403 lines
17 KiB
Python
403 lines
17 KiB
Python
# Copyright 2020-2022 Huawei Technologies Co., Ltd
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import numpy as np
|
|
import pytest
|
|
|
|
import mindspore.dataset as ds
|
|
from mindspore import log as logger
|
|
from util import dataset_equal
|
|
|
|
|
|
# test5trainimgs.json contains 5 images whose un-decoded shape is [83554, 54214, 65512, 54214, 64631]
|
|
# the label of each image is [0,0,0,1,1] each image can be uniquely identified
|
|
# via the following lookup table (dict){(83554, 0): 0, (54214, 0): 1, (54214, 1): 2, (65512, 0): 3, (64631, 1): 4}
|
|
|
|
def test_sequential_sampler(print_res=False):
|
|
"""
|
|
Feature: SequentialSampler op
|
|
Description: Test SequentialSampler op with various num_samples and num_repeats args combinations
|
|
Expectation: Output is equal to the expected output
|
|
"""
|
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
|
|
|
def test_config(num_samples, num_repeats=None):
|
|
sampler = ds.SequentialSampler(num_samples=num_samples)
|
|
data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
|
|
if num_repeats is not None:
|
|
data1 = data1.repeat(num_repeats)
|
|
res = []
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info("item[image].shape[0]: {}, item[label].item(): {}"
|
|
.format(item["image"].shape[0], item["label"].item()))
|
|
res.append(map_[(item["image"].shape[0], item["label"].item())])
|
|
if print_res:
|
|
logger.info("image.shapes and labels: {}".format(res))
|
|
return res
|
|
|
|
assert test_config(num_samples=3, num_repeats=None) == [0, 1, 2]
|
|
assert test_config(num_samples=None, num_repeats=2) == [0, 1, 2, 3, 4] * 2
|
|
assert test_config(num_samples=4, num_repeats=2) == [0, 1, 2, 3] * 2
|
|
|
|
|
|
def test_random_sampler(print_res=False):
|
|
"""
|
|
Feature: RandomSampler op
|
|
Description: Test RandomSampler with various replacement, num_samples, and num_repeats args combinations
|
|
Expectation: Output is equal to the expected output
|
|
"""
|
|
ds.config.set_seed(1234)
|
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
|
|
|
def test_config(replacement, num_samples, num_repeats):
|
|
sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples)
|
|
data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
|
|
data1 = data1.repeat(num_repeats)
|
|
res = []
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
res.append(map_[(item["image"].shape[0], item["label"].item())])
|
|
if print_res:
|
|
logger.info("image.shapes and labels: {}".format(res))
|
|
return res
|
|
|
|
# this tests that each epoch COULD return different samples than the previous epoch
|
|
assert len(set(test_config(replacement=False, num_samples=2, num_repeats=6))) > 2
|
|
# the following two tests test replacement works
|
|
ordered_res = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4]
|
|
assert sorted(test_config(replacement=False, num_samples=None, num_repeats=4)) == ordered_res
|
|
assert sorted(test_config(replacement=True, num_samples=None, num_repeats=4)) != ordered_res
|
|
|
|
|
|
def test_random_sampler_multi_iter(print_res=False):
|
|
"""
|
|
Feature: RandomSampler op
|
|
Description: Test RandomSampler with multiple iteration based on num_repeats
|
|
Expectation: Output is equal to the expected output
|
|
"""
|
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
|
|
|
def test_config(replacement, num_samples, num_repeats, validate):
|
|
sampler = ds.RandomSampler(replacement=replacement, num_samples=num_samples)
|
|
data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
|
|
while num_repeats > 0:
|
|
res = []
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
res.append(map_[(item["image"].shape[0], item["label"].item())])
|
|
if print_res:
|
|
logger.info("image.shapes and labels: {}".format(res))
|
|
if validate != sorted(res):
|
|
break
|
|
num_repeats -= 1
|
|
assert num_repeats > 0
|
|
|
|
test_config(replacement=True, num_samples=5, num_repeats=5, validate=[0, 1, 2, 3, 4, 5])
|
|
|
|
|
|
def test_sampler_py_api():
|
|
"""
|
|
Feature: Sampler op
|
|
Description: Test add_child op of a Sampler op to a Sampler op
|
|
Expectation: Runs successfully
|
|
"""
|
|
sampler = ds.SequentialSampler().parse()
|
|
sampler1 = ds.RandomSampler().parse()
|
|
sampler1.add_child(sampler)
|
|
|
|
|
|
def test_python_sampler():
|
|
"""
|
|
Feature: Python Sampler op
|
|
Description: Test Python Sampler op with and without inheritance
|
|
Expectation: Output is equal to the expected output
|
|
"""
|
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
|
|
|
class Sp1(ds.Sampler):
|
|
def __iter__(self):
|
|
return iter([i for i in range(self.dataset_size)])
|
|
|
|
class Sp2(ds.Sampler):
|
|
def __init__(self, num_samples=None):
|
|
super(Sp2, self).__init__(num_samples)
|
|
# at this stage, self.dataset_size and self.num_samples are not yet known
|
|
self.cnt = 0
|
|
|
|
def __iter__(self): # first epoch, all 0, second epoch all 1, third all 2 etc.. ...
