ["s1", "s2", "s3"], False) == [0, 1, 2, 8, 9, 10]
# test special tokens are prepended when not all words in file are used
assert test_config("w1 w2 w3 s1 s2 s3", 3, ["s1", "s2", "s3"], False) == [0, 1, 2, 3, 4, 5]
# text exception special_words contains duplicate words
assert "special_tokens contains duplicate" in test_config("w1", None, ["s1", "s1"], True)
# test exception when vocab_size is negative
assert "Input vocab_size must be greater than 0" in test_config("w1 w2", 0, [], True)
assert "Input vocab_size must be greater than 0" in test_config("w1 w2", -1, [], True)
def test_lookup_cast_type():
"""
Feature: Python text.Vocab class
Description: Test Lookup op cast type with various valid and invalid data types
Expectation: Output is equal to the expected output for valid data types and error is raised otherwise
"""
def gen(texts):
for word in texts.split(" "):
yield (np.array(word, dtype='S'),)
def test_config(lookup_str, data_type=None):
try:
vocab = text.Vocab.from_list(["w1", "w2", "w3"], special_tokens=["<unk>"], special_first=True)
data = ds.GeneratorDataset(gen(lookup_str), column_names=["text"])
# if data_type is None, test the default value of data_type
op = text.Lookup(vocab, "<unk>") if data_type is None else text.Lookup(vocab, "<unk>", data_type)
data = data.map(operations=op, input_columns=["text"])
res = []
for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
res.append(d["text"])
return res[0].dtype
except (ValueError, RuntimeError, TypeError) as e:
return str(e)
# test result is correct
assert test_config("w1", mstype.int8) == np.dtype("int8")
assert test_config("w2", mstype.int32) == np.dtype("int32")
assert test_config("w3", mstype.int64) == np.dtype("int64")
assert test_config("unk", mstype.float32) != np.dtype("int32")
assert test_config("unk") == np.dtype("int32")
# test exception, data_type isn't the correct type
assert "tldr is not of type [<class 'mindspore._c_expression.typing.Type'>]" in test_config("unk", "tldr")
assert "Lookup : The parameter data_type must be numeric including bool." in \
test_config("w1", mstype.string)
if __name__ == '__main__':
test_lookup_callable()
test_from_dict_exception()
test_from_list_tutorial()
test_from_file_tutorial()
test_from_dict_tutorial()
test_from_list()
test_from_file()
test_lookup_cast_type()