mindspore/tests/ut/python/dataset/test_rgb_hsv.py

197 lines
7.3 KiB
Python

# Copyright 2019-2022 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""
Testing RgbToHsv and HsvToRgb op in DE
"""
import colorsys
import numpy as np
from numpy.testing import assert_allclose
import mindspore.dataset as ds
import mindspore.dataset.transforms
import mindspore.dataset.vision as vision
import mindspore.dataset.vision.py_transforms_util as util
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
def generate_numpy_random_rgb(shape):
# Only generate floating points that are fractions like n / 256, since they
# are RGB pixels. Some low-precision floating point types in this test can't
# handle arbitrary precision floating points well.
return np.random.randint(0, 256, shape) / 255.
def test_rgb_hsv_hwc():
"""
Feature: RgbToHsv and HsvToRgb ops
Description: Test RgbToHsv and HsvToRgb utilities with an image in HWC format
Expectation: Output is equal to the expected output
"""
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
rgb_np = rgb_flat.reshape((8, 8, 3))
hsv_base = np.array([
colorsys.rgb_to_hsv(
r.astype(np.float64), g.astype(np.float64), b.astype(np.float64))
for r, g, b in rgb_flat
])
hsv_base = hsv_base.reshape((8, 8, 3))
hsv_de = util.rgb_to_hsvs(rgb_np, True)
assert hsv_base.shape == hsv_de.shape
assert_allclose(hsv_base.flatten(), hsv_de.flatten(), rtol=1e-5, atol=0)
hsv_flat = hsv_base.reshape(64, 3)
rgb_base = np.array([
colorsys.hsv_to_rgb(
h.astype(np.float64), s.astype(np.float64), v.astype(np.float64))
for h, s, v in hsv_flat
])
rgb_base = rgb_base.reshape((8, 8, 3))
rgb_de = util.hsv_to_rgbs(hsv_base, True)
assert rgb_base.shape == rgb_de.shape
assert_allclose(rgb_base.flatten(), rgb_de.flatten(), rtol=1e-5, atol=0)
def test_rgb_hsv_batch_hwc():
"""
Feature: RgbToHsv and HsvToRgb ops
Description: Test RgbToHsv and HsvToRgb utilities with a batch of images in HWC format
Expectation: Output is equal to the expected output
"""
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
rgb_np = rgb_flat.reshape((4, 2, 8, 3))
hsv_base = np.array([
colorsys.rgb_to_hsv(
r.astype(np.float64), g.astype(np.float64), b.astype(np.float64))
for r, g, b in rgb_flat
])
hsv_base = hsv_base.reshape((4, 2, 8, 3))
hsv_de = util.rgb_to_hsvs(rgb_np, True)
assert hsv_base.shape == hsv_de.shape
assert_allclose(hsv_base.flatten(), hsv_de.flatten(), rtol=1e-5, atol=0)
hsv_flat = hsv_base.reshape((64, 3))
rgb_base = np.array([
colorsys.hsv_to_rgb(
h.astype(np.float64), s.astype(np.float64), v.astype(np.float64))
for h, s, v in hsv_flat
])
rgb_base = rgb_base.reshape((4, 2, 8, 3))
rgb_de = util.hsv_to_rgbs(hsv_base, True)
assert rgb_de.shape == rgb_base.shape
assert_allclose(rgb_base.flatten(), rgb_de.flatten(), rtol=1e-5, atol=0)
def test_rgb_hsv_chw():
"""
Feature: RgbToHsv and HsvToRgb ops
Description: Test RgbToHsv and HsvToRgb utilities with an image in CHW format
Expectation: Output is equal to the expected output
"""
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
rgb_np = rgb_flat.reshape((3, 8, 8))
hsv_base = np.array([
np.vectorize(colorsys.rgb_to_hsv)(
rgb_np[0, :, :].astype(np.float64), rgb_np[1, :, :].astype(np.float64), rgb_np[2, :, :].astype(np.float64))
])
hsv_base = hsv_base.reshape((3, 8, 8))
hsv_de = util.rgb_to_hsvs(rgb_np, False)
assert hsv_base.shape == hsv_de.shape
assert_allclose(hsv_base.flatten(), hsv_de.flatten(), rtol=1e-5, atol=0)
rgb_base = np.array([
np.vectorize(colorsys.hsv_to_rgb)(
hsv_base[0, :, :].astype(np.float64), hsv_base[1, :, :].astype(np.float64),
hsv_base[2, :, :].astype(np.float64))
])
rgb_base = rgb_base.reshape((3, 8, 8))
rgb_de = util.hsv_to_rgbs(hsv_base, False)
assert rgb_de.shape == rgb_base.shape
assert_allclose(rgb_base.flatten(), rgb_de.flatten(), rtol=1e-5, atol=0)
def test_rgb_hsv_batch_chw():
"""
Feature: RgbToHsv and HsvToRgb ops
Description: Test RgbToHsv and HsvToRgb utilities with a batch of images in HWC format
Expectation: Output is equal to the expected output
"""
rgb_flat = generate_numpy_random_rgb((64, 3)).astype(np.float32)
rgb_imgs = rgb_flat.reshape((4, 3, 2, 8))
hsv_base_imgs = np.array([
np.vectorize(colorsys.rgb_to_hsv)(
img[0, :, :].astype(np.float64), img[1, :, :].astype(np.float64), img[2, :, :].astype(np.float64))
for img in rgb_imgs
])
hsv_de = util.rgb_to_hsvs(rgb_imgs, False)
assert hsv_base_imgs.shape == hsv_de.shape
assert_allclose(hsv_base_imgs.flatten(), hsv_de.flatten(), rtol=1e-5, atol=0)
rgb_base = np.array([
np.vectorize(colorsys.hsv_to_rgb)(
img[0, :, :].astype(np.float64), img[1, :, :].astype(np.float64), img[2, :, :].astype(np.float64))
for img in hsv_base_imgs
])
rgb_de = util.hsv_to_rgbs(hsv_base_imgs, False)
assert rgb_base.shape == rgb_de.shape
assert_allclose(rgb_base.flatten(), rgb_de.flatten(), rtol=1e-5, atol=0)
def test_rgb_hsv_pipeline():
"""
Feature: RgbToHsv and HsvToRgb ops
Description: Test RgbToHsv and HsvToRgb ops in data pipeline
Expectation: Output is equal to the expected output
"""
# First dataset
transforms1 = [
vision.Decode(True),
vision.Resize([64, 64]),
vision.ToTensor()
]
transforms1 = mindspore.dataset.transforms.Compose(transforms1)
ds1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
ds1 = ds1.map(operations=transforms1, input_columns=["image"])
# Second dataset
transforms2 = [
vision.Decode(True),
vision.Resize([64, 64]),
vision.ToTensor(),
vision.RgbToHsv(),
vision.HsvToRgb()
]
transform2 = mindspore.dataset.transforms.Compose(transforms2)
ds2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
ds2 = ds2.map(operations=transform2, input_columns=["image"])
num_iter = 0
for data1, data2 in zip(ds1.create_dict_iterator(num_epochs=1), ds2.create_dict_iterator(num_epochs=1)):
num_iter += 1
ori_img = data1["image"].asnumpy()
cvt_img = data2["image"].asnumpy()
assert_allclose(ori_img.flatten(), cvt_img.flatten(), rtol=1e-5, atol=0)
assert ori_img.shape == cvt_img.shape
if __name__ == "__main__":
test_rgb_hsv_hwc()
test_rgb_hsv_batch_hwc()
test_rgb_hsv_chw()
test_rgb_hsv_batch_chw()
test_rgb_hsv_pipeline()