|
|
return iter([self.cnt for i in range(self.num_samples)])
|
|
|
|
def reset(self):
|
|
self.cnt = (self.cnt + 1) % self.dataset_size
|
|
|
|
def test_config(num_repeats, sampler):
|
|
data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
|
|
if num_repeats is not None:
|
|
data1 = data1.repeat(num_repeats)
|
|
res = []
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info("item[image].shape[0]: {}, item[label].item(): {}"
|
|
.format(item["image"].shape[0], item["label"].item()))
|
|
res.append(map_[(item["image"].shape[0], item["label"].item())])
|
|
# print(res)
|
|
return res
|
|
|
|
def test_generator():
|
|
class MySampler(ds.Sampler):
|
|
def __iter__(self):
|
|
for i in range(99, -1, -1):
|
|
yield i
|
|
|
|
data1 = ds.GeneratorDataset([(np.array(i),) for i in range(100)], ["data"], sampler=MySampler())
|
|
i = 99
|
|
for data in data1:
|
|
assert data[0].asnumpy() == (np.array(i),)
|
|
i = i - 1
|
|
|
|
# This 2nd case is the one that exhibits the same behavior as the case above without inheritance
|
|
def test_generator_iter_sampler():
|
|
class MySampler():
|
|
def __iter__(self):
|
|
for i in range(99, -1, -1):
|
|
yield i
|
|
|
|
data1 = ds.GeneratorDataset([(np.array(i),) for i in range(100)], ["data"], sampler=MySampler())
|
|
i = 99
|
|
for data in data1:
|
|
assert data[0].asnumpy() == (np.array(i),)
|
|
i = i - 1
|
|
|
|
assert test_config(2, Sp1(5)) == [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
|
|
assert test_config(6, Sp2(2)) == [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 0, 0]
|
|
test_generator()
|
|
test_generator_iter_sampler()
|
|
|
|
|
|
def test_sequential_sampler2():
|
|
"""
|
|
Feature: SequentialSampler op
|
|
Description: Test SequentialSampler op with various start_index and num_samples args combinations
|
|
Expectation: Output is equal to the expected output
|
|
"""
|
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
|
|
|
def test_config(start_index, num_samples):
|
|
sampler = ds.SequentialSampler(start_index, num_samples)
|
|
d = ds.ManifestDataset(manifest_file, sampler=sampler)
|
|
|
|
res = []
|
|
for item in d.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
res.append(map_[(item["image"].shape[0], item["label"].item())])
|
|
|
|
return res
|
|
|
|
assert test_config(0, 1) == [0]
|
|
assert test_config(0, 2) == [0, 1]
|
|
assert test_config(0, 3) == [0, 1, 2]
|
|
assert test_config(0, 4) == [0, 1, 2, 3]
|
|
assert test_config(0, 5) == [0, 1, 2, 3, 4]
|
|
assert test_config(1, 1) == [1]
|
|
assert test_config(2, 3) == [2, 3, 4]
|
|
assert test_config(3, 2) == [3, 4]
|
|
assert test_config(4, 1) == [4]
|
|
assert test_config(4, None) == [4]
|
|
|
|
|
|
def test_subset_sampler():
|
|
"""
|
|
Feature: SubsetSampler op
|
|
Description: Test SubsetSampler op with various indices and num_samples args combinations including invalid ones
|
|
Expectation: Output is equal to the expected output when input is valid, otherwise exception is raised
|
|
"""
|
|
def test_config(indices, num_samples=None, exception_msg=None):
|
|
def pipeline():
|
|
sampler = ds.SubsetSampler(indices, num_samples)
|
|
data = ds.NumpySlicesDataset(list(range(0, 10)), sampler=sampler)
|
|
data2 = ds.NumpySlicesDataset(list(range(0, 10)), sampler=indices, num_samples=num_samples)
|
|
dataset_size = data.get_dataset_size()
|
|
dataset_size2 = data.get_dataset_size()
|
|
res1 = [d[0] for d in data.create_tuple_iterator(num_epochs=1, output_numpy=True)], dataset_size
|
|
res2 = [d[0] for d in data2.create_tuple_iterator(num_epochs=1, output_numpy=True)], dataset_size2
|
|
return res1, res2
|
|
|
|
if exception_msg is None:
|
|
res, res2 = pipeline()
|
|
res, size = res
|
|
res2, size2 = res2
|
|
if not isinstance(indices, list):
|
|
indices = list(indices)
|
|
assert indices[:num_samples] == res
|
|
assert len(indices[:num_samples]) == size
|
|
assert indices[:num_samples] == res2
|
|
assert len(indices[:num_samples]) == size2
|
|
else:
|
|
with pytest.raises(Exception) as error_info:
|
|
pipeline()
|
|
print(str(error_info.value))
|
|
assert exception_msg in str(error_info.value)
|
|
|
|
test_config([1, 2, 3])
|
|
test_config(list(range(10)))
|
|
test_config([0])
|
|
test_config([9])
|
|
test_config(list(range(0, 10, 2)))
|
|
test_config(list(range(1, 10, 2)))
|
|
test_config(list(range(9, 0, -1)))
|
|
test_config(list(range(9, 0, -2)))
|
|
test_config(list(range(8, 0, -2)))
|
|
test_config([0, 9, 3, 2])
|
|
test_config([0, 0, 0, 0])
|
|
test_config([0])
|
|
test_config([0, 9, 3, 2], num_samples=2)
|
|
test_config([0, 9, 3, 2], num_samples=5)
|
|
|
|
test_config(np.array([1, 2, 3]))
|
|
|
|
test_config([20], exception_msg="Sample ID (20) is out of bound, expected range [0, 9]")
|
|
test_config([10], exception_msg="Sample ID (10) is out of bound, expected range [0, 9]")
|
|
test_config([0, 9, 0, 500], exception_msg="Sample ID (500) is out of bound, expected range [0, 9]")
|
|
test_config([0, 9, -6, 2], exception_msg="Sample ID (-6) is out of bound, expected range [0, 9]")
|
|
# test_config([], exception_msg="Indices list is empty") # temporary until we check with MindDataset
|
|
test_config([0, 9, 3, 2], num_samples=-1,
|
|
exception_msg="num_samples exceeds the boundary between 0 and 9223372036854775807(INT64_MAX)")
|
|
test_config(np.array([[1], [5]]), num_samples=10,
|
|
exception_msg="SubsetSampler: Type of indices element must be int, but got list[0]: [1],"
|
|
" type: <class 'numpy.ndarray'>.")
|
|
|
|
|
|
def test_sampler_chain():
|
|
"""
|
|
Feature: Chained Sampler
|
|
Description: ManifestDataset with sampler chain; add SequentialSampler as a child for DistributedSampler
|
|
Expectation: Correct error is raised as expected
|
|
"""
|
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
|
map_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
|
|
|
def test_config(num_shards, shard_id, start_index=0):
|
|
sampler = ds.DistributedSampler(num_shards, shard_id, shuffle=False, num_samples=5)
|
|
child_sampler = ds.SequentialSampler(start_index)
|
|
sampler.add_child(child_sampler)
|
|
|
|
data1 = ds.ManifestDataset(manifest_file, sampler=sampler)
|
|
|
|
res = []
|
|
for item in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
|
|
logger.info("item[image].shape[0]: {}, item[label].item(): {}"
|
|
.format(item["image"].shape[0], item["label"].item()))
|
|
res.append(map_[(item["image"].shape[0], item["label"].item())])
|
|
return res
|
|
|
|
assert test_config(2, 0) == [0, 2, 4]
|
|
assert test_config(2, 1) == [1, 3, 0]
|
|
assert test_config(5, 0) == [0]
|
|
assert test_config(5, 1) == [1]
|
|
assert test_config(5, 2) == [2]
|
|
assert test_config(5, 3) == [3]
|
|
assert test_config(5, 4) == [4]
|
|
assert test_config(2, 0, 1) == [1, 3]
|
|
assert test_config(2, 1, 1) == [2, 4]
|
|
assert test_config(5, 0, 1) == [1]
|
|
assert test_config(5, 1, 1) == [2]
|
|
assert test_config(5, 2, 1) == [3]
|
|
assert test_config(5, 3, 1) == [4]
|
|
assert test_config(5, 4, 1) == [1]
|
|
|
|
|
|
def test_add_sampler_invalid_input():
|
|
"""
|
|
Feature: Sampler op
|
|
Description: Test use_sampler op when the arg is not an instance of a sample and
|
|
another separate case when num_samples and sampler are specified at the same time in dataset arg
|
|
Expectation: Correct error is raised as expected
|
|
"""
|
|
manifest_file = "../data/dataset/testManifestData/test5trainimgs.json"
|
|
_ = {(172876, 0): 0, (54214, 0): 1, (54214, 1): 2, (173673, 0): 3, (64631, 1): 4}
|
|
data1 = ds.ManifestDataset(manifest_file)
|
|
|
|
with pytest.raises(TypeError) as info:
|
|
data1.use_sampler(1)
|
|
assert "not an instance of a sampler" in str(info.value)
|
|
|
|
with pytest.raises(TypeError) as info:
|
|
data1.use_sampler("sampler")
|
|
assert "not an instance of a sampler" in str(info.value)
|
|
|
|
sampler = ds.SequentialSampler()
|
|
with pytest.raises(RuntimeError) as info:
|
|
_ = ds.ManifestDataset(manifest_file, sampler=sampler, num_samples=20)
|
|
assert "sampler and num_samples cannot be specified at the same time" in str(info.value)
|
|
|
|
|
|
def test_distributed_sampler_invalid_offset():
|
|
"""
|
|
Feature: DistributedSampler op
|
|
Description: Test DistributedSampler op when offset is more than num_shards
|
|
Expectation: Error is raised as expected
|
|
"""
|
|
with pytest.raises(RuntimeError) as info:
|
|
_ = ds.DistributedSampler(num_shards=4, shard_id=0, shuffle=False, num_samples=None, offset=5).parse()
|
|
assert "DistributedSampler: offset must be no more than num_shards(4)" in str(info.value)
|
|
|
|
|
|
def test_sampler_list():
|
|
"""
|
|
Feature: Sampler op
|
|
Description: Test various sampler args (int and not int) in ImageFolderDataset
|
|
Expectation: Output is equal to the expected output when sampler has data type int, otherwise exception is raised
|
|
"""
|
|
data1 = ds.ImageFolderDataset("../data/dataset/testPK/data", sampler=[1, 3, 5])
|
|
data21 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(2).skip(1)
|
|
data22 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(4).skip(3)
|
|
data23 = ds.ImageFolderDataset("../data/dataset/testPK/data", shuffle=False).take(6).skip(5)
|
|
|
|
dataset_equal(data1, data21 + data22 + data23, 0)
|
|
|
|
data3 = ds.ImageFolderDataset("../data/dataset/testPK/data", sampler=1)
|
|
dataset_equal(data3, data21, 0)
|
|
|
|
def bad_pipeline(sampler, msg):
|
|
with pytest.raises(Exception) as info:
|
|
data1 = ds.ImageFolderDataset("../data/dataset/testPK/data", sampler=sampler)
|
|
for _ in data1:
|
|
pass
|
|
assert msg in str(info.value)
|
|
|
|
bad_pipeline(sampler=[1.5, 7],
|
|
msg="Type of indices element must be int, but got list[0]: 1.5, type: <class 'float'>")
|
|
|
|
bad_pipeline(sampler=["a", "b"],
|
|
msg="Type of indices element must be int, but got list[0]: a, type: <class 'str'>.")
|
|
bad_pipeline(sampler="a", msg="Unsupported sampler object of type (<class 'str'>)")
|
|
bad_pipeline(sampler="", msg="Unsupported sampler object of type (<class 'str'>)")
|
|
bad_pipeline(sampler=np.array([[1, 2]]),
|
|
msg="Type of indices element must be int, but got list[0]: [1 2], type: <class 'numpy.ndarray'>.")
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_sequential_sampler(True)
|
|
test_random_sampler(True)
|
|
test_random_sampler_multi_iter(True)
|
|
test_sampler_py_api()
|
|
test_python_sampler()
|
|
test_sequential_sampler2()
|
|
test_subset_sampler()
|
|
test_sampler_chain()
|
|
test_add_sampler_invalid_input()
|
|
test_distributed_sampler_invalid_offset()
|
|
test_sampler_list()
